

Concepts for developing interoperable software

frameworks implementing the new IEEE 11073

SDC standard family

Andreas Besting1, Dominik Stegemann1, Sebastian Bürgerr1, Martin

Kasparick2, Benjamin Strahen3, Frank Portheine1
1 SurgiTAIX AG, 52134 Herzogenrath, Germany

2 Institute of Applied Microelectronics and Computer Engineering, University of Rostock,

Rostock, Germany
3 Institute of Medical Engineering, RWTH Aachen University, Aachen, Germany

besting@surgitaix.com

Abstract

The long overdue IEEE 11073 Service-oriented Device Connectivity (SDC)

standard proposals for networked and surgical devices provide vendor-independent

interoperability and therefore room for improved workflow and new functionality in the

operating room. Research and development in this domain remain also highly topical in

orthopaedic surgery. Due to the novelty and complexity of the SDC standard family,

there is currently a lack of open source public implementations. Such implementations

have to overcome several non-trivial challenges, mainly because the complexity of the

standards has to be reflected in the software design and implementation. The SDC

standard family comes in three different parts and all three standard proposals must be

considered when designing and implementing standard conform device communication.

In this work, we address these challenges and discuss and compare two design

approaches for different programming languages (C++ and Java). Suitable software

engineering principles are used to ensure a clean design approach. Practical guidelines

are given on how to integrate existing third party components and tools in the

framework and the development process, respectively. General feasibility is

demonstrated by outlining interoperability between two software frameworks developed

using different design concepts.

Health

Sciences

EPiC Series in Health Sciences

Volume 1, 2017, Pages 258–263

CAOS 2017. 17th Annual Meeting of the International
Society for Computer Assisted Orthopaedic Surgery

K. Radermacher and F. Rodriguez Y Baena (eds.), CAOS 2017 (EPiC Series in Health Sciences, vol. 1),
pp. 258–263

1 Introduction

Research and development regarding networked medical devices remain highly topical in

orthopaedic surgery and other domains. Networking devices can simplify existing functionality and

create new functionality, based on new possibilities available in a vendor independent system. The

foundation for such a system has been laid with the new IEEE 11073 Service-oriented Device

connectivity (SDC) standard family. This standard has long been overdue and is crucial to provide

plug-and-play functionality for the devices present in the operating room [1], [2], [3].

The SDC standard family contains three different parts [4]. IEEE P11073-10207 is called domain

information and service model or Basic Integrated Clinical Environment Protocol Specification

(BICEPS). This part describes the message and data model types needed for the device

communication, as well as some transport-agnostic rules. The Medical Devices Profile for Web

Services (MDPWS) IEEE 11073-20702 standard is a transport-aware extension and constriction of

the OASIS Devices Profile for Web Services (DPWS) [5]. The combination of the two standards is

described by the IEEE P11073-20701 standard, designated as architecture and protocol binding.

All three standard proposals must be considered when designing and implementing standard

conform device communication and new functionality resulting from the devices synergies. However,

the standards are inherently complex. This complexity is indeed needed to support the high variety of

different medical device types and allow the modelling of complex behavior. The software design and

implementation reflects the complexity of the underlying standards. Consequently, it is very difficult

to build a reliable and easy-to-use software system.

In this work, we address the problem of designing and implementing standard-conform

communication frameworks, by outlining key strategies for arising issues related to semantic- and

architectural-related complexity. We present two design approaches resulting in two different

programming language implementations and discuss advantages and drawbacks. In the first approach

developed in C++, we used almost no external components in favor of creating a clean and compact

design approach. In a second approach, developed in Java, we made generous use of available

components to quickly generate working results while accepting possible risks of adapting to an

unknown software and changing it in order to fulfil all needed requirements. A more detailed

description of the first approach is available in [6]. Here, we present a summarized view and focus on

the comparison with the second approach.

2 Materials and Methods

In our approach for building a medical software framework, we followed the typical software

development process beginning with the gathering of requirements and designing the framework

architecture and Application Programming Interface (API). A framework is a component-based,

reusable software package that provides general functionality, and can be extended towards a

specialized application. One framework has been built from scratch for the most part, while the other

implementation is based in large parts on an initial fork of an open source third party DPWS

implementation named Java Multi Edition DPWS Stack (JMEDS) [7]. The fork has been reduced to

pure DPWS functionality and extended to partly support MDPWS.

For the sake of simplicity, this section describes only the constructive part, leaving the process of

requirements gathering aside (a more detailed overview is given in [6]). Most of the functional

requirements are defined by the SDC standard documents. SDC-Family conform communication is

based on XML messages composed of the Web Service Description Language (WSDL) or SOAP [8].

The main part of a SOAP-message contains instances of the BICEPS message-model and the BICEPS

data model. The raw content of XML is sent via HTTP and UDP (see Fig. 1). SOAP and WSDL are

Concepts for Developing Interoperable Software Frameworks Implementing ... A. Besting et al.

259

technologies reference by DPWS which is a collection of other (non-medical) web-service standards

(WS-*). These standards are further extended by MDPWS by defining methods for safe data

transmission, compact data transmission and streaming [9].

Figure 1 shows architectural layers for both frameworks, starting with the API layer at the top.

The underlying mechanisms remain hidden for the calling component. We designed APIs that follow

the Service-oriented architecture communication scenario [8]. We used the publish-subscribe pattern

required by the IEEE 11073 standard [4] and expose a Provider class, that is publishing data (e.g. a

heart rate value) and a Consumer class (e.g. a monitor that is displaying the heart rate) that registers

for value-change events. These events are fired either each time their value is changed by pushing a

new value from the application domain to the provider or in periodic time spans. In the top-level API

design, we employed the open-close principle, which leaves modules open for extensions but closed

for modifications [12]. All classes have certain registration methods for different handlers to interact

with the provider or consumer in a very isolated manner. An example is a handler which can be

registered at the consumer to observe a certain value. Hence this method is similar to the observer

pattern [13]. Another example is a provider handler that can be used to react to value change request

sent by a consumer and to update a current value as a reaction to state changes of the physical device.

We strictly avoided sharing data between the application domain and the API layer in our design,

because asynchronous processing of data creates multi-threading issues.

Below the API layer the two designs are different. In the C++ framework, we designed our own

architecture and use custom DPWS and MDPWS functionality, in the Java framework we rely on a

read-to-use DPWS component JMEDS 2.0 that we regard as a black box. Since the JMEDS API was

also designed following the SOA principals, we were able to map our API components to the JMEDS

components (DefaultDevice, DefaultClient and SearchManager). We could also implement MDPWS

streaming using certain extension points. For this, we had to extend JMEDS WSDL generation,

DPWS metadata exchange and had to send SOAP messages for streaming over UDP sockets.

In the C++ framework, the adapter layer connects the API layer with the service layer. The

instances ProviderAdapter and ConsumerAdapter have a role similar to mechanisms described in the

mediator pattern [14] as they handle the message routing between the API and service layer. Some

mandatory and optional BICEPS services are managed by the provider adapter. In the consumer

adapter, messages are stored in an event queue until they are processed by the application domain

handlers one after another. The latter is called the reactor pattern [13]. Furthermore, general

Figure 1: Architectural layers for C++ (left) and Java (right)

Concepts for Developing Interoperable Software Frameworks Implementing ... A. Besting et al.

260

(M)DPWS functionality is handled. The service layer connects the service implementation to a

specific HTTP request handler. The controller is mainly responsible for providing specific static

content (WSDL and XML Schema Definition (XSD) documents) upon request. The last layer

(network) contains the handlers which are tightly connected to a HTTP server. A handler is

responsible for unpacking HTTP requests and transforming them into SOAP requests. These requests

are forwarded to the corresponding service implementations. A similar mechanism is used in the other

case. In the Java framework, we replaced the TCP socket management and HTTP server and client

implementation in JMEDS by the Apache HTTP components libraries [10] to make use of more

efficient implementations. In the C++ case, we used POCO libraries [11], mainly because of the

implemented HTTP functionality.

An important aspect of our implementation is the utilization of automatic code generators for

integrating new XSD-schemas. This approach eases the development process to a great deal since the

adaptation of the current draft is speeded up outstandingly compared to manually maintained source

code. In the C++ framework, we used the CodeSynthesis XSD 4.0 compiler for binding XSD-

schemas of the SDC Family to C++ classes. The generated code includes serialization and parsing

methods based upon the underlying Xerces 3.1 XML-parser. The XSD compiler was also used for

generating consistent code for the DPWS and WSDL implementation. In the Java framework, the

Java Architecture for XML Binding (JAXB 2.2.8) was used for the generation of Java classes out of

XSD-schemas.

In the frameworks we used C++ templates and Java generics respectively to deal with the high

quantity of types defined by the SDC Family. This allowed us to address the issues of type-safety and

a high amount of redundant source code which would naturally occur in such situations. The high

amount of different types generated by the XSD compiler makes it difficult to deal with these types in

the architectural layers at runtime. Especially the use of traits [15] in the C++ framework proofed to

Figure 2: Hierarchical structure of the SDC Family-Connector. The dotted box marks

the application domain. The application code can be specialized (top).

Concepts for Developing Interoperable Software Frameworks Implementing ... A. Besting et al.

261

be helpful. We used traits to for all SOAP-operations and SOAP-events and tried to bundle all

relevant information in one place. This technique is known as the single responsibility principle [16].

3 Results

The C++ framework is called Open Surgical Communication Library (OSCLib), the Java

implementation Software for the Integrated Clinical Environment (SoftICE) [17]. Both frameworks

implement a conceptually similar API which can be used to translate between the standardized and

vendor-independent SDC Family and the proprietary, vendor-dependent protocols, which can be

named a connector (see Fig. 2). Such a connector might alternatively be used to interact with a user

interface or to report the device's data to the clinical information system.

Besides showing feasibility for different programming languages, external dependencies and tools

used for code generation we could demonstrate that both frameworks are able to interact correctly.

For each functional case (discovery, device description, getting and setting values, event subscription

and streaming) we implemented separate test cases. Our frameworks were also used in several

experimental demonstrator environments (e.g. in the OR.NET demonstrator on the conhIT 2016 and

conhIT 2017). We could further demonstrate interoperability with the Device and System

Connectivity libraries (openSDC) [18].

4 Discussion

Our approaches proof, that the implementation of the 11073 SDC Family drafts in C++ and Java

programming language is feasible. While both design approaches led to successful implementations,

the first one left us more room to apply certain software engineering patterns. These play an important

role in the architectural design, which is particularly important when implementing a large quantity of

the SDC Family, which can be regarded as a complex cross-layer protocol (see Fig. 2). Functions

which are invoked from the application domain must be transported through the different layers until

a message can be serialized and sent over the network. The methods involved are mostly

asynchronous, which produces issues that can be solved by patterns.

In case of the Java framework, we relied on a full-featured DPWS stack that reduced our

development time significantly. However, we had to apply several patches and bugfixes, since some

extension points didn’t work as expected. Furthermore, we have limited knowledge and control of the

internal mechanisms, which could be problematic in case of future extensions or changes. The code

base of the Java framework is considerably larger because methods for generation and parsing of

DPWS messages are manually written, without generics and are based on the Simple API for XML

(SAX). In case of C++, we used code generators for all message types and template

metaprogramming, resulting in a rather small code base.

The usage of code generators and generic programming in general helped extensively dealing with

the fact that SDC Family not only involves layer-related complexity, but also type-related complexity.

Since it has been designed to provide medical semantic interoperability, the quantity of various types

needed to express this semantics in the data and message model is very high. Transforming XSD-

schemas to compliable code speeds up the process of adapting new standard revisions in a less error

prone way.

We figured out that the decision to include external dependencies has its own advantages and

drawbacks. When building medical software, it should also be considered that such a dependency may

have to be treated as Software of Unknown Provenance (SOUP) which requires special

Concepts for Developing Interoperable Software Frameworks Implementing ... A. Besting et al.

262

documentation and testing for medical approval [19]. We see the latter as part of our future work,

when we’ll have finished implementing the SDC standard family in full.

References

[1] R. M. Satava, The operating room of the future: observations and commentary, Surgical

Innovation, vol. 10, no. 3, pp. 99-105, 2003.

[2] D. W. Rattner and A. Park, Advanced devices for the operating room of the future, Surgical

Innovation, vol. 10, no. 2, pp. 85-89, 2003.

[3] H. U. Lemke and M. W. Vannier, The operating room and the need for an it infrastructure and

standards, International Journal of Computer Assisted Radiology and Surgery, vol. 1, no. 3, pp. 117-

121, 2006.

[4] M. Kasparick, S. Schlichting, F. Golatowski, and D. Timmermann, New IEEE 11073

standards for interoperable, networked point-of-care Medical Devices, Engineering in Medicine and

Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, Aug 2015, pp.

1721-1724.

[5] OASIS, Devices profile for web services version 1.1, 2016. [Online]. Available:

http://docs.oasis-open.org/ws-dd/dpws/wsdd-dpws-1.1-spec.html

[6] A. Besting, S. Bürger, M. Kasparick, B. Strathen, and F. Portheine, Software Design and

Implementation Concepts for an Interoperable Medical Communication Framework, submitted, 2017.

[7] JMEDS (Java Multi Edition DPWS Stack), 2015. [Online]. Available:

https://sourceforge.net/projects/ws4d-javame/. (Last accessed: Feb. 12th, 2017).

[8] I. Melzer, Service-orientierte Architekturen mit Web Services: Konzepte - Standards - Praxis,

4th ed. Springer Spektrum Akademischer Verlag, 2010.

[9] M. Kasparick, S. Schlichting, F. Golatowski, and D. Timmermann, Medical DPWS: New IEEE

11073 standard for safe and interoperable medical device communication, Standards for

Communications and Networking (CSCN), 2015 IEEE Conference, Oct 2015, pp. 212-217.

[10] Apache HttpComponents, 2017. [Online]. Available: https://hc.apache.org. (Last accessed:

Feb. 12th, 2017).

[11] POCO C++ libraries, 2017. [Online]. Available: https://pocoproject.org. (Last accessed: Feb.

12th, 2017).

[12] B. Meyer, Object-oriented software construction. Prentice hall New York, 1988, vol. 2.

[13] J. O. Coplien and D. C. Schmidt, Pattern languages of program design. ACM Press/Addison-

Wesley Publishing Co., 1995.

[14] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, Design patterns: Elements of reusable

object-oriented software, Reading: Addison-Wesley, vol. 49, no. 120, p. 11, 1995.

[15] S. Meyers, Effective C++: 55 specific ways to improve your programs and designs. Pearson

Education, 2005.

[16] R. C. Martin, Principles of ood, URL:

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod. (Last accessed: Feb. 12th, 2017), 1995.

[17] Open surgical communication library and software for the integrated clinical environment,

2017. [Online]. Available: http://www.osclib.surgitaix.com. (Last accessed: Feb. 12th, 2017).

[18] Device and system connectivity libraries, 2017. [Online]. Available:

https://sourceforge.net/projects/opensdc/. (Last accessed: Feb. 12th, 2017).

[19] Software of unknown provenance, 2017. [Online]. Available: https://www.johner-

institut.de/blog/tag/soup/. (Last accessed: Feb. 12th, 2017).

Concepts for Developing Interoperable Software Frameworks Implementing ... A. Besting et al.

263

