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Abstract

Stochastic approaches to the reaction-diffusion master equation (RDME) are commonly
employed in systems biology to model the intrinsic randomness of diffusing molecular
species. For accurate modeling and numerical simulation of the reaction-diffusion process,
parameter estimation from experimental or synthetic data is a topic of interest. Parameter
estimation is a challenging task in stochastic RDME since the reaction rate parameters
are always coupled with the diffusion rate parameters, and the state of the system itself is
random. We present a fitting scheme based on a maximum likelihood estimation (MLE) to
approximate both the reaction and diffusion rate parameters. The quality of the method
is evaluated by applying it to two case-studies from systems biology, such as the birth-
death process and the annihilation system. The results obtained from our experiments
demonstrate a reasonable approximation of the estimated parameters compared to the
true parameter values.

1 Introduction

Reaction-diffusion models first developed [1] to provide a microscopic description of morpho-
genesis, have been extensively employed to describe spatio-temporal dynamics where molecules
diffuse, generate, degrade, and engage in chemical reactions when they are close together. Nu-
merous biological phenomena, including gene regulation, metabolic, and signaling processes can
be explained by the reaction diffusion process [2]. In order to obtain an accurate representation
of the discrete and stochastic models, we employ the Chemical Master Equation (CME) [3]
when low copy numbers of molecules are present in the system. The reaction–diffusion master
equation (RDME) extends the CME to incorporate diffusion process where species are divided
into compartments (voxels) [4]. We assume that all reactions within a given compartment are
consistent with the homogeneous case where the compartments are well-mixed so that they can
contain at least a few molecules. Additionally, molecular diffusion can occur between neigh-
boring compartments. At any given time, the state of the system is determined by the number
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of molecules of each species in each compartment and is represented as a discrete Markov pro-
cess [5–9] whose evolution is regulated by chemical and diffusion reaction events. While the
RDME model shares similarities with the CME, it experiences higher computational costs due
to the significantly larger state space.

Fitting a system of ordinary differential equations to the observed data yields model parameters
for deterministic [10–12] systems. These parameters may not be ideal for the CME; hence, we
need different estimating techniques. Additionally, spatial models incorporate rapid diffusions
and reactions, and they may have unknown parameter values. In this work, we present the
maximum likelihood estimation (MLE) method [13, 14] to approximate the reaction and diffu-
sion rate parameters where it maximizes a probability function to fit the observed data into an
assumed statistical model, resulting in the highest possible estimate in the parameter space.
Parameter estimation for stochastic RDME is an iterative process. Stochastic biological mod-
els are highly nonlinear and non-convex, so estimation by implementing the iterative process
carries the risk of getting stuck in a local minima by using the local optimization routine. Here,
we have employed Multistart [15] global optimization routine, a MATLAB toolbox to optimize
the objective function, which can tackle the identifiability issues of the unknown parameters
and shown to be worked well for our RDME models.

The rest of the paper is organized as follows: In section 2, we summarize the CME, FSP, DME
and RDME. Section 3 discusses parameter estimation techniques and optimization algorithms.
Lastly, section 4 shows numerical tests and discussions.

2 Methods

2.1 Chemical Master Equation (CME)

Consider a chemical reaction system involving N molecular species that interact through M
reactions where we denote x(t) = (x1, . . . , xN )

T
as the state of the system at time t. The propen-

sity function αk(x(t)) of reaction Rk at the current state x(t) is defined so that the probability
of such a reaction occurring during the infinitesimal time interval [t, t+dt) is αk(x(t))dt. When
reaction Rk happens, the state vector is updated with the stoichiometric vector νk, representing
the change in species numbers.

Denote P (x, t) = Prob{x(t) = x}, the probability that the system is at state x at time t. As
given in [16], a characterization CME is that

dP (x, t)

dt
=

M∑
k=1

αk (x− νk)P (x− νk, t)−
M∑
k=1

αk(x)P (x, t) (1)

Let X be the set of all possible states, if we order these states as X = {x1, . . . ,xn}, where
xi = (x1i, . . . , xNi)

T
and n is the total number of states, then (1) defines a set of ODEs

ṗ (t) = R · p (t) , t ∈ [0, tf ] (2)

where R = [aij ] ∈ Rn×n the transition rate matrix. From (2) the probability vector at the end
point tf is

p (tf ) = exp (tfR)p(0) (3)

Because of the ’curse of the dimensionality’, the size of CME can be extremely large or theoret-
ically infinite. Finite state projection (FSP) [17], an advancement in the numerical treatment
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of the CME, gives us a reasonable approximation to the solution of the CME, which we will
describe shortly in the next subsection.

2.2 Finite State Projection (FSP)

The enormous size of the CME usually makes it too challenging to solve directly. The FSP
makes a truncation with an analytical bound on the error of the probability distribution. We
define XJ to be a finite subset of states in X, where J is the index set of those finite states.
For a truncated state transition matrix RJ , the FSP finds pJ(t) with the truncated CME

ṗJ(t) = RJ · pJ(t), t ∈ [0, tf ] (4)

and its solution is given by

pJ(t) = exp(tfRJ)pJ(0) (5)

2.3 Diffusion Master Equation (DME)

Assume the domain Ω is partitioned into compartments (voxels). We label the compartments
with Vk, k = 1, . . . ,K. Molecules within each compartment can react with one another within
that compartment, and they can also diffuse across the boundaries and move to neighboring
compartments. Both the reaction and diffusion processes are considered as random processes.
Let, Xi,k(t) be the number of molecules of species Si in compartment Vk at time t. Then each
species in the domain is given by the sub vector Xi(t) = [Xi,1(t), . . . , Xi,K(t)] , i = 1, . . . , N .
The diffusion propensity function di,j,k and the state change vector µk,j characterize the dy-
namics of the diffusion of species Si from compartment Vk to Vj in the next infinitesimal time
interval [t, t+ dt]. The vector µk,j has a length of K with -1 in the k th position, 1 in the j th
position, and 0 elsewhere. Given, X = {x1, . . . ,xn}, the diffusion master equation (DME) can
be written by

dP (x, t)

dt
=

N∑
i=1

K∑
k=1

K∑
j=1

[di,j,k (xi − µk,j)P (x1, . . . ,xi − µk,j , . . . ,xN , t)− di,j,k (xi)P (x, t)]

(6)
with the diffusion propensity functions di,j,k (xi). If D is the transition matrix describing the
diffusion of molecules, the equivalent matrix-vector form can be written by

ṗ(t) = D · p(t), t ∈ [0, tf ] (7)

2.4 Reaction-Diffusion Master Equation (RDME)

Accounting for all the reactions in (2) and diffusions in (7) yields the matrix-vector form of the
RDME

ṗ(t) = R · p (t) + D · p(t) (8)

Since there are more possible states in (8) than in (2) or in (7), the transition rate matrix that
corresponds to it has been significantly expanded so that it may accurately represent species in
different compartments. Since RDME accounts for both the reaction and diffusion as a whole,
its dimensionality is significantly higher and computationally expensive [18] to solve, hence we
often seek the numerical solution rather than the analytical solution.
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3 Parameter Estimation Techniques

Several different optimization techniques [19–23] exist for parameter estimation in stochastic
biological systems. The selection of methodology typically relies on the nature of the model
equations, the number of unknown parameters, and the correlation between the model solution
and parameters, such as whether they are linear or nonlinear, continuous or discontinuous. This
work utilizes the maximum likelihood estimator (MLE) due to its probabilistic nature [24] to
solve an optimization problem for stochastic models.

We first employed the FSP method to approximately solve the RDME that provides the state
transition probability vector of each species. There is an implicit dependency on the reaction
and diffusion parameters while setting up the RDME in (8). To clarify that the system’s
behavior relies on some reaction and diffusion rate parameters θ we write

ṗ (t) = (R + D)(θ) · p (t) , t ∈ [0, tf ] (9)

for which the solution is the probability vector p(t,θ) = (p1(t,θ), . . . , pn(t,θ))
T where pγ(t,θ) =

P (xγ , t,θ) is the probability of finding the system in state xγ at time t, with the x1, . . . ,xn

being the states retained by the FSP. For the data set H and at fixed time t = tf , the likelihood
function LFSP

H (θ) is obtained as the product of the transition probabilities

LFSP
H (θ) =

∏
γ

P (xγ , t,θ) (10)

and we restrict the running index γ in (10) to plausible states determined by the data set H.
By rephrasing the problem using the log-likelihood function, it is possible to enhance numerical
stability with the goal of determining the parameter set θFit which will maximize (10). Therefore
the FSP-based MLE problem is:

θFit = argmax
θ

(LFSP
H (θ)) (11)

= argmax
θ

(log(LFSP
H (θ))) (12)

= argmax
θ

(∑
γ

log(P (xγ , t,θ))

)
(13)

Each evaluation of the objective function with a different θ implies solving the RDME to
retrieve the P (xγ , t,θ), and this is why efficient solution techniques are critical. Either way,
maximizing the likelihood, or correspondingly minimizing the negative log-likelihood, yields
maximum-likelihood parameter estimates.

3.1 Optimization Algorithms

Parameter estimation in reaction-diffusion models, even in the deterministic case [25] suffers
from identifiability issues. Stochastic biological models are known to be non-convex, nonlinear
programming problems (NLP), and often optimization of the objection function is confounded
by many locally optimal solutions to find the best fit. For RDME, further complications arise
when the reaction and diffusion rate parameters are interconnected, which makes the exact
statistical inference computationally very intensive. Although optimization-based methods have
proven effective for deterministic systems [25, 26], there are currently no equivalent methods
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available for stochastic systems that can assure good accuracy. We employed Multistart global
optimizer to maximize the objective function in (13). Multistart is a heuristic-based method
that starts a local solver from multiple starting points to find the global minimum and selects
the best result. The total time it takes for our method to run depends on both the initial guess
and the intervals that we use for unknown parameters. Different initial points yielded similar
results. We choose the initial guess so that it is defined when the local solver iterates. It is
important that a range is given for each parameter space in order to ensure that the values
are reasonable from a biological standpoint. Exploring large parameter spaces can give wrong
estimation if the estimation problems are ill-conditioned and multi-modal [27].

3.2 Data Set

We generate the synthetic data by using a compartment-based stochastic simulation algorithm
(SSA) [7], which is a standard approach for Markov jump processes in a discrete state space.
As the true values of the parameters are known, they have been employed to generate the data
with 102 SSA realizations for each test model.

4 Numerical Tests and Discussions

4.1 Annihilation System

The annihilation system [28] consists of two species A and B, which react to annihilate each
other. The following reaction takes place in each compartment:

R : A+B
c−→ ∅

A compartment-based approach is a good way to show reaction-diffusion spatio-temporal sys-
tems. In this approach, space is split into uniformly spaced compartments where species can
interact with neighboring compartments. Here we consider two neighboring compartments,
named as V1 and V2, where the reactions R can take place inside both compartments sepa-
rately and species A and B can move back and forth between V1 and V2. Since there are
two species and two compartments in our model, there will be two diffusion rate parame-
ters, say DA and DB for species A and B, respectively. For test purposes, we assume all
of the reaction and diffusion rate parameter values are the same in each compartment with
θtrue = (c,DA, DB)

T = (0.2, 1.0, 1.0)T .

Table 1: Results of the global optimization of the annihilation system

Parameter c DA DB

True 0.2 1.0 1.0
Estimated 0.1777 0.9329 1.05

The goal of the algorithms employed in global optimization is to identify the maximum value
of the objective function throughout the entire range. Multistart runs a local solver fmin-
con from each set of starting points to find the global maximum within the range chosen.
Within our optimization technique, we have set 10 instances, indicating that the solver at-
tempts to identify multiple local solutions to a problem by starting from 10 distinct points.
For the annihilation system, we generate the data by 102 SSA realizations with the settings of
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θtrue = (c,DA, DB)
T = (0.2, 1.0, 1.0)T , initial state vector (5, 4, 4, 5)T , and time t = 15s. To

run the optimizer, we choose the initial guess from a given set of uniform distributions with
c0 = 1.2 and D0 = (0.5, 0.5)T . Table 1 shows the optimization results of the estimated parame-
ters, while Figure 1 shows the graphical representation of the true and estimated parameters of
the annihilation system. We have seen that both the reaction rate parameters and the diffusion
rate parameters were well estimated. We adjusted FunctionTolerance, XTolerance as 10−6 and
lower and upper bounds as [0, 0, 0] and [0.5, 1.5, 1.5], respectively while we performed this test.
Sensitivity analysis is crucial in parameter estimation, as minor changes in parameters can sig-
nificantly impact system performance and vice versa. Thus, we have tested the sensitivity of the
marginal probability distribution of each species in different compartments of the annihilation
system with the true and estimated parameters shown in Figure 2. Since the approximations
of our parameter estimation are good enough, a reasonable fitting of the marginal probability
distribution has been obtained.

Figure 1: True and estimated parameter values of the annihilation system

4.2 Birth-Death Process

Consider the following model [29] for production and degradation of a species A where in
reaction R1 protein is produced at a constant rate c1 and in reaction R2 protein is degraded at
a constant rate c2.

R1 : A
c1−→ 2A

R2 : A
c2−→ ∅

Here we consider two neighboring compartments, named as V1 and V2, where the reactions R1

and R2 can take place inside both compartments separately and proteins can move back and
forth between V1 and V2.

Since there are only one species and we consider two compartments in our system, there will
be only one diffusion rate parameter, say DA.For testing purposes, we consider true parameters
θtrue = (c1, c2, DA) = (0.3, 0.7, 0.01).
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(a) Species A in compartment V1 (b) Species B in compartment V1

(c) Species A in compartment V2 (d) Species B in compartment V2

Figure 2: A comparison of the marginal probability distribution with the true and estimated
parameter values in different compartments of the annihilation system

Table 2: Results of the global optimization of the birth-death process

Parameter c1 c2 DA

True 0.3 0.7 0.01
Estimated 0.3703 0.6622 0.0102

With the settings of θtrue = (c1, c2, DA)
T = (0.3, 0.7, 0.01)T , initial state vector (3, 2)T , and

time t = 20s, we generate the data by 102 SSA realizations. The optimization routine requires
an initial guess of the parameters, and we choose the initial guess from a given set of uniform
distributions with c0 = (0.9, 1.2)T and DA0

= 0.07. Table 2 shows the optimization results of
the estimated parameters, while Figure 3 shows the graphical representation of the true and
estimated parameters of the birth-death process. Again, we have seen that both the reaction
rate parameters and the diffusion rate parameters are well inferred. We keep the same conver-
gence properties with the previous model and adjust the lower and upper bounds as [0, 0, 0]
and [0.6, 1.5, 0.05], respectively. Figure 4 shows the sensitivity of the marginal probability dis-
tribution of each species in different compartments for the birth-death process with a good fit.
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Figure 3: True and estimated parameter values of the birth-death process

(a) Species A in compartment V1 (b) Species A in compartment V2

Figure 4: A comparison of the marginal probability distribution with the true and estimated
parameter values in different compartments of the birth-death process

5 Conclusion

The process of estimating parameters for stochastic biochemical models necessitates a large
computing infrastructure. Occasionally, it is conceivable to identify the unknown parameters
by experimentation, but in the majority of instances, this is challenging or even unachievable.
For RDME, this is even more difficult since the estimation requires both reaction and diffusion
rate parameters. In this work, we have shown that by implementing the compartment-based
approach, we can extend the CME to RDME, and later on, the MLE method can be used to
estimate both the reaction and diffusion rate parameters. There are prospects for extension
and additional study, e.g., we intend to explore more complex systems incorporating biological
models with different optimization algorithms.

110



Parameter Estimation for the Stochastic RDME K. Hossain et al.

References

[1] A Turing. The chemical basis of mokphogenesis. Philosophical Transactions of the Royal Society
of London. Series B, Biological Sciences, 237(641):37–72, 1952.

[2] Radek Erban and S Jonathan Chapman. Stochastic modelling of reaction–diffusion processes,
volume 60. Cambridge University Press, 2020.

[3] Harley H McAdams and Adam Arkin. Stochastic mechanisms in gene expression. Proceedings of
the National Academy of Sciences, 94(3):814–819, 1997.

[4] Audrius B Stundzia and Charles J Lumsden. Stochastic simulation of coupled reaction–diffusion
processes. Journal of computational physics, 127(1):196–207, 1996.

[5] Radek Erban, Jonathan Chapman, and Philip Maini. A practical guide to stochastic simulations
of reaction-diffusion processes. arXiv preprint arXiv:0704.1908, 2007.

[6] Daniel T Gillespie. A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions. Journal of computational physics, 22(4):403–434, 1976.

[7] Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The journal of
physical chemistry, 81(25):2340–2361, 1977.

[8] Daniel T Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems.
The Journal of chemical physics, 115(4):1716–1733, 2001.

[9] Daniel T Gillespie. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem., 58:35–55,
2007.

[10] AR Ortiz, HT Banks, Carlos Castillo-Chavez, G Chowell, and X Wang. A deterministic methodol-
ogy for estimation of parameters in dynamic markov chain models. Journal of Biological Systems,
19(01):71–100, 2011.

[11] Anton Miró, Carlos Pozo, Gonzalo Guillén-Gosálbez, Jose A Egea, and Laureano Jiménez. Deter-
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