
Kalpa Publications in Computing

Volume 9, 2018, Pages 58–74

LPAR-22 Workshop and Short Paper Proceedings

Symmetry breaking in a new stable model search method
Tarek Khaled and Belaid Benhamou

Aix Marseille University, University of Toulon, CNRS, LIS, Marseille, France.
{tarek.khaled,belaid.benhamou}@univ-amu.fr

Abstract

In this work, we investigate the inclusion of symmetry breaking in the answer set programming
(ASP) framework. The notion of symmetry is widely studied in various domains. Particularly, in the
field of constraint programming, where symmetry breaking made a significant improvement in the
performances of many constraint solvers. Usually, combinatorial problems contain a lot of symme-
tries that could render their resolution difficult for the solvers that do not consider them. Indeed, these
symmetries guide the solvers in the useless exploration of symmetric and redundant branches of the
search tree. The ASP framework is well-known in knowledge representation and reasoning. How-
ever, only few works on symmetry in ASP exist. We propose in this paper a new ASP solver based on
a novel semantics that we enhance by symmetry breaking. This method with symmetry elimination is
implemented and used for the resolution of a large variety of combinatorial problems. The obtained
results are very promising and showcase an advantage when using our method in comparison to other
known ASP methods.

1 Introduction
Answer Set Programming (ASP) is an important framework that is used to express and solve a variety
of high combinatorial problems, such as graph problems, planning and model checking. ASP is applied
in robotics, computational biology and also for industrial purposes. It is an expressive modeling tool,
that is able to encode an important number of problems. It has become a popular approach because
of the availability of several efficient software tools like Clasp[14], DLV [18], Smodels [25] and other
systems based on SAT solver like ASSAT [20] and Cmodels [19]. The ASP paradigm emerged from
the research on knowledge representation and non-monotonic reasoning. Several works have been done
to define semantics for logic programs. The main objective behind them is to give a precise meaning
to the negation as failure (default negation). The first semantics had been proposed by Clark [8]. This
semantics is used in several ASP solvers, but the most known semantics in ASP is the one of stable
models [16]. Lately, a new semantics has been proposed [7]. In this semantics, a logic programs is
represented by a set of Horn clauses that has the same size as the input ground program. The benefit
of this semantics is the easy characterization of the stable models and the extension it provides to the
stable model semantics.

Here after, we propose a new method for answer set searching that rely on a Boolean enumeration
process defined for the ASP paradigm according to the semantics introduced in [7]. This method has
the advantage of performing the enumerative process only on a restricted set of literals called the strong
backdoor (STB) [26] of the logic program. The search method computes all the possible extensions of

G. Barthe, K. Korovin, S. Schulz, M. Suda, G. Sutcliffe and M. Veanes (eds.), LPAR-IWIL 2018 (Kalpa Publications in
Computing, vol. 9), pp. 58–74

Symmetry breaking in a new stable model search method Tarek Khaled and Belaid Benhamou

the source logic program from which we can generate all the stable models. It could also compute extra-
models corresponding to a kind of extra-extensions that are not captured by the stable model semantics.
These extra-models extend the stable model semantics. The stable models are deduced from a sub-set
of extensions satisfying what is called here a a discriminant condition.

On the other hand, symmetry is studied in several fields including mathematics and artificial intel-
ligence. An object is symmetrical, when the permutation of its elements leaves the object unchanged.
Symmetry is a fundamental notion in the satisfiability problem that permit to reduce the computational
complexity when dealing with combinatorial problems. The principle of symmetry in propositional
logic has been first introduced by Krishnamurthy in [17]. Symmetry has been studied in depth in [4, 5]
where a dynamic symmetry elimination is proposed for the DPLL method [11] when solving the satisfi-
ability problem. A static approach that breaks symmetries in a preprocessing phase is introduced in [9].
This static approach consists in adding constraints expressing the global symmetry of the initial rep-
resentation of the problem. This technique has been improved in [2]. Several combinatorial problems
when expressed in the ASP paradigm hold a great number of symmetries. For instance the Pigeon Hole
problem is known to require exponential time to be solved when the symmetries are not eliminated.
Indeed, the ASP solver explores all the symmetrical search spaces. It is possible to avoid exploring
these redundant search spaces by breaking the existing symmetries. Until now, only few works on sym-
metry elimination in ASP have been done. For instance the method presented in [12] treats symmetry
in ASP with a statical approach and the encoding is based on the body-atom representation. A different
approach is studied in [6]. This last method breaks symmetry in both a statical and a dynamical way.

In this paper, we first start by discussing the new method for ASP solving, then deal with the detec-
tion and the elimination of the symmetries of the Horn clausal representation that the new semantics [7]
uses to express logic programs. We split the problem of symmetry breaking into three parts. We start by
creating a colored graph that represents the Horn clausal form of the given logic program in such a way
that the automorphisms of the graph are identical to the symmetries of the Horn clausal representation.
Then, a set of generators representing the automorphism group of the graph is computed by using tools
like saucy [2], autom [24] or nauty [21]. Finally, symmetry-breaking predicates (SBP) are constructed
and added to the Horn clausal formulation. Our approach is inspired by the works presented in [2, 3].

The rest of the paper is organized as follows. First, we recall in Section 2 some notions on logic
programming and the semantics [7] on which our search method is based. Then we describe in Section
3 the new ASP search method. In Section 4, we give the definition and the theoretical properties of
symmetry. We describe in Section 5 the symmetry detection method before discussing the symmetry-
breaking approach in Section 6. Section 7 gives the experimental results obtained on some combinatorial
problems. Section 8 concludes the work.

2 Background
We will summarize in the following the notions of permutations, the answer set programming framework
and the main theoretical bases of the used semantics [7].

2.1 Permutations
Let Ω = {1,2, . . . ,N} for some integer N, where each integer might represent a propositional variable or
an atom. A permutation of Ω is a bijection mapping defined from Ω into itself. We denote by Perm(Ω)
the set of all permutations of Ω. The pair (Perm(Ω),◦) where ◦ is the composition of the permutations
of Perm(Ω) forms the permutation group of Ω. The orbit of an element ω on which the group Perm(Ω)
acts is ωPerm(Ω) = {ωσ | ωσ = σ(ω),σ ∈ Perm(Ω)}. In other words, the orbit of an element ω under a
permutation group are the set of all elements to which the element ω can be mapped.

59

Symmetry breaking in a new stable model search method Tarek Khaled and Belaid Benhamou

A generating set of the group Perm(Ω) is a subset Gen of Perm(Ω) such that each element of
Perm(Ω) can be written as a composition of elements of Gen. We write Perm(Ω)=< Gen >. An
element of Gen is called a generator. The orbit of ω ∈ Ω can be computed by using only the set of
generators Gen.

2.2 Answer Set Programming

A logic program π is a finite set of rules of the form r:head(r)← body(r), where body(r) is the set of
premises of the rule given as conjunction of literals. The head(r) represent the conclusion of the rule
which is generally a single literal or in some case a disjunction of literals for disjunctive logic programs.
It is in general, given in first order logic and grounders like gringo [15] or l parse [23] are used to
compute all its ground instances. In the sequel, we focus on ground programs, we assume that π is
ground.

There are different classes of logic programs. They differ by the presence or the absence of the
classical negation and the negation as failure in the rules of the program. A positive logic program π is
a set of rules of the form : r = A0← A1,A2, ...,Am, with (m≥ 0) and where Ai is an atom for 0≤ i≤m.
There is no classical negation or negation as failure in a positive logic program. A general logic program
π is a set of rules of the form : r = A0 ← A1,A2, ...,Am,not Am+1, ...,not An,(0 ≤ m < n) where Ai is
an atom for 0 ≤ i ≤ n and not the symbol expressing the negation as failure. The positive body of r
is body+(r) = {A1,A2, ...,Am} and the negative is body−(r) = {Am+1, ...,An}. The positive projection
of r is r+ = A0 ← A1,A2, ...,Am. The intuitive meaning of the rule r is the following: if we prove all
the atoms of body+(r) and at the same time no atom of body−(r) had been proven, then we infer the
head A0. The reduct of a program π with respect to a given set of atoms X is the positive program πX

obtained from π by deleting each rule containing a default-negated atom not Ai in its negative body such
that Ai ∈ X and all the atoms not A j from the remaining rules. Formally, πX = {r+ : body−(r)∩X = /0}.
Throughout the rest of the paper, we will focus on general logic programs.

The most known semantics for logic programs is the one of stable models [16]. A set X of atoms is
a stable model of π iff X is identical to the minimal Herbrand model of the reduct πX obtained from π

when considering the set of atoms X . This model is also called the canonical model of πX , it is denoted
by Cn(πX). That is, a set X of atoms is a stable model of π if and only if X =Cn(πX). Clark completion
semantics [8] is also used to compute the stable models. It is known that each stable model of logic
program π is a model of its completion, but a model of the completion is not always a stable model [13]
of π . Loop formulas are added to the completion to establish the equivalence between the stable models
of π and the models of its Clark completion [20]. The size of the CNF formula resulting from the loop
management could vary exponentially within the size of the program. The ASP solvers that use this
approach could have an exponential space complexity in the worst case.

2.3 The used semantics

A new semantics is proposed in [7]. This semantics uses a Horn clausal representation to express
the considered logic program. This representation has the advantage of having the same size as the
one of the input logic program. The new semantics is based on a classical propositional language L
composed by two types of literals, a subset of classical literals V = {Ai : Ai ∈ L} and an other subset
nV = {not Ai : not Ai ∈ L}. For each literal Ai ∈V , there is a corresponding literal not Ai ∈ nV designing
the negation as failure of Li. A connection between these two types of literals is expressed by the addition
to the propositional language L of an axiom expressing the mutual exclusion between each literal Ai ∈V
and its corresponding negative literal not Ai ∈ nV . This axiom of mutual exclusion is expressed by
a set of clauses ME = {(¬Ai ∨¬not Ai) : Ai ∈ V}. A ground general logic program π={r : A0 ←

60

Symmetry breaking in a new stable model search method Tarek Khaled and Belaid Benhamou

A1,A2, ...,Am,not Am+1, ...,not An}, (0≤ m < n) is expressed in the propositional language L by a set of
Horn clauses CR= {

⋃
r∈π

(A0∨¬A1∨, ...,¬Am∨¬not Am+1, ...,¬not An)}, (0≤m< n) representing all the

rules of the logic program to which the set of mutual exclusion clauses ME = {(¬Ai∨¬not Ai) : Li ∈V}
is added. The Horn clausal form of π is the following :

HC(π) = {
⋃

r∈π

(A0∨¬A1∨, ...,¬Am∨¬notAm+1, ...,¬notAn)
⋃

Ai∈V
(¬Ai∨¬notAi)}.

The size of the complete representation of the logic program π is approximately equal to size(π)+
2n, where n = |V |. The factor 2n corresponds to the set of clauses ME.

The algorithm that we will present in the next section operates on the form HC(π). It is an enumer-
ative algorithm that performs on a subset of variables that represent the strong backdoor (STB)[26] of
the input logic program. The set STB is formed by the literals of the form not Ai that occur in the logic
program π .

Definition 1. Given a logic program π , its strong backdoor is ST B = {not Ai ∈ nV : ∃r ∈ π,not Ai ∈
body−(r)}.

The method mainly computes the extensions of HC(π) that encodes the stable models. Given a
program π and its STB. An extension of HC(π) with respect to the STB (or simply an extension of
the pair (HC(π),ST B) is the set of consistent clauses derived from HC(π) when adding a maximal set
of literals not Ai ∈ ST B. In other word, an extension of (HC(π),ST B)) is maximally consistent with
respect to inclusion of literals not Ai ∈ ST B, when the addition of one more literal not Ai ∈ ST B renders
the resulting extension inconsistent. Formally:

Definition 2. Let HC(π) be the Horn CNF encoding of a logic program π , ST B its strong backdoor
and S ⊆ ST B. The set E = HC(π)∪S of clauses is then an extension of (HC(π),STB) if the following
conditions hold:

1. E is consistent,

2. ∀notAi ∈ STB−S,E∪{notAi} is inconsistent.

It is shown in [7], that each stable model of a logic program π corresponds to an extension E
of HC(π) that satisfies the discriminant condition (∀Ai ∈ V, E |= ¬not Ai ⇒ E |= Ai) and vice-versa.
There is a one to one bijection between the stable models of π and these extensions. The main proved
theoretical properties are the following:

Theorem 1. If E is an extension of (HC(π),ST B), that verify the discriminant condition: ∀Ai ∈V,E |=
¬not Ai⇒ E |= Ai, then X = {Ai : E |= Ai} is a stable model of π .

It is also shown in [7] that for each stable model of the logic program there exists an extension of
(HC(π),ST B) from which it could be deduced.

Theorem 2. If X is a stable model of a logic program π , then there exist an extension E of (L(π),ST B)
such that X = {Li ∈V : E |= Li} and which verifies the discriminant condition (∀Li ∈V,E |= 1¬notLi⇒
E |= Li).

Example 1. Consider the logic program π =
{

a← not b ; b← not a
}

The Horn clausal representa-
tion of the logic program π is formed by the set HC(π)=CR∪ME where CR= {a∨¬not b,b∨¬not a}, ME =

{¬a∨¬not a,¬b∨¬not b} and its strong backdoor is ST B = {not a,not b}. We can see that (HC(π),ST B)
admits two extensions E1 = HC(π)∪{not a} and E2 = HC(π)∪{not b}. Indeed, E1 and E2 are max-
imally consistent with respect to the set ST B. The two extensions satisfy the discriminant condition.
Thus, the logic program has two stable models M1 = {b} and M2 = {a} that are deduced from E1 resp.
E2 by unit resolution.

1The symbol |= expresses the classical logical infrence

61

Symmetry breaking in a new stable model search method Tarek Khaled and Belaid Benhamou

3 The proposed search method
We describe here the new search method for stable models that is based on the semantics summarized
previously [7]. For a given logic program π , this method computes all the extensions of (HC(π),ST B)
from which the stable models are deduced by unit resolution. Intuitively, the search of the extensions of
(HC(π),ST B) is done by the progressive addition of literals not Ai of the ST B to HC(π) and checking
the consistency of the obtained set at each node. If we focus only on stable models, then we just have
to look after the extensions verifying the discriminant condition. In other words, we prune the search
tree to remove the extra-extensions which don’t verify that condition. The proposed method is able to
compute all the stable models of a given logic program and in general could search extra-models when
stable models do not exist. However, in this work, we limited the search to only stable models. We
did this in order to have a safe comparison with other ASP systems that consider only stable models.
The enumeration process builds incrementally an extension by alternating in the search tree between
deterministic nodes corresponding to the unit propagations and non deterministic nodes that are the
choice points. The choice points are defined by the affectation of truth values (true or false) to some
literals of the strong backdoor set ST B. Some new inference rules that the method uses to increase the
number of unit propagations and then reduces the search space are introduced.

3.1 The theoretical bases of the method
We will now introduce some inference rules that the method will use thereafter in the enumeration
process.

Definition 3. Let π be a logic program and HC(π) its Horn clausal representation. We define on HC(π)

two inference rules :
Ai

¬not Ai
and

not Ai

¬Ai
.

These two inference rules represent an efficient implementation of the set of clauses
ME =

⋃
Ai∈V
{(¬Ai∨¬not Ai)} of HC(π) expressing the mutual exclusion between each pair of atoms Ai

and not Ai.
In the case of our method, the enumeration is done only on the subset of STB literals. Let CST B =

{ci = ¬not Ai1∨, ...,∨¬not Aik/ | ci |≥ 1,∀ j ∈ {1..k},not Ai j ∈ ST B} be the set of all possible negative clauses
formed by some literals of the set ST B and which have at least one literal. The non deterministic treat-
ment of a choice point corresponding to a strong backdoor literal not A j is done by first its assignment to
the value true to favor the current extension maximality. The exploration of the branch corresponding
to the assignment of the truth value f alse to not A j is necessary only when the first branch produced at
least one sub clause ci ∈CST B. This property, could considerably reduce the complexity of the studied
method, we will prove it in Proposition 1.

Proposition 1. Let π be a logic program, HC(π) its Horn clausal form, HC(π)I its Horn clausal
form simplified by the partial interpretation I corresponding to the current node n of the search tree,
ST B = {not Ai : ∃r ∈ π,not Ai ∈ r} the strong backdoor of π , and CST B the set of all possible negative
clauses formed by literals of the set ST B. If not A j ∈ ST B is the current literal to assign at the node n
and the condition ∀ci ∈CST B, HC(π)I ∧not A j 6|= ci holds, then each extension of HC(π)I ∧¬not A j is
also an extension of HC(π)I ∧not A j.

Proof. The subset of clauses HC(π)I corresponding to the current node n of the search tree is the simplified
clause system obtained from HC(π) by the consideration of the literals that are assigned in the partial interpretation
I. By the hypothesis, the literal not A j is the next element of STB that will be assigned at the node n. The set
HC(π)I has two types of clauses : the subset of clauses of the form ¬not A j ∨C1 containing the literal ¬not A j and

62

Symmetry breaking in a new stable model search method Tarek Khaled and Belaid Benhamou

where C1 represent a set of pieces of clauses, and the subset of clauses C2 that do not contain the literal ¬not A j.
Let e = not Ai1 ∧ ...∧ not Aik be an extension of HC(π)I ∧¬not A j where not Ai j ∈ ST B. We shall prove that e is
also an extension of HC(π)I ∧ not A j . We can see that HC(π)I ∧¬not A j ≡ C2 and HC(π)I ∧ not A j ≡ C1 ∧C2.
The set e is an extension of HC(π)I ∧¬not A j, thus C2 ∧ e is consistent. To show that e is also an extension of
HC(π)I ∧ not A j, it is sufficient to prove that C1 ∧C2 ∧ e is consistent. We proceed by contradiction. That is, by
supposing that C1 ∧C2 ∧ e is inconsistent. It results that C1 ∧C2 ∧ e |= 2 and thus C1 ∧C2 |= ¬e. This means that
C1∧C2 |= ¬not Ai1 ∨ ...∨¬not Aik ∈CST B. Therefore, we have HC(π)I ∧not A j |= ¬not Ai1 ∨ ...∨¬not Aik ∈CST B.
Thus, HC(π)I ∧not A j |= ci ∈CST B and this contradicts the assumption

In other words, if no clause ci ∈CST B had been produced at a choice point of the search tree where the
value true is assigned to a literal not A j ∈ ST B, then there is no need to explore the branch corresponding
to the negative literal ¬not A j. This could avoid to the method to explore redundant and pointless
branches.

Proposition 2. If HC(π) is the clausal representation of a logical program π and I the current partial
interpretation, then the unit resolution is sufficient to produce from HC(π)I any clause ci = ¬not Ai1 ∨
...∨¬not Aik ∈CST B.

Proof. The automatic deduction theorem states that proving HC(π)I |= ci is equivalent to HC(π)I ∧¬ci |= ⊥.
Since HC(π) is a set of Horn clauses, it follows that the simplified set of clauses HC(π)I ∧¬ci is also of Horn.
That is, HC(π)I ∧ not Ai1 ∧ ...∧ not Aik is a set of Horn clauses. Since the unit resolution is sufficient to decide
the consistency of any set of Horn clauses, then it is in particularly true for HC(π)I ∧¬ci. In other words, the unit
resolution is sufficient to show HC(π)I ∧¬ci |=⊥ and therefore sufficient to show HC(π)I |= ci

To apply the cut induced by Proposition 1 at a given choice point of the search tree, our method must
prove that no sub-clause ci ∈CST B is produced at that node. To do this, the method tries to produce such
a clause by unit resolution (Proposition 2).

Now, we will show how to exploit the apparition of negative pure (monotone) literals during the
search. These literals are frequently overlooked in the implementation of SAT solvers based on DPLL,
but for the ASP solvers, they perform a critical role.

Proposition 3. Let π be a logic program, HC(π) its Horn clausal representation and ¬Ai a pure literal
of HC(π), if X is a stable model of π then ¬Ai ∈ X.

Proof. The literal ¬Ai is pure in HC(π). This means that Ai has no occurrence in HC(π), thus the literal Ai can
never be inferred. Therefore, Ai can never be a part of a stable model X . By applying the closed world assumption,
we have ¬Ai ∈ X

This proposition allows to propagate pure negative literals such as mono-literals. Such propagations
contribute to the reduction of the number of choice points in the search tree.

Proposition 4. Let π be a logic program and HC(π) its clausal representation, if ¬Ai is true in a stable
model X of π then not Ai must be true in X.

Proof. If ¬Ai is true in the stable model X , then the only case where ¬not Ai can be produced is the existence
of a sub-clause Ai ∨¬not Ai of HC(π)X . But in this case, the corresponding extension to X does not verify the
discriminant condition. Hence, X would not be a stable model, and this contradicts the assumption

The previous proposition defines an inference rule (¬Ai
not Ai

) that the method will use to prune the
search tree.

Proposition 5. Let π be a logic program and HC(π) its corresponding clausal form, if ¬not Ai is true
in a partial model X of π and Ai is false, then X can not be extended to stable model.

Proof. If ¬not Ai is true in the partial model X and at the same time Ai is false in it, then the corresponding
extension to X does not verify the discriminant condition. Hence, X can not be extended to a stable model of π

All the propositions mentioned above bring cuts in the search tree and reduce considerably the search
space.

63

Symmetry breaking in a new stable model search method Tarek Khaled and Belaid Benhamou

3.2 The algorithm description
In the following, we present the new search algorithm for stable models. Its enumerative process ex-
plores a boolean tree search. It looks like the one of a DPLL [11] procedures that is adapted to the ASP
framework and to the used semantics [7]. We implemented all the inferences rules introduced previ-
ously, to boost the method. The main search process alternates between deterministic unit propagation
phases and non deterministic choice point phases where STB clause production is launched on the first
branch where a literal not Ai of the STB is interpreted to the value true. That is, if no clause (ci ∈CST B)
is produced, then the branch assigning the value false to not Ai is not explored. The production process
is useless on the last branch. Throughout the two alternate phases, the algorithm affect truth values to
literals and develops a similar tree search as the one of a DPLL procedure. If a conflict is encountered
during the search, then the algorithm explores the second branch corresponding to the second truth value
of the literal representing the current choice point only if a clause ci ∈ CST B is produced. otherwise a
backtrack is done. An extension candidate is founded either when all the clauses are satisfied, or when
all the literals of ST B are affected without falsifying any clause. In both cases, the algorithm execute a
completing phase that consists in completing the current interpretation by assigning the value true to all
the remaining literals not Ai of nV and by assigning the value false to all the others literals Ai ∈ V not
assigned yet according to the closed world assumption.

Algorithm 1 The general schema of the new search method
Require: The clausal form HC(π) of a logic program π

Ensure: The set S of all the stable models of π

1: S = /0
2: repeat
3: while ST B 6= /0 and ’no conflict’ do
4: while Lmonos 6= /0 or Lpure 6= /0 do
5: unit-propagation(HC(π),Lmonos,I); // propagation of mono-literals
6: inference(HC(π),Lpure,I); // propagation of pure-literals
7: clause-production(HC(π));
8: end while
9: literal choice (STB);

10: end while
11: if no conflict then
12: E = HC(π)I // an extension candidate;
13: E= complete(E);
14: if Conditions(E) then
15: M=PositiveAtoms(E);
16: S = S∪M;
17: end if
18: else
19: backtrack
20: end if
21: until All the search space is explored

The algorithm starts by a first call to the unit-propagation procedure to propagate all the mono-
literals2 until the list of mono-literals Lmono becomes empty. Then it deals with the pure literals which
also could induce mono-literals. When there is no mono-literal and no pure literals to assign, the al-
gorithm tries to produce a clause ci ∈CST B (proposition 2). If we produce a clause ci ∈CST B, then the
second branch of the current choice point will be explored. Otherwise, if no clause was produced and
all the mono-literals and the pure literals are treated, then the second branch of the choice point literal
become useless. The enumeration continue by choosing in ST B the next literal to assign. This process
is repeated either until the satisfaction of all the clauses, or until the assignation of all the literals of

2A mono-literal means a unit clause

64

Symmetry breaking in a new stable model search method Tarek Khaled and Belaid Benhamou

ST B without the appearance of the empty clause. An extension candidate E = HC(π)I is obtained when
we reach this state and the completing phase is performed to get a kind of minimal model. After the
verification of the maximality and the discriminant conditions on E, a stable model M consisting of the
positive atoms Ai of E is extracted and added to the set S. The pseudo-code of the general schema of the
method is given in Algorithm 1.

The unit-propagation procedure (Algorithm 2) takes as inputs the clausal form HC(π), the list of
unit clauses Lmonos, and the current partial interpretation I. It returns either an extended interpretation
of I or a conflict message if an empty clause is found. The procedure starts by satisfying all the clauses
where a certain mono-literal v appears and add v to the partial interpretation I. Then, it reduces the
clauses where the opposite of v (the literal ¬v) appears. If a unit clause is produced, it will be added
to the list of mono-literals Lmonos. If an empty clause is detected, the procedure reports the conflict.
Secondly, the algorithm calls the Inference function that implements the inference rules seen in the
previous subsection. Such inference rules lead to reduce the set of choice points in the search tree. That
is, the literal v′ returned by the inference procedure will be processed like a mono-literal. Finally, the
method calls the clauses-production procedure that uses unit resolution to produce the clauses ci ∈CST B
according to Proposition 2.

Algorithm 2 Unit-propagation procedure
Require: the clausal form HC(π) of the program π , the list of unit clauses Lmonos, the current partial interpretation I
Ensure: An extended interrelation I or a conflict detection,
1: while (Lmonos = /0) and non (conflict) do
2: v← next(Lmonos);
3: I← I∪{v};
4: HC(π)← HC(π)\{ci,v ∈ ci};
5: for (ci ∈ HC(π)) ci← ci\{¬v,¬v ∈ ci};
6: if length(ci) == 1 then
7: Lmonos← Lmonos∪{ci}
8: end if
9: Lmonos = Lmonos\{v};

10: v′← in f erence(v);
11: Lmonos = Lmonos∪{v′};
12: end while
13: Si no(conflict) then return I;
14: else return conflict;

3.2.1 The algorithm complexity

If n is the number of variables of the clausal form HC(π) of the program π , k the cardinality of the set
ST B and m the number of clauses or HC(π), then the algorithm time complexity in the worst case is
approximately O(knm2k). We can notice that the exponential factor of the complexity function depends
on the number k representing the size of the strong backdoor set and does not depend on the number of
variables n as in the other ASP solvers. The value of k is generally smaller than that one of n, hence a
better time complexity.

Unlike the majority of ASP solvers using the Clark completion with the loop management and which
have an exponential spatial complexity in the worst case, our method works with constant space. Indeed,
the method uses as input the Horn clausal form HC(π) whose size is identical to that one of the initial
program π and it does not vary during the executions. The spatial complexity is constant, it is of order
O(| HC(π) |) = O(| π |) in the worst case.

65

Symmetry breaking in a new stable model search method Tarek Khaled and Belaid Benhamou

4 Symmetry definition and properties
The notion of symmetry is widely studied in the field of constraint programming. In this work, we
use the clausal encoding HC(π) that we augment by the symmetry-breaking predicates that are used
to avoid enumerating the symmetrical models or no-goods (interpretations that are not models) of the
resulting CNF encoding. We will give in the following the main definitions and properties of the notion
of symmetry of a logic program π expressed in its Horn clausal form HC(π). First, we define the
semantics symmetry:

Definition 4. Let HC(π) be the Horn clausal representation of π and LHC(π) its set of literals. A
semantics symmetry σ of a HC(π) is a permutation defined on the set LHC(π), such that HC(π) and
σ(HC(π)) have the same extensions (the same stable models).

In other words, a semantics symmetry of the Horn clausal representation of a logic program is a
permutation of its literals which preserves the stable models. Now we define the syntactical symmetry:

Definition 5. Let HC(π) be the Horn clausal representation of π and LHC(π) its set of literals. A
syntactical symmetry σ of a HC(π) is a permutation defined on LHC(π), such that HC(π) = σ(HC(π)).

A syntactic symmetry of the Horn clausal representation of a logic program is permutation of its
literals which leave all the clauses of the program unchanged.

Example 2. Consider the logic program π of Example 1 where LHC(π) = {a,b,not a,not b}. The per-
mutation σ = (a,b)(nota,notb) defined on LHC(π) is a syntactic symmetry of HC(π) since σ(HC(π)) =
HC(π).

Definition 6. Two literals l and l′ of LHC(π) are symmetrical if there exists a symmetry σ of HC(π) such
that σ(l) = l′.

Now we define the orbit of a literal:

Definition 7. Let HC(π) be the Horn clausal representation of π , the orbit of a literal l ∈ LHC(π) on
which the symmetry group (Sym(HC(π)),◦) acts is lSym(HC(π)) = {σ(l) : σ ∈ Sym(HC(π))}

We give below a property that lies between syntactical and semantics symmetry:

Proposition 6. Each syntactical symmetry of the Horn clausal representation HC(π) is a semantics
symmetry of HC(π).

Proof. It is trivial to see that a syntactic symmetry of HC(π) is always a semantics symmetry of HC(π). Indeed,
if σ is a syntactic symmetry of HC(π), then σ(HC(π)) = HC(π), thus it results that HC(π) and σ(HC(π)) have
the same stable models

If E is an extension of (HC(π),ST B) and σ a syntactic symmetry, we can get another extension of
(HC(π),ST B) by applying σ on the literals which appear in E. Formally:

Proposition 7. Let σ be a syntactical symmetry of HC(π), E is an extension of (HC(π),ST B) iff σ(E)
is an extension of (HC(π),ST B).

Proof. Suppose that E = HC(π)∪ S′ is an extension of (HC(π),ST B). It follows that σ(HC(π))∪σ(S′) is
an extension of (σ(HC(π)),σ(ST B)). We can then deduce that HC(π)∪σ(S′) is an extension of (HC(π),ST B)
since HC(π) and ST B are invariant under σ . The converse can be shown by considering the converse permutation
of σ

Each stable model of a logic program π corresponds to an extension E of (HC(π),ST B) that satisfies
the discriminant condition (∀Ai ∈ V, E |= ¬not Ai ⇒ E |= Ai). There is a one to one bijection between
the stable models of π and these extensions.

66

Symmetry breaking in a new stable model search method Tarek Khaled and Belaid Benhamou

Corollary 1. Let σ be a syntactical symmetry of HC(π), I is a stable model of HC(π) iff σ(I) is a
stable model of HC(π).

Example 3. In Example 2, the orbit of the literal a is aSym(L)={a,b} and the one of the literal not a is
not aSym(L)={not a,not b}. All the literals of a same orbit are all symmetrical. For instance, in Example
1 there are two symmetrical extensions of (HC(π),ST B). The fist one is E1 = HC(π)∪{not a} and
the second is σ(E1) = HC(π)∪{not b}. These are symmetrical extensions of (HC(π),ST B). We can
deduce from these two extensions that there are two symmetrical stable models of HC(π). The first one
is M1 = {b} and the second one is σ(M1) = {a}.

If (Perm(HC(π)),◦) denotes the group of permutations of LHC(π) and Sym(LHC(π))⊂ Perm(LHC(π))
the subset of permutations of LHC(π) that are the syntactic symmetries of HC(π), then (Sym(HC(π)),◦)
is a sub-group of (Perm(HC(π)),◦) forming the symmetry group of HC(π).

5 Symmetry detection
Our symmetry detection is based on graph automorphism search. We first represent the Horn clausal
form HC(π) by a colored graph GHC(π) then compute its set of automorphisms which should be identical
to the symmetry group of HC(π). This technique has been widely studied in the context of constraint
satisfaction and satisfiability problems [9, 2]. Let GHC(π)(V,E) be a graph associated to HC(π), where
V is a set of vertices and E ⊆ V ×V a set of edges. An automorphism (symmetry) of GHC(π) is a
permutation of the vertices that leaves the graph unchanged. Only the vertices having the same color
are permuted together. Given the Horn clausal representation HC(π) of the program π , the associated
colored graph GHC(π)(V,E) of HC(π) is defined as follows:

• Each positive literal Ai of HC(π) is represented by a vertex Ai ∈V of the color 1 in GHC(π). The
negative literal ¬Ai associated with Ai is also represented by a vertex ¬Ai of color 2 in GHC(π).
These two vertices are connected by an edge of E in the graph GHC(π).

• Each literal ¬not Ai ∈ ST B associated with Ai is represented by a vertex ¬not Ai of color 3 in
GHC(π). This vertex is connected to that one representing Ai by an edge of E in the graph GHC(π).

• Each literal ¬not Ai 6∈ ST B associated with Ai is represented by a vertex ¬not Ai of color 4 in
GHC(π). This vertex is connected to that one representing Ai by an edge of E in the graph GHC(π).

• Each clause rule ci ∈CR of HC(π) is represented by a vertex ci ∈CR of color 5 in GHC(π). An
edge connects this vertex ci to each vertex representing one of its literals.

• Each mutual clause ci ∈ME of HC(π) is represented by a vertex ci ∈V of color 6 in GHC(π). An
edge connects this vertex ci to the two vertices representing its literals.

This graph construction ensures that only vertices having the same color could be permuted together.
The graph GHC(π) preserves the syntactic group of symmetries of HC(π). That is, the syntactic symme-
try group of the representation HC(π) of a logic program π is identical to the automorphism group of its
graph representation GHC(π). The edge between Ai and ¬Ai guarantee that an automorphism that maps
A1 to A2 also maps ¬A1 to ¬A2. We could use then a graph automorphism system like saucy, autom or
nauty to detect the syntactic symmetry group of HC(π). These systems return a set of generators of the
symmetry group from which we can deduce each symmetry of HC(π).

Example 4. Consider the logic program π of Example 1. The Horn clausal representation of the
logic program π is formed by the set HC(π) = CR∪ME where CR = {1 : a∨¬not b,2 : b∨¬not a},

67

Symmetry breaking in a new stable model search method Tarek Khaled and Belaid Benhamou

Figure 1: The graph representation of HC(π)

ME = {3 : ¬a∨¬not a,4 : ¬b∨¬not b} and its strong backdoor is given by ST B = {not a,not b}. Its
corresponding graph GHC(π) is given in Figure 1. We used in this example five colors that are rep-
resented by circles, shaded circles, ellipses, square, and shaded square. The vertices 1,2,3 and 4
represents the fourth clauses of HC(π). We can see for instance that the vertex permutation σ =
(a,b)(¬a,¬b)(¬nota,¬notb)(1,2)(3,4) is an automorphism of GHC(π). The restriction of the auto-
morphism σ to the elements of the STB represents the symmetry σ = (¬nota,¬notb)

6 Symmetry breaking

The different approaches proposed to break symmetries can be classified in two categories: dynamic
and static symmetry breaking. The dynamic approach usually looks after and breaks symmetries at each
node of the search tree, while the static approach detects and breaks the symmetries in a pretreatment
step. In the static approach , symmetries are generally broken by generating additional constraints,
called symmetry-breaking predicates (SBP). Here we deal with the static symmetry-breaking technique.
The construction of the symmetry-breaking predicates is based on the lex-leader method introduced by
Crawford et al. in [9] and improved by Aloul et al. [1].

Given a logic program π , the symmetries of its Horn clausal form HC(π) induce equivalence classes
in the solution/no-good spaces of the program. All the symmetrical interpretations of a stable model/no-
good I of π are stable models/no-good of π . Symmetry is then an equivalence relation that defines a
partition on the set of interpretations. It is then possible to represent each equivalent class by a represen-
tative interpretation. That is, an interpretation I1 is equivalent to another interpretation I2 if there exists
a symmetry σ of Sym(HC(π)) such that I2 = σ(I1). The symmetry-breaking predicates are chosen such
that they are true for exactly one interpretation in each equivalent class (the least interpretation in the
lex ordering).

Here, we focus only on the STB literals, as they represents the most difficult part in the solutions
search. It is sufficient to break the symmetries existing between the STB literals. To do that, we consider
an ordering on the literals not Ai of the STB and use it to construct a lexicographical order on the set
of interpretations. Consider, the symmetry group Sym(HC(π)) = {σ1,σ2, ...,σn} of HC(π) and a total
ordering not A1 ≤ not A2 ≤ ...≤ not An on the literals not Ai of the STB. The advantage here results in the
fact that the size of the STB set is generally smaller than that one of all the literals of HC(π). This will
lead to get a symmetry elimination predicate of a small size. We obtain the partial lex-leader symmetry-
breaking predicates PLL-SBP by encoding a permutation constraint PC(σ) for every permutation σ ,
defined by:

PC(σ) =
∧

1≤i≤n

[∧
1≤ j≤i−1

(not A j = not Aσ
j)

]
→ (not Ai ≤ not Aσ

i) (1)

The PLL-SBP of HC(π) is then represented by the conjunction of the permutation constraints asso-

68

Symmetry breaking in a new stable model search method Tarek Khaled and Belaid Benhamou

ciated to the considered permutations. It is expressed as follows:

PLL−SBP =
∧

σ∈Gen(Sym(HC(π))

PC(σ) (2)

Each PC(σ) is translated to a CNF formula whose size is linear in the size n of the STB. The first step
is done by introducing the two ordering predicates li = (not Ai ≤ not Aσ

i) and gi = (not Ai ≥ not Aσ
i). The

purpose of adding these two predicates is the elimination of the ”equality” and the ”less than or equal”
operators in predicate PC(σ). We obtain the following formula:

PC(σ) =
∧

1≤i≤n

[∧
1≤ j≤i−1

l jg j

]
→ li (3)

More precisely :

PC(σ) = (1→ l1)(l1g1→ l2)(l1g1l2g2→ l3) . . .(l1g1l2g2 . . . ln−1gn−1→ ln) (4)

In the next step, we will use the following known lemma :

Lemma 1. (a→ b)∧
∧
i∈I

(abci→ di) = (a→ b)∧
∧
i∈I

(aci→ di)
3

Repeated applications of Lemma 1 to the formula 4 leads to a successive elimination of the predi-
cates l j in the left side of the implications of the formula. We obtain the following:

PC(σ)

= (1→ l1)(g1→ l2)(g1l2g2→ l3) . . .(g1l2g2 . . . ln−1gn−1→ ln)

= (1→ l1)(g1→ l2)(g1g2→ l3) . . .(g1g2 . . . ln−1gn−1→ ln)

= · · ·
= (1→ l1)(g1→ l2)(g1g2→ l3) . . .(g1g2 . . .gn−1→ ln)

=
∧

1≤i≤n

[∧
1≤ j≤i−1

g j

]
→ li

Next, we introduce n auxiliary chaining variables pi that are defined by:

p0 = 1

p1 = p0∧g1 = g1

p2 = p1∧g2 = g1∧g2

...

pn−1 = pn−2∧gn−1 =
∧

1≤ j≤n−1
g j

The substitution of the order predicates by these definitions gives the following expression:

PC(σ) =

[∧
1≤i≤n

(pi−1→ (not Ai ≤ not Aσ
i))

]
∧

[∧
1≤i≤n−1

(pi−1∧ (not Ai ≥ not Aσ
i) = pi)

]
(5)

3The expression abci and aci means respectively a∧b∧ ci and a∧ ci

69

Symmetry breaking in a new stable model search method Tarek Khaled and Belaid Benhamou

which can be converted to a CNF formula consisting of 4n 3-literal clauses and n 2-literal clauses for
a total of 14n literals. A further reduction is possible by replacing the equality predicate of the formula
5 by a one-way implication, which gives rise to the following formula:

PC(σ) =

[∧
1≤i≤n

(pi−1→ (not Ai ≤ not Aσ
i))

]
∧

[∧
1≤i≤n−1

(pi−1∧ (not Ai ≥ not Aσ
i)→ pi)

]
(6)

from which, we can obtain a CNF formula that consist of 3n 3-literal clauses for a total of 9n literals.

7 Experimentation
Based on the algorithm presented previously, we implemented a new ASP solver that we denote by
HC-asp to mean Horn Clause ASP. We also included in our system the symmetry breaking to obtain the
variant HC-asp-sym, the entire system is implemented in C++. The symmetry-breaking method used
here, is a static approach that eliminates symmetries in a preprocessing phase. Our ASP system takes as
input a ground logic program π produced by the grounder gringo [15]. It uses the clausal representation
HC(π) to compute the stable models of π . The system builds the colored graph GHC(π) of HC(π)
that saucy [10] uses to detect the symmetry group of HC(π). The symmetry-breaking predicates are
computed according to the detected group generators then added to the encoding HC(π). After this, an
ASP solver could be used on the resulting encoding as a black-box. The general schema of the process
is illustrated in Figure 2.

Figure 2: The general schema of ASP solver with the advantage of symmetry

To evaluate our approach, we experimented HC-asp-sym on combinatorial problems then compared
it performances to that one of HC-asp and the ones of Cmodels (version 3.86 with zChaff as a SAT
solver), Smodels (version 2.34) and Clasp(version 3.3.3). The system HC-asp-sym is also compared to
the symmetry-breaking system Sbass associated to Clasp. The system Sbass is presented in [12]. This
Sbass system is based on a static approach that eliminates symmetries in a preprocessing phase. The
symmetry-breaking predicates are computed and added to the logic program π . Clasp is then applied to
the resulting program. The systems are applied to search all the stable models and gringo is used as a
grounder for all the systems. The programs run on a 4GB Ubuntu (16.10) machine with an Intel Core
i5 (1.70GHz x 4). The CPU run time is limited to 24 hours for all the applied systems. The symbol •
in the tables means that the corresponding solver fails to solve the instance by the time limit. We report
here the results obtained on some known benchmarks that are the Reachability problem, the consistent
Pigeon Hole problem, the Ramsey problem, the n-queen problem and the Hamiltonian circuit. The most
important task in answer set programming is to enumerate all the stable models of a logic program.
symmetry-breaking techniques are also more relevant for calculating all the solutions of a problem. The
impact of the symmetry breaking should be very interesting because a solver never explores two points
in the search tree that are symmetrical. We chose these benchmarks because of the large• number of

70

Symmetry breaking in a new stable model search method Tarek Khaled and Belaid Benhamou

stable models. They are very appropriate to study the behavior of each of the solvers when the number
of stable models and the size of the problem increase. We used the same problem encoding for all the
solvers.

Table 1: The results obtained on the Reachability, Ramsey, and Pigeon Hole
N◦ Instances #Stable Models HC-asp-sym Sbass & Clasp

HC-asp Clasp Smodels Cmodels #Sym #SBP #nssmodels Time #Sym #SBP #nssmodels Time
1 R 2 1 0.0005 0.0001 0.0002 0.0003 1 6 1 0.0002 1 8 1 0.0001
2 R 3 18 0.0015 0.001 0.0005 0.015 2 23 9 0.0004 2 76 8 0.002
3 R 4 1606 0.030 0.070 0.022 0.091 2 54 725 0.011 2 148 724 0.010
4 R 5 565080 7.12 12.59 7.62 9991.28 3 134 176733 2.94 3 276 120446 3.6
5 R 4 5 5 957 0.011 0.010 0.014 0.049 3 33 66 0.001 4 88 188 0.0001
6 R 4 5 6 27454 0.2 0.5 0.33 18.62 5 72 1023 0.12 5 156 1476 0.04
7 R 4 5 7 1452289 12.64 28.76 18.00 • 5 99 99337 1.52 6 312 25192 0.61
8 R 4 5 8 137578233 1625.14 3329.66 2219.19 • 6 155 3071804 54.67 6 360 12230197 332.51
9 pi4/4 24 0.007 0.009 0.002 0.003 4 84 6 0.0005 6 96 4 0.0001
10 pi5/5 120 0.02 0.02 0.008 0.01 5 147 12 0.0011 8 160 8 0.001
11 pi6/6 720 0.06 0.06 0.04 0.07 6 189 70 0.0048 10 240 54 0.002
12 pi7/7 5040 0.23 0.55 0.30 0.87 7 249 840 0.069 11 336 288 0.036
13 pi8/8 40320 1.65 4.01 2.5 52.34 8 336 2424 0.42 12 448 1800 0.080
14 pi9/9 362880 21.63 47.11 34.60 4591.87 9 702 19634 1.26 13 832 12960 0.51
15 pi10/10 3628800 210.14 494.40 369.80 • 10 846 170354 19.92 14 1008 105840 16.3
16 pi11/11 39916800 2728.53 6936.96 4247.58 • 11 1044 976680 55.77 15 1360 893760 76.25

Tables 1, 2, 3 and 4 give the runtime of the different benchmarks for all the ASP solvers and the
number of stable models found by all of them if they finish before the time limit. They also show some
symmetry information of the system HC-asp-sym and Sbass & Clasp: #sym represents the number of
detected symmetry, #SBP the number of added SBPs and #nssmodels the number of non symmetrical
stable models. The run time is the one of the enumeration of all the solutions including the symme-
try preprocessing. The results obtained on the four benchmarks, Reachability(1-4), Pigeon hole(9-16),
Ramsey(4-8) are given in Table 1. In general, HC−asp outperforms all the other ASP systems. We can
observe that the use of symmetry breaking reduces considerably the solution space for all the bench-
marks, and therefore reduces the CPU runtime. This applies to the combination sbass and clasp and
also to our system including the elimination of symmetries. That is, HC-asp-sym has better results than
those of HC-asp and the ones of the other systems. Clearly, we can see that symmetry breaking reduces
significantly the number of computed stable models. The gain increases when the problem size and the
number of stable models increase.

The Pigeon Hole problem is a good illustration for that observation. For Pigeon Hole of sizes 9 to
11, the solution space is compressed considerably. This reduces the CPU runtime. For the Reachability,
and Ramsey problem, we can see that HC-asp, Clasp, and Smodels have comparable results. Again,
HC-asp-sym get better results on these problems. The comparison of the system Sbass associated to
clasp with HC-asp-sym shows that for the problem of Reachability and the Pigeon Hole, both systems
have comparable results in terms of CPU time. But for the Ramsey problem, HC-asp-sym has better
results than Sbass & Clasp.

Table 2: The results obtained on the n-queens problem
#Size #Stable Models HC-asp-sym Sbass & Clasp

HC-asp Clasp Smodels Cmodels #Sym #SBP #sol Time #Sym #SBP #sol Time
10 724 0.68 0.23 0.66 0.27 3 468 240 0.10 2 812 278 0.08
11 2680 2.79 1.02 2.95 2.48 3 528 852 0.56 2 936 1032 0.35
12 14200 12.2 8.75 15.19 41.44 3 810 4981 3.69 2 1168 5452 2.7
13 73712 79.55 122.91 87.69 1642.93 3 921 24934 20.53 2 1316 28259 31.14
14 365596 371.73 2631.83 496.98 • 3 918 107371 120.26 2 1588 125728 613.51
15 2279184 2797.02 34337.21 3352.37 • 3 1221 788141 854.31 2 1760 871604 13007.53
16 14772512 12087.40 • 23134.22 • 3 1188 4310853 4976.44 2 2072 • •
17 95815104 87088.00 • • • 3 1275 29227320 29429.41 2 2268 • •

We also experimented the n-queens and the super n-queens problems. The n-queens problem con-

71

Symmetry breaking in a new stable model search method Tarek Khaled and Belaid Benhamou

sists in placing n queens on an nxn chessboard so that no two queens threaten each other. The super
n-queens is a variant of the n-queens where a super queen simultaneously plays the role of a queen and
a knight. The obtained results are shown in Table 2 and 3.

Table 3: The results obtained on the super n-queens problem
#Size #Stable Models HC-asp-sym Sbass & Clasp

HC-asp Clasp Smodels Cmodels #Sym #SBP #sol Time #Sym #SBP #sol Time
10 4 0.32 0.01 0.12 0.023 3 467 2 0.013 2 812 2 0.01
11 44 0.54 0.03 0.36 0.049 3 554 13 0.046 2 936 14 0.03
12 156 1.12 0.09 1.65 0.17 3 675 49 0.25 2 1168 63 0.11
13 1876 3.61 0.54 8.12 1.67 3 898 651 1.57 2 1316 651 0.56
14 5180 16.84 5.94 41.53 21.13 3 1086 1960 7.61 2 1588 1767 2.84
15 32516 98.47 122.42 231.52 1241.05 3 1124 11217 38.24 2 1760 11271 39.46
16 202900 653.56 1571.07 23134.22 44433.07 3 1176 62220 207.97 2 2072 77287 654.22
17 1330622 4455.07 48005.13 10001.26 • 3 1435 456661 2313.38 2 2268 503462 18403.85
18 8924976 32649.14 • 77747.20 • 3 1503 2596466 13792.58 2 2620 • •

We can see in Table 2 that all the methods solved efficiently the small instances of the the n-queens
problem (10 to 12 queens) and those of the super n-queens problem (10 to 14 super queens). The results
of HC-asp, Clasp and Smodels are comparable on these instances with a slight advantage in the favor
of the system Clasp. We can observe for both benchmarks that HC-asp outperforms drastically all the
other methods on the big instances. We can remark that the gain realized by HP-asp increases when
the size of the problem increases and when the number of solutions increases also. Symmetry breaking
greatly contributed to improve the results of HC-asp. Again, the number of computed solutions and the
time spent on the exploration of all the search space are reduced when applying HC-asp-sym. We can
see in Table 2 that sbass associated with clasp has better result than our system on small instances. But
from the instance 13, HC-asp-sym is more efficient. It can be seen that only the solver HC-asp-sym is
able to solve all the problems by the time limit. Indeed, Sbass associated to clasp timed out for the two
instances corresponding to 16 and 17 queens. Table 3, shows the results obtained on the super n-queens
problem. They look very similar to that ones of the n-queens problem. HC-asp-sym is able to solve all
the problems by the time limit, Sbass & clasp timed out for the instance having 17 super queens. The
number of SBPs added in the case of Sbass is greater than that one corresponding to the SBPs added by
our method. The most plausible hypothesis to explain this observation, is that saucy is sensitive to the
differences existing in the graph encodings of both approaches. The second fact could be the lex-leader
of our method that is restricted to the only the STB set. The last benchmark is the Hamiltonian circuit
[22]. We computed all the Hamiltonian circuits of some complete oriented graphs whose number of
vertices varies from 5 to 12. The behavior of all the solvers are represented in Table 4.

Table 4: The results obtained on the Hamiltonian problem
#Size #Stable Models HC-asp-sym Sbass & Clasp

HC-asp Clasp Smodels Cmodels #Sym #SBP #sol Time #Sym #SBP #sol Time
5 24 0.012 0.003 0.003 0.003 3 90 6 0.0005 3 108 4 0.00001
6 120 0.026 0.016 0.014 0.02 3 132 48 0.0031 4 224 48 0.0001
7 720 0.09 0.10 0.08 0.12 4 186 288 0.014 3 280 240 0.010
8 5040 0.64 0.78 0.67 1.69 4 246 1992 0.13 6 336 1440 0.11
9 40320 5.76 7.87 6.00 80.75 5 348 5040 0.64 7 392 7920 0.8
10 362880 66.67 89.94 72.25 6177.89 5 396 40320 6.63 8 448 57600 10.91
11 3628800 910 1141.84 964.15 • 6 591 412118 107.26 9 504 786240 123.92
12 39916800 13173.42 22263.37 15964.15 • 6 612 7327392 4604.26 10 560 7781760 4842.33

The results show that all the methods solved efficiently the instances having a number of vertices
less than eight (small instances) and HC-asp is competitive on the big instances. Again HC-asp-sym gets
better results than the other methods. The advantage of symmetry is more important when the problem
size increases. The comparison with sbass associated to clasp shows that both systems have comparable
results with a slight advantage for our system in terms of CPU time.

72

Symmetry breaking in a new stable model search method Tarek Khaled and Belaid Benhamou

8 Conclusion

In this paper, we provided a new method to compute stable models. This method is based on a relatively
new semantics and has the advantage of using a Horn clausal logic form whose size is identical to that
one of the source ground logic program. It also has a constant spatial complexity. The semantics used
prevent the method from the additional burden induced by the the loop management in the semantics of
Clark completion, this semantics is used by several ASP solvers. The other benefit of our approach is the
simplified enumerative process which is only done on a subset of the variables representing the strong
backdoor of the source logic program. This lead to a considerable gain in the time complexity. We also
proposed the integration of symmetry breaking in order to avoid exploring isomorphic subspaces. We
experimented the proposed method with and without symmetry breaking on a variety of known com-
binatorial problems. The obtained results showed that our approach is a good alternative to implement
ASP solvers and symmetry breaking leads to a significant improvement.

As a future work, we will look first to enhance our implementation with the techniques used in
modern SAT solvers such as watched literals, lazy structures, clause learning and restart. This could
be beneficial when searching for one stable model like in satisfiability problems. Here we limited the
system to search only the stable models of a logic program in order to compare it to other ASP solvers.
We are looking to extend the method to search for extra-models that could give a meaning to logical
programs in the absence of stable models. Finally, we are looking to investigate some extensions of our
approach to others classes of logic programming or to pieces of more general non-monotonic logics.

References
[1] F.A Aloul, , I.L. Markov, and K.A. Sakallah. Efficient symmetry-breaking for boolean satisfiability. IJCAI,

pages 271–276, 2003.
[2] F.A Aloul, A. Ramani, I.L. Markov, and K.A. Sakallah. Solving difficult sat instances in the presence of

symmetry. DAC, pages 731–736, 2002.
[3] F.A Aloul, A. Ramani, I.L. Markov, and K.A. Sakallah. Solving difficult sat instances in the presence of

symmetry. DAC, pages 1117–1137, 2003.
[4] B. Benhamou and L. Sais. Theoretical study of symmetries in propositional calculus and application. CADE,

607:281–294, 1992.
[5] B. Benhamou and L. Sais. Tractability through symmetries in propositional calculus. The Journal of Auto-

mated Reasoning, pages 89–102, 1994.
[6] Belaid Benhamou. Dynamic and static symmetry breaking in answer set programming. LPAR, pages 112–126,

2013.
[7] Belaı̈d Benhamou and Pierre Siegel. A new semantics for logic programs capturing and extending the stable

model semantics. Tools with Artificial Intelligence (ICTAI), pages 25–32, 2012.
[8] Keith L Clark. Negation as failure. Logic and data bases, pages 293–322, 1978.
[9] James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy. Symmetry-breaking predi-

cates for search problems. KR, pages 148–159, 1996.
[10] P.T Darga, K.A. Sakallah, and I.L. Markov. Faster symmetry discovery using sparsity of symmetries. DAC,

pages 149–154, 2008.
[11] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem proving. Commu-

nications of the ACM, 5:394–397, 1962.
[12] Christian Drescher, Oana Tifrea, and Toby Walsh. Symmetry-breaking answer set solving. AI Communica-

tions, 24:177–194, 2011.
[13] Francois Fages. Consistency of clark’s completion and existence of stable models. Methods of Logic in

Computer Science, 1:51–60, 1994.

73

Symmetry breaking in a new stable model search method Tarek Khaled and Belaid Benhamou

[14] Martin Gebser, Benjamin Kaufmann, Andrá Neumann, and Torsten Schaub. Conflict-driven answer set solv-
ing. IJCAI, 7:386–392, 2007.

[15] Martin. Gebser, Torsten Schaub, and Sven Thiele. Gringo: A new grounder for answer set programming.
International Conference on Logic Programming and Nonmonotonic Reasoning, 7:266–271, 2007.

[16] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. ICLP/SLP,
50:1070–1080, 1988.

[17] B. Krishnamurty. Short proofs for tricky formulas. Acta Inf., 22:253–275, 1985.
[18] Nicola. Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and Francesco

Scarcello. The dlv system for knowledge representation and reasoning. ACM Transactions on Computational
Logic (TOCL), 7:499–562, 2006.

[19] Yuliya Lierler and Marco Maratea. Cmodels-2: Sat-based answer set solver enhanced to non-tight programs.
Logic Programming and Nonmonotonic Reasoning, pages 346–350, 2004.

[20] Fangzhen Lin and Yuting Zhao. Assat: Computing answer sets of a logic program by sat solvers. Artificial
Intelligence, pages 115–137, 2004.

[21] B. McKay. Practical graph isomorphism. Numerical mathematics and computing., pages 45–87, 1981.
[22] Ilkka Niemelä. Logic programs with stable model semantics as a constraint programming paradigm. Annals

of Mathematics and Artificial Intelligence, 25:241–273, 1991.
[23] Ilkka Nimelä, Patrik Simons, and Tommi Syrjanen. Smodels: A system for answer set programming. Pro-

ceedings of the 8th International Workshop on Non-Monotonic Reasoning, 2000.
[24] J.F. Puget. Automatic detection of variable and value symmetries. CP, pages 475–489, 2005.
[25] Patrik Simons, Ilkka Nimelä, and Timo Soininen. Extending and implementing the stable model semantic.

Artificial Intelligence, 138:181–234, 2002.
[26] Ryan Williams, Carla P Gomes, and Bart Selman. Backdoors to typical case complexity. International joint

conference on artificial intelligence, 18:1173–1178, 2003.

74

	Introduction
	Background
	Permutations
	Answer Set Programming
	The used semantics

	The proposed search method
	The theoretical bases of the method
	The algorithm description
	The algorithm complexity

	Symmetry definition and properties
	Symmetry detection
	Symmetry breaking
	Experimentation
	Conclusion

