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Abstract 
Transitions of Control (ToC) play an important role in the simulative impact 

assessment of automated driving because they may represent major perturbations of 
smooth and safe traffic operation. The drivers' efforts to take back control from the 
automation are accompanied by a change of driving behavior and may lead to increased 
error rates, altered headways, safety critical situations, and, in the case of a failing 
takeover, even to minimum risk maneuvers. In this work we present modeling 
approaches for these processes, which have been introduced into SUMO recently in the 
framework of the TransAID project. Further, we discuss the results of an evaluation of 
some hierarchical traffic management (TM) procedures devised to ameliorate related 
disturbances in transition areas, i.e., zones of increased probability for the automation to 
request a ToC. 

1 Introduction 
The automation of the dynamic driving task is foreseen to revolutionize the existing paradigm in 

the road transportation sector. In the past two decades, driving automation systems of different 
capabilities, ranging between semi-autonomy and full autonomy, were researched and developed. 
Currently, many production-series vehicles are equipped with Advanced Driver Assistance Systems 
(ADAS), that can undertake different aspects (longitudinal, lateral or both) of the dynamic driving 
task (ERTRAC Working Group, 2017). Adaptive Cruise Control (ACC), Lane Keeping Assist (LKA), 
and Forward Collision Warning (FCW) are among the most common ADAS that market available 
vehicles are manned with. Recently, conditional automation (SAE Level 3) was also introduced into 
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specific market ready passenger cars in the form of Traffic Jam Assist. Although conditionally 
automated driving systems are designed to monitor the road environment, the vehicle operator still 
remains the failsafe in case of automation disengagement. However, the automotive industry and self-
driving technology providers have announced that highly automated vehicles (AVs) should be 
expected to enter the roads on the dawn of the upcoming decade. These vehicles will explicitly 
operate within confined geographical areas named Operational Design Domains (ODDs). Moreover, 
they will be capable to control the fallback performance of the dynamic driving task if the driver is 
unresponsive to take-over requests (TORs) when system-initiated automation disengagements 
commence. Thus, vehicle automation will gradually alter road traffic composition in the next decades 
(PTOLEMUS Consulting Group, 2017) and significantly impact the fronts of traffic safety and 
efficiency. 

Evidence based on field operational testing (controlled and real traffic experiments) of automated 
and autonomous vehicles indicated that automation disengagements can result from a multitude of 
reasons. System failures, human factors, complex traffic situations and improper infrastructure (e.g. 
ambiguous or absent lane markings) were proven as the primary causes of  downward (from 
automated to manual driving) transitions of vehicle control (Favarò, Eurich, & Nader, 2018).  

ToCs are expected to exert a profound impact on traffic operations due to erratic vehicle behavior 
and potential minimum risk maneuvers (MRMs). This phenomenon will be amplified in the presence 
of mixed traffic (coexistence of manual and automated/autonomous vehicles on the roads) due to 
heterogeneous vehicle behavior that will induce complex vehicle interactions. Although future 
autonomous vehicles are designed to predict the intentions and imminent actions of other road users 
even in the absence of connectivity (Bansal, Krizhevsky, & Ogale, 2018), developers of self-driving 
technology expect that the long tail of edge cases that vehicle automation will be incapable to cope 
with will prevent a complete release of the human driver from fallback responsibilities for a long time. 
Thus, the investigation of the effects of ToC/MRM on road traffic is of prominent significance. 

ACC activation and deactivation was thoroughly investigated by many previous studies 
(Pauwelussen & Feenstra, 2010; Pauwelussen & Minderhoud, 2008; Viti, Hoogendoorn, Alkim, & 
Bootsma, 2008) based on the Fulltraffic project dataset (Alkim, Bootsma, & Hoogendoorn, 2007). 
The latter studies demonstrated that desired time headway in car-following episodes is contingent 
upon ACC deactivation and reactivation. Findings from the Fulltraffic project were also used to 
simulate control transitions from ACC to manual driving in microscopic traffic simulation tools 
(Klunder, Li, & Minderhoud, 2009; Xiao, Wang, Schakel, & van Arem, 2018). Simulation results 
suggested that transitions can reduce throughput and disrupt traffic flow performance.  

However, the most detrimental effects of control transitions are expected to occur if vehicles of 
higher automation enter public roads. Operators of these vehicles will not be required to monitor the 
primary driving task. Thus, increased driver distraction prior to a TOR issued by the vehicle 
automation might ensue reduced driver performance after the ToC, or even an MRM if the ToC is 
unsuccessful (i.e., the driver fails to respond to the TOR). Nonetheless, there is limited information 
publicly available with respect to control transitions pertinent to vehicles of higher automation levels. 
Most relevant studies address human factors and ergonomics aspects of the transitions either with the 
use of driving simulators or based on real world experiments (Eriksson & Stanton, 2017; Gold, 
Damböck, Lorenz, & Bengler, 2013; Gold, Körber, Lechner, & Bengler, 2016; Lu, Coster, & de 
Winter, 2017; Merat, Jamson, Lai, Daly, & Carsten, 2014) 

. These studies set the ground for the development of a novel ToC model, which is introduced in 
this paper that can replicate driver behavior during a ToC and vehicle motion during a MRM. The 
ToC model is integrated into the Simulation of Urban Mobility (SUMO) microscopic traffic simulator 
(Lopez et al., 2018) to facilitate the simulative assessment of ToCs/MRMs with respect to safety, 
traffic efficiency and the environment. 

Additionally, this paper examines traffic management measures that were developed in the context 
of the TransAID project (Wijbenga et al., 2018) to mitigate the adverse effects of ToCs/MRMs in 
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areas of the road network where traffic operations favor the occurrence of ToCs/MRMs (i.e. work 
zones, merging areas, lane drops, no automation zones etc.). These areas are referred as “Transition 
Areas” in the context of this study. The measures presented in this paper were crafted to either prevent 
ToCs/MRMs by providing vehicle path information or distribute ToCs/MRMs by scheduling their 
occurrence in space and time assuming that vehicle connectivity (V2X) is available. These measures 
are investigated with the use of the microscopic traffic simulation tool SUMO. Simulation 
experiments encompassing driver models both for manual and automated vehicles (including the 
proposed ToC model) are run with and without the devised traffic management measures. The 
efficacy of the measures is assessed in terms of generated safety, traffic efficiency and environmental 
benefits. 

The modelling and simulation of manual and automated driving in SUMO is presented in Chapter 
2. The traffic management services that were developed by the TransAID project to alleviate the 
impacts of ToCs/MRMs are described in Chapter 3. Simulation experiments and corresponding results 
pertaining to each service are discussed and presented in Chapter 4. Finally, this study is concluded in 
Chapter 0 where outlooks for future work are also introduced. 

2 Modelling 
For the modelling and simulation of traffic scenarios with control transitions from automated to 

manual driving we have employed the microscopic traffic simulation suite SUMO (Lopez et al., 
2018). A major benefit of SUMO is that it is open source, which renders our research transparent and 
reproducible. The code for the car-following models, the driver state and the ToC device, and the gap 
controller, which are discussed below, has been made available from the SUMO repository1. 

2.1 Car following model for automated vehicles 
In this work, we adopted the ACC car-following model developed in (Liu, Kan, Shladover, Lu, & 

Ferlis, 2018; V. Milanés et al., 2014; Vicente Milanés & Shladover, 2014a; Xiao, Wang, & van Arem, 
2017), wherein the proposed ACC control algorithm is comprised of the following three sub-
controllers: a) speed (or cruising) controller, b) gap-closing controller, and c) gap controller. A fourth 
sub-controller, namely collision avoidance controller, is also introduced in order to prevent rear-end 
collisions when safety-critical conditions arise. In what follows, the basic definitions and equations 
corresponding to each control mode (sub-controller) are presented.   

 
Speed Control Mode 

The control objective of the speed control mode is to maintain the pre-defined desired driving 
speed by the driver and is activated when the preceding vehicle is absent or beyond the on-board 
sensors’ detection range (120 meters in this study). In particular, this mode aims to eliminate the 
deviation between the vehicle speed and the desired speed and is given in Eqn. (1):   

 
𝛼%,'() = 𝑘),𝑣. − 𝑣%,'0,					𝑘) > 0, (1) 

 
in which 𝛼%,'()	(𝑚/𝑠7) is the acceleration recommended by the ACC controller to the 𝑖 − 𝑡ℎ subject 
vehicle for the next time step 𝑘 + 1; 𝑣.	(𝑚/𝑠) and 𝑣%,'	(𝑚/𝑠) indicate the desired free flow speed 
and the current speed of the subject vehicle respectively; 𝑘) is the control gain in the speed difference 

 
1 www.github.com/eclipse/sumo 
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between the free flow speed and the subject vehicle’s current speed. Typical values for this gain range 
between 0.3 − 0.4	𝑠@) according to (Xiao et al., 2017); in this study 𝑘) = 0.4	𝑠@). 

 
Gap Control Mode 

When the spacing between the subject and the preceding vehicle is smaller than a pre-specified 
minimum threshold (100 meters in this study), and the gap and speed deviations are concurrently 
smaller than 0.2	m and 0.1	m/s respectively, the ACC controller activates the gap control mode to 
enable the subject vehicle to follow the preceding vehicle’s motion. This mode is described by the 
following second-order transfer function based on the gap and speed deviations with respect to the 
preceding vehicle: 
 

𝛼%,'() = 𝑘7𝑒%,' + 𝑘D,𝑣%@),' − 𝑣%,'0,						𝑘7, 𝑘D > 0, (2) 
 
where 𝑒%,'	(𝑚)	represents the gap deviation of the 𝑖-th subject vehicle at the current time step 𝑘, and 
𝑣%@),'	(𝑚/𝑠) is the current speed of the preceding vehicle (index 𝑖 − 1 refers to the leader of vehicle 
𝑖 ); 𝑘7  and 𝑘D  are the control gains on both the spacing and speed deviations, respectively. The 
proposed optimal values for the gains are 𝑘7 = 0.23	𝑠@7 and 𝑘D = 0.07	𝑠@) (Xiao et al., 2017).  

The gap deviation of the 𝑖-th subject vehicle (𝑒%,'	(𝑚)) is defined in Eqn. (3): 
 

𝑒%,' = 𝑥%@),' − 𝑥%,' − 𝑡.𝑣%,',	 (3) 
 
where , 𝑥%@),'	(𝑚) is the current position of the preceding vehicle, 𝑥%,'	(𝑚) is the current position of 
the subject vehicle, 𝑣%,'	(𝑚/𝑠) is the current speed of the subject vehicle and 𝑡.	(𝑠) is the desired time 
gap of the ACC controller.  
 

Gap-closing Control Mode 

The gap-closing controller enables the smooth transition from speed control mode to gap control 
mode and is triggered when the spacing to the preceding vehicle is shorter than 100	m. This mode 
was derived by reducing the gain related to the gap deviation and increasing the gain related to the 
speed deviation of the gap mode (Xiao et al., 2017). Hence, the control gains of Eqn. (2) are set equal 
to 𝑘7 = 0.04	𝑠@) and 𝑘D = 0.8	𝑠@) in this sub-controller. If the spacing is between the minimum and 
maximum threshold, the subject ACC vehicle retains the previous control strategy during the previous 
time step (either speed or gap-closing control mode) to provide hysteresis in the control loop and 
perform a smooth transfer between the two strategies.  

Collision Avoidance Control Mode 

This study introduced the collision avoidance control mode to prevent rear-end collisions 
occurring during simulations due to safety critical conditions (i.e. low time-to-collision (TTC) values, 
follower’s speed significantly higher than the leader’s). The collision avoidance mode was also 
derived by tuning the control gains of the existing gap mode and is triggered when the spacing to the 
preceding vehicle is smaller than 100	𝑚 and concurrently the gap deviation is negative. In this case, 
the control gains of Eqn. (2) are set as 𝑘7 	= 	0.8	𝑠@7 and 𝑘D 	= 	0.23	𝑠@) to ensure that ACC vehicles 
can brake hard enough to avoid an imminent collision 
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2.2 Car following model for manually controlled vehicles 
In the following we describe the extensions we have incorporated into SUMO to model manually 

controlled vehicles. The main difference we take into account when differentiating manual from 
automated driving is the imperfection of the human driver. Indeed, a number of studies report that for 
some time after the transition of control the driver performance is decreased, which seems to be 
correlated to a reduced awareness of the traffic situation while the driver is redirecting his or her focus 
to the driving task (Fuller, 2005; Lu et al., 2017; Merat et al., 2014; Young & Stanton, 2002).  

Characteristic measures of performance or involvement regarding the driving task that possess a 
correlate in a microscopic simulation are for instance: 

• reaction time,  
• lane keeping,  
• headway fluctuations,  
• lane change reluctance, or 
• braking intensity. 

To reproduce these phenomena of reduced driver performance, we have developed and 
implemented a model for the driver’s state into SUMO. It is available as a vehicle device2 since 
SUMO version 1.0. Besides lateral inaccuracies, i.e., lane keeping, it affects all of the above points in 
a direct or indirect way. 

In the simulation study presented in Sections 3 and 4 we employ SUMO’s standard car following 
model as a basis for manually controlled vehicles (MV). It is a variant of the Krauss model (Krauß, 
1998; Krauß, Wagner, & Gawron, 1997; Lopez et al., 2018), which , in turn, is based on the same 
principle as the Gipps car following model (Gipps, 1981; Wilson, 2001). That is maintenance of a safe 
following speed at all times, expressed by the equation 

 
,𝑣H	 + 𝜏 ⋅ 𝑎0

7

2𝑏HMNNNONNNP
braking	distance
of	follower

+ 𝑣H	 ⋅ 𝜏MOP
reaction	distance

of	follower

≤
𝑣a7

2𝑏ab
braking	distance

of	leader

+ Δ𝑥b
current
headway

, 
(4) 

 
which defines a desired acceleration 𝑎 = 𝑓(𝑣H, Δ𝑣, Δ𝑥) for the follower, where Δ𝑣 = 𝑣a − 𝑣H, by 

choosing 𝑎 as the maximal value fulfilling (4). Note that some additional provisions are made for the 
case 𝑏a < 𝑏H,  see (Lücken, 2019).  Here, 𝑣H and 𝑣a are the current velocities of the follower and the 
leader, respectively, 𝑏H  and 𝑏a  are the corresponding assumed braking rates, 𝜏 is interpreted as the 
desired reaction time buffer for the follower and equals to the stationary temporal headway in 
equilibrium flow. Since the  model is based on the principle of safety, it is a popular choice for a 
simulative evaluation of traffic safety related aspects (Saifuzzaman, Zheng, Haque, & Washington, 
2015; Xin, Hourdos, Michalopoulos, & Davis, 2008).In the following we give the technical details for 
the driver state model. The dynamical core component is a stochastic process Η, which models the 
amplitude of the driver’s  errors. Its dynamics are given as 

 
𝑑Ηk = −𝜃k ⋅ Ηk ⋅ 𝑑𝑡 + 𝜎k ⋅ 𝑑𝑊k. (5) 

 
Note that for a fixed timescale 𝜃k ≡ 𝜃p and fixed intensity 𝜎k ≡ 𝜎p, this is an Ornstein-Uhlenbeck 

process (Gardiner, 2009; Kesting & Treiber, 2013). However, in the proposed model, 𝜃 and 𝜎 are 

 
2 https://sumo.dlr.de/wiki/Driver_State 
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considered non-constant to reflect the variability of the driver’s awareness over time. Stipulating a 
time variant quantity 𝐴(𝑡) ∈ [0,1], called awareness in the following, we assume that  

 
𝜃k = 𝑐v ⋅ 𝐴(𝑡)	and	𝜎k = 𝑐w ⋅ ,1 − 𝐴(𝑡)0. (6) 

 
with scaling coefficients 𝑐v and 𝑐w. Roughly speaking, this implies that the higher the awareness, the 
faster the errors decay and the smaller is their range. 

As a general mechanism applicable to a wide range of car-following models, we propose to 
impose the generated errors at the level of perception as described in the following. Given undisturbed 
car-following dynamics of the form 

𝑎 = 𝑓,𝑣H, Δ𝑣, Δ𝑥0, (7) 
 

we model the dynamics under reduced driving performance as 
 

𝑎 = 𝑓,𝑣H, Δ𝑣x, Δ𝑥x0, (8) 
 

where  
Δ𝑥x = Δ𝑥 + 𝜂z	and	Δ𝑣x = 𝑣 + 𝜂{, (9) 

 
are the perceived spacing and the perceived speed difference with effective spacing error 𝜂z  and 
effective speed difference error 𝜂{ . These effective errors are assumed to be proportional to the 
distance Δ𝑥 to the leading vehicle (Xin et al., 2008) and the main error term Ηk, that is,  
 

𝜂z(𝑡) = 𝑐z ⋅ Δ𝑥(𝑡) ⋅ Ηk	and	𝜂{(𝑡) = 𝑐{ ⋅ Δ𝑥(𝑡) ⋅ Ηk, (10) 
 

with constant coefficients 𝑐z and 𝑐{.  
As an additional, generic mechanism for imperfect driving, perception specific action points are 

taken into account (Todosiev, 1963; Xin et al., 2008). An action point is a time point 𝑡 where the 
acceleration 𝑎(𝑡) is changing its value according to the dynamical equation of the given car-following 
model, i.e. Eqn. (8). 
Further, it is assumed that a change in a perceived quantity is only recognized if its magnitude 
surpasses a certain threshold value. Accordingly a corresponding change in action, here, a change of 
acceleration, is only taken out when the currently perceived speed difference Δ𝑣x(𝑡)  deviates 
sufficiently from the last recognized value Δ𝑣xrec or the currently perceived gap Δ𝑥x(𝑡) deviates from 
the value estimated based on the last recognized quantities. That is, time 𝑡 is assumed an action point 
if either 
 

|Δ𝑥xrec + (𝑡 − 𝑡rec) ⋅ Δ𝑣xrec − Δ𝑥x(𝑡)| > 𝜃z,		or	|Δ𝑣xrec − Δ𝑣x(𝑡)| > 𝜃{. (11) 
 

If not mentioned explicitly, we use the following values for the parameters of the driver state model:  
 

	𝑐v = 100, 𝑐w = 0.2, 𝑐{ = 0.15, 𝑐z = 0.75, 𝜃{ = 0.1, 𝜃z = 0.1 (12) 
 
These are also the default values assigned on device initialization by SUMO. 
In Figure 1 we show an example for a trajectory generated by a Krauss car-following model equipped 
with a driver state device, i.e., with superimposed dynamic perception errors and a constant awareness 
level 𝐴(𝑡) ≡ 0.1.The Krauss vehicle was inserted just behind a leading vehicle, whose speed was 
controlled via TraCI to match an empirically measured trajectory, see black line in Figure 1(a). The 
empirical trajectory of the true follower vehicle is shown in green color for the purpose of qualitative 
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comparison with the model trajectory (magenta). The underlying driving episode of approximately 
three minutes duration was extracted from the simTD database3. The experimental parametrization for 
the driving error dynamics was obtained from a manual fit of the mean headway (Figure 1(c)) and the 
region covered by the trajectory in the (Δ𝑥, Δ𝑣)-plane (Figure 1(d)). This preliminary calibration led 
to qualitatively matching characteristics of the empirical and model trajectory in the respective 
dimensions (panels (c) and (d)). However, panels (a) and (b) of Figure 1 suggest that further work is 
required to achieve a more realistic behavior, especially regarding amplitude and frequency of speed 
oscillations, i.e., the acceleration behavior. 
 

 
Figure 1: Car-following trajectories for an episode extracted from empirical data [simTD database3] (green 
line), and generated by a Krauss car-following model with superimposed driver-state device at constant 
awareness level 𝑨(𝒕) ≡ 𝟎. 𝟏 (magenta line). The black trajectory in (a) is the empirically measured speed of 
the leading vehicle. 

2.3 SUMO’s ToC model 
The modelling of vehicles with changing control regimes, i.e. manual and automated driving 

modes, has to incorporate a mechanism to switch between these. This ability of dynamically choosing 
different parameter sets for, e.g., the underlying car-following or lane changing models, or even 
exchanging one model for a different one, is a minimal requirement for such a model. However, for 
the purpose of representing control transitions it seems desirable to include elements that describe the 
processes surrounding the takeover. The complete model for depicting control transitions in SUMO 
has been incorporated into a vehicle device4. Besides managing the switching between different 
models for automated and manual driving, it optionally controls the processes during ToC preparation 
and a phase of decreased driving performance after a downward transition, i.e., when manual control 
is resumed, see Figure 2.  

 

 
3 https://www.sit.fraunhofer.de/de/simtd/ 
4 https://sumo.dlr.de/wiki/ToC_Device 
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Figure 2: State transition diagram for SUMO’s ToC model. The main operational modes (Automated and 
Manual) each possess various submodes associated to processes during a takeover. 

Firstly, we have incorporated a gap control mechanism into SUMO, which allows the user to 
impose a continuous adaptation of a vehicle’s desired headway. On one hand this mechanism may be 
employed to smoothly adapt the desired headway of the regime, which is currently operational, 
towards the new value of the regime targeted by the transition. In particular, when switching 
discontinuously from a small towards a large desired headway smoothing the transition may prevent 
artificially high braking resulting from the discontinuity. Moreover, we employ the gap control to 
depict a preparatory phase in case of a downward transition (from automated to manual), where it 
seems reasonable to assume that the vehicle automation may enlarge the headway to the leading 
vehicle in order to simplify the takeover situation for the human driver. The gap control mechanism 
can be either triggered automatically by an appropriate configuration of the ToC model (as described 
below), or directly via SUMO’s online interface TraCI5. 

The user can configure the following aspects of the process: 

a) the new desired time, which acts on the car-following model’s parameter tau,  
b) the new desired spacing, which is incorporated in an additive fashion (i.e., the effective 

value is subtracted from the space gap argument Δ𝑥 of the car-following model),  
c) the duration, for which the control stays active after the desired gap has been established,  
d) the linear rate, at which the old headways are adapted towards the given values, 
e) an upper bound for the braking rate employed to comply with the imposed headway 

(optional),  
f) a fixed reference vehicle to which the headway should be established (optional).  

The functionality (f) is not needed for the objectives of modeling control transitions, but was 
included with applications for cooperative maneuvering in mind. Automated triggering of the gap 
control simultaneously to a TOR can be added to the ToC model by setting at least one of the 
corresponding device parameters (prefixed with og…). 

Further, to incorporate the decreased driving performance after a downward transition, i.e., after 
the driver resumes the vehicle control, the ToC device allows specifying the level of awareness 𝐴p at 
which the driver resumes control, as well as the linear rate, at which the awareness recovers to the full 
value 𝐴 = 1.0, i.e. normal performance (see Section 2.2 and Figure 3). 

The ToC model adds an online interface, which allows triggering control transitions between 
specified models for automated and manual driving modes6. Such a TOR specifies the lead time 
available for the driver to take back the control. If the driver does not act in time, a MRM will be 
initiated, bringing the vehicle to a full stop at a constant deceleration rate, if the driver does not 
intervene in the meantime, cf. Figure 3. 
 

 
5 https://sumo.dlr.de/wiki/TraCI/Change_Vehicle_State#open_gap_.280x16.29 
6 https://sumo.dlr.de/daily/pydoc/traci._vehicle.html#VehicleDomain-requestToC  
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Figure 3: Timelines for a successful and a failing takeover. 

To configure a ToC device for a vehicle the user has to specify the SUMO vehicle types for the 
manual and automated regime. Other, optional parameters, which take default values if not specified 
by the user, may be given to control the driver’s response time, the time the driver abstains from lane 
changes after the takeover, and the deceleration rate applied during a minimum risk maneuver. 
Further, the temporal characteristics of the post-ToC phase of reduced driver performance may be 
controlled by two parameters: the driver’s initial awareness 𝐴p , and the corresponding awareness 
recovery rate 𝑟,  giving for the post-ToC awareness: 

 
𝐴(𝑡p + 𝑡) = min(1.0, 𝐴p + 𝑟𝑡)	, (13) 

 
which affects the driver state dynamics as described in Section 2.2. 

3 Simulation of TransAID Services 
Using different modeling schemes (pessimistic and optimistic with respect to safety and 

efficiency) and scenario parameters (traffic demand and share of automated vehicles), we have 
simulated different scenarios of transition areas, i.e. road sections where an accumulated occurrence 
of control transitions may occur (Evangelos Mintsis et al., 2018; Maerivoet et al., 2019). These 
scenarios were intended as use cases for the application of specific traffic management services 
devised in the framework of the TransAID project. For each scenario, we have compared the values of 
several indicators regarding traffic safety, efficiency, and emissions in presence and absence of the 
traffic management measures. In the following we report on the results for two of these use cases. 

 

3.1 Scenario 1: Providing path information 
In some situations AVs may not be able to trespass an obstacle, where an advised circumvention is 

not conceived by the automation. In these cases the proportion of vehicles, which need to issue a ToC, 
may be reduced significantly if according path information informing the vehicle of an alternative 
trajectory for passing the obstacle is provided via a road side unit (RSU). This information is assumed 
to take the form of an update suggestion for the vehicle’s digital map, e.g., as a MAPEM (ETSI, 
2016). 

 

Available 
lead time

Take-over time

Time

 Manual mode 

Reduced driver
performance

Normal driver
performance
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ToC
succeeded

MRM

ToC
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Figure 4: Schematic representation of Scenario 1. AVs and MVs approach an obstacle on a two-lane urban 
corridor with an extra lane usually reserved for public transport. 

 We consider a two-lane road section with an additional lane reserved for public transport, where a 
construction site is installed across both main lanes, see Figure 4. During the time of the road closure, 
vehicles are permitted to use the public transport lane as indicated by customized road signs. We 
assume that only a fraction of the AVs in the scenario can process the information of these signs and 
the others request a control transition in the absence of traffic management measures, i.e. if no further 
information is provided. For the simulations presented here we assumed that the rate of automated 
passages would increase from 25 to 75 percent if information about the usability of the bus lane is 
regularly broadcasted to all AVs. That means in the scenario without traffic management, we assumed 
that 75 percent of all AVs undertake a downwards transition, and that in presence of traffic 
management this rate would drop to 25 percent.  

Besides the additional path information provided, the TM addresses individual AVs and 
recommends enlarging headways in the merging area before the lane reduction to facilitate merging of 
vehicles on adjacent, ending lanes.  

The roadside infrastructure (RSI) monitors the approaching vehicles, especially within the 
merging area (see Figure 4), and regularly broadcasts the information regarding the alternative path 
around the construction side, i.e. the release of the lane restrictions for the rightmost lane. For vehicles 
on the rightmost lane, that are located within the merging area, the RSI sends an individual advise to 
increase the headway to their leading vehicles if other vehicles are present on the other lanes within 
the merging area. AVs that receive a headway suggestion are assumed to comply with that suggestion, 
and AVs that receive the path information will incorporate it into their trajectory planning. 

To model the reception of the path information for a AV, that is the update of its digital map to 
incorporate the permission to drive on the rightmost lane, we used SUMO lane permissions in 
combination with manipulating the vehicle class of the corresponding SUMO vehicle. That is, the 
rightmost lane disallows usage by vehicles with vClass=custom1, but allows vehicles with 
vClass=custom2. Thus, we initiate the vehicle type of AVs to be of class custom1 at insertion 
and set the vehicle class to custom2 at reception of the map information from the RSU. 

 

3.2 Scenario 2: Broaden the distribution of takeover requests 
In the second scenario considered, a two-lane motorway, we assume the existence of a road 

section where automated driving is not possible (No-AD zone), e.g., due to adverse road conditions or 
legal regulation. Without further assumptions one may expect that automated vehicles, which 
approach the No-AD zone, request a takeover as close as feasible to the No-AD zone. An approximate 
distance for the latest point to request a takeover with a given lead time 𝑇lead, anticipated speed 𝑣p and 
assuming a constant braking rate 𝑏MRM during an eventual minimum risk maneuver, can be estimated 
as 
 

merge area TOR area 
RSU 
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𝑑min = 𝑇lead ⋅ 𝑣pMNONP
distance	travelled

until	MRM

+
𝑣p7

2𝑏MRMMOP
stopping	distance
in	case	of	MRM

. 
(11) 

 
 
To ensure that only manually controlled vehicles enter the No-AD zone, an automated vehicle 

should request a takeover at least at a distance 𝑑min before the begin of the No-AD zone. 

 
Figure 5: Schematic representation of Scenario 2.  

Figure 5 shows the schematic representation of the scenario and locations of significance for the 
control algorithm. The area, wherein AVs are expected to receive TORs and perform ToCs stretches 
from position 𝑥��� to 𝑥��z, denoting the location where either a ToC must have been taken out, or an 
MRM must be initialized latest to assure that only manually driven vehicles enter the No-AD zone 
beginning at 𝑥��. = 𝑥��z + 𝑣��z7 /2𝑏MRM . The depicted situation shows two AVs, CAV_0 and 
CAV_1, with current position 𝑥)(𝑡) and 𝑥7(𝑡), respectively, approaching the No-AD zone. The TMC 
has already scheduled TOR positions for these vehicles at 𝑥���p  and 𝑥���) . When the TMC recognizes 
that a vehicle passes its assigned TOR position, a TOR is sent to this vehicle. 

The RSI monitors the position and speed of the approaching vehicles and the total traffic density 
within the TOR area, cf. Figure 5. As the sequential scheduling of TORs for strings of AVs is an 
essential component for the distribution algorithm (see also Figure 6) the TMC organizes AVs 
entering the TOR area in such groups and assigns TOR positions for all AVs of a group when it is 
finalized. The finalization of a group is taken out if no more vehicles will be added since the distance 
of the last vehicle to the TOR area entry at 𝑥��� exceeds a threshold or an MV is trailing the last 
vehicle. Further, the TMC updates the assigned TOR positions according to the current vehicle speeds 
in every control step as described in detail in (Maerivoet et al., 2019). AVs regularly broadcast their 
current state (position and speeds, e.g. via CAM messages), wait for TORs from the RSU, and initiate 
the ToC at reception.  

Our simulations show that under some circumstances, it can be favorable to issue a part of the 
TORs earlier to prevent the accumulation and summation of possible traffic perturbations related to 
the takeover processes (see Section 4.2), especially if the takeover process involves a, possibly only 
temporary, increased headway at some point in time. To illustrate this we assumed that a AV begins 
to smoothly (braking with ≤ 1.0 m/s²) establish a gap of 3.5 seconds after it has firstly communicated 
a TOR to the driver. 

 

(b) 
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Figure 6: Numerical experiments for collective disengagement in a string of automated vehicles with 
preparatory headway increment. (a) Quasi-synchronous disengagement at a specific location; (b) managed 
sequential disengagement. 

To demonstrate the possible benefits of distributing takeovers in this case we use a simple 
distribution algorithm based on the vehicle density on the road section approaching the No-AD zone, 
which could in reality be made available for the traffic management by traffic detectors, e.g. cameras 
or induction loops, on that section. TORs are directed to the approaching AVs the earlier if the 
observed density is high, since the density can be used as an indicator of present disruptions within 
the approaching section. More importantly, within groups of AVs we apply a sequential scheduling of 
TORs preventing a collective transition that would add up to a larger perturbation of the flow, see 
Figure 6. 

4 Results  
To evaluate the impact of the proposed TM measures we have taken out simulations covering a 

broad range of parameter combinations, where we varied the traffic demand level, the share of 
C(A)Vs in the vehicle fleet mix, and the parametrization scheme for the vehicle models regarding 
traffic safety and efficiency (Maerivoet et al., 2019). For each combination we executed ten 
simulation runs, each of one hour simulated time, see the Appendix for the model parametrization. 
Here we show results for a moderate choice of model parameters (see Appendix) and traffic demand 
level C (i.e. 77% of the assumed capacity), which results in 1155 vehicles/hour for Scenario 1 and 
3234 vehicles/hour for Scenario 2. 

Simulation experiments encompass the following different vehicle types: a) manually driven 
vehicles (MVs), b) connected vehicles (CVs), and c) connected and automated vehicles (CAVs). The 
motion of each vehicle type in the SUMO simulation environment is dictated by the models presented 
in Table 1. CVs are assumed to be only longitudinally automated, while AVs can both throttle/brake 
and steer during automated driving mode. Moreover, ToCs are considered instantaneous for CVs 
(driver is in the loop and instantly resumes vehicle control), while AV drivers are allowed to be 
involved in secondary tasks and thus might not respond in a timely fashion to the TOR. Both vehicle 
types (CVs and CAVs) have communication capabilities with the infrastructure (V2I). 
  

(a) 
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Table 1: SUMO models emulating the motion of the considered vehicle types 

SUMO Model Vehicle Type 
MV CV CAV 

Krauss CF Model ✔ ✖ ✖ 
ACC CF Model ✖ ✔ ✔ 
Default LC Model7 ✔ ✔ ✖ 
Parametrized LC 
Model8 ✖ ✖ ✔ 
ToC Model ✖ ✔ ✔ 

 
The traffic mix was varied across three different penetration rates of automated vehicles 

resembling the shares in the following Table 2.  
 
Table 2: Simulated traffic mixes 

 MV CV CAV 
Mix 1 70% 15% 15% 
Mix 2 50% 25% 25% 
Mix 3 20% 40% 40% 

4.1 Scenario 1: Providing path information 
In Scenario 1 we examined the impact of informing CAVs of an alternative pathway around an 

upcoming obstacle, thereby preventing the occurrence of ToCs for more AVs than in the case of not 
providing any information. Figure 7 shows a snapshot of the merge area in the corresponding 
simulation scenario. One may observe a CAV merging in front of another CAV, which increased its 
headway to the leading MV in order to facilitate the merging. The presence of automated vehicles on 
the rightmost lane indicates that they incorporated the suggestion to pass the obstacle using the 
reserved lane.  

 

 
Figure 7: Detail view of the merging area in the SUMO scenario. The grey lane is usually reserved for 
public transport but opened temporarily to provide a possibility to pass the construction works stretching 
over the two main lanes. Vehicle colors indicate the vehicle type: yellow – MV; blue – CAV; white – CV. 

Preliminary results for scenario 1 show that the main effects of the proposed TM measures seem to 
regard traffic safety while it has little effect on traffic efficiency and emissions (see Figure 8). As an 
indicator for safety we used the number of episodes where the TTC of two vehicles in a lead-follow 

 
7 The default SUMO lane change model is thoroughly presented in (Erdmann, 2014). 
8 The parametrized lane change model that reflects CAV lane change behavior is described in (Evangelos Mintsis et al., 

2018). 
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relation undercuts a critical threshold of 3 seconds, see Figure 8(b). For the definition and 
implementation of the TTC, we refer to (Gettman & Head, 2003) and the SUMO wiki9, respectively. 
The number of critical events dropped significantly when traffic management measures were 
introduced in the scenario, which can be attributed to the decreased number of ToCs, which also 
reduces delayed reactions to decreasing headways.  

We also hypothesize that the increased headways assumed for CAVs in general but specifically in 
the merging section contribute to this safety improvement. Differentiating between the effect 
originating from driving errors during the post-ToC phase and headway effects would require the 
classification of TTC episodes with respect to the interacting vehicles’ automation states, which is 
work to be done at the day of writing. Especially in view of the increased average headways in the 
presence of traffic management measures it is remarkable that the traffic efficiency (Figure 8(a)) is 
not affected by the increased number of vehicles traveling in automated mode. 

Figure 8(c) shows the CO2 emissions per kilometer traveled. Similar as for the throughput, no 
large impact can be observed here. The amount of emitted CO2 was calculated using SUMO’s 
PHEMlight module10. 
 

     
Figure 8: Comparison of cumulative measures for Scenario 1 in presence (orange) and absence (blue) of 
traffic management. (a) Average throughput (arrived vehicles) within the first hour of simulation over all 
runs; (b) Average number of TTC episodes with TTC value less than three seconds; (c) Average amount of 
emitted CO2 per kilometer driven, as calculated by SUMO’s PHEMlight model. 

4.2 Scenario 2: Broaden the distribution of takeover requests 
This section presents preliminary results for the impact of distributing TORs spatially over an 
approaching road section upstream of a No-AD zone. Firstly, we observe that the throughput 
decreases with an increasing share of CAVs in absence as well as in presence of TM, c.f. Figure 9(a). 
This result is expectable because of the parametrization of CAV models, in particular larger headways 
and less agile acceleration. However, the results also indicate that the TM measures taken may 
dampen the capacity drop induced by larger shares of CAVs.  
The effects on traffic safety are more pronounced as shown in Figure 9(b). While the number of 
critical TTC occurrences rises significantly with the number of present CAVs (and hence the number 
of ToCs), it stays approximately constant in presence of TM measures. This strongly indicates that the 
sequential scheduling of ToCs as orchestrated by the TMC for a string of CAVs is highly preferable to 
a decentralized disengagement, which may be expected to occur in a more synchronized fashion at a 
specific distance to the No-AD zone entry and would lead to higher amplitudes of corresponding 
traffic perturbations as suggested by the numerical experiments shown in Figure 6.  

 
9 https://sumo.dlr.de/wiki/Simulation/Output/SSM_Device  
10 https://sumo.dlr.de/wiki/Models/Emissions/PHEMlight  

(b) (a) (c) 
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Larger perturbations do not only induce unsafe situations but also increase speed variations and 
consequently higher amounts of deceleration and acceleration, which in turn, cause increased 
emissions per kilometer traveled as illustrated by Figure 9(c). 
 

   

Figure 9: Comparison of cumulative measures for Scenario 2 in presence (orange) and absence (blue) of 
traffic management. (a) Average throughput (arrived vehicles) within the first hour of simulation over all 
runs; (b) Average number of TTC episodes with TTC value less than three seconds; (c) Average amount of 
emitted CO2 per kilometer driven, as calculated by SUMO’s PHEMlight model.  

 
Figure 10 shows the spatiotemporal dynamics for a specific simulation run in absence [panels (a), 

(c)] and presence [panels (b), (d)] of TM measures. In absence of the TMC a perturbation due to 
simultaneous ToCs of several AVs leads to the development of an extended traffic jam pinned to the 
entry of the No-AD zone, which does not dissolve until one hour simulation time has elapsed (cf. red 
area in panel (a)), as opposed to the overall smooth flow preserved in presence of the TMC (cf. panel 
(b),(d)). For other runs we observed that traffic jams form later and sometimes dissolve during the 
course of the simulation but the overall result clearly shows that a distribution of TORs may be highly 
beneficial for a smooth and safe traffic flow. 

           
Figure 10: Spatiotemporal diagrams for the mean speed along the simulated road section for an exemplary 
simulation run. The white, dashed line indicates the entry of the No-AD zone at km 2.5. (a) Formation of 
an extended congested area in absence of TM measures; (b) Predominantly smooth flow for a distributed 
scheduling of TORs. 

(a) (b) (c) 

(a) (b) 
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5  Discussion 
In the present paper we have described several extensions, which have been implemented into 

SUMO in order to reflect mixed traffic conditions, where automated and manual vehicles coexist in 
one scenario. More specifically, we have implemented an ACC model, which is often applied to 
model automated controllers (Milanés & Shladover, 2014; Xiao, Wang, & van Arem, 2017) and a 
generic mechanism to impose perception errors upon an arbitrary car-following model. Further, we 
have presented simulation results for two scenarios where the new models have been applied to 
evaluate the effects of different TM measures for transition areas, where an increased amount of ToCs 
can be expected to occur. These results suggest that both cases bear the potential for considerable 
benefits if the TM is applied. In the simulation the TMC significantly increased either traffic safety 
(see Section 3.1) or traffic efficiency (see Section 3.2). 

Although it is highly probable that the results will hold qualitatively for a wide range of situations 
as they seem to depend on rather generic properties of the different scenarios (such as the vehicle mix, 
desired headways, the accepted gaps for lane changes, or the imprecisions of the driver’s performance 
after the takeover), several possible improvements are conceivable regarding the realism and accuracy 
of the simulations.  

Firstly, since the proposed TM measures essentially rely on vehicular communications, it would 
be important to estimate the reduction of the TM performance caused by error rates and latencies in 
the message transmission. It seems likely that the amount transmission failures would decrease the 
degree of the observed improvements induced by the TM by a proportional quantity. However, the 
foreseen changes may depend non-linearly on the transmission error rate and, moreover, the error rate 
might relate non-trivially to the traffic density, such that it is a subject worth further studies. 

Also, the parameter choices for automated vehicle control are rather speculative since empirical 
data is not available and may influence the results quantitatively. Nevertheless, as long as the driving 
behavior of automated vehicles is assumed more conservative than that of MVs, we expect the 
reported results to persist. In this context, it could be important to include the factor of cooperative 
maneuvering, which, for instance, might allow automated vehicles to follow each other with highly 
decreased headways, thereby inverting the assumption of larger headways for CAVs, which we 
supposed for our simulations so far. It is clear that such a scenario would even raise the profit of 
reducing ToCs due to a persistent capacity drop associated to the mode switch from automated to 
manual. 

Moreover, the models of human driving may be improved, especially to obtain more reliable 
results regarding the estimation of traffic safety implications of the evaluated TM procedures. Here, 
we see potential in refining the error characteristics, which might be achieved by a different 
calibration of the driver state model, or require additional model components. Our preliminary efforts 
to achieve a qualitative agreement of the model behavior with a trajectory of a human driver (in a non-
critical car-following situation) did not lead to an ultimately satisfactory result (see the discussion of 
Figure 1). Here, a more careful calibration could take into account the power spectrum or 
autocorrelation of the speed differences, or distributions of safety surrogate measures as the TTC. In 
particular, the model’s behavior in critical situations has not been tested at all. This is not a 
straightforward task, though, since corresponding data is very scarce. Possible, additional model 
components to be considered are situation (e.g. traffic complexity) dependent awareness levels, in 
particular the mechanism of task difficulty homeostasis (Fuller, 2005; Saifuzzaman et al., 2015). Also, 
lateral control represents an important factor in the driving process and for traffic safety. Its 
impairment by reduced awareness must be taken into account for a complete picture. Concerning the 
neglect of other error sources than the perception level in the error model, we do not think that this is 
a major limiting factor for the accuracy at the moment. Although errors appear also at other levels 
such as processing or actuation, the perceptive error propagates through all levels of the driving task 
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and we have no indications that the resolution of different levels would add to the predictive 
capabilities of the model. 
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Appendix – Model Parameter  
The parametrization scheme utilized for the simulations presented in Section 3 is a balanced 

scheme, where intermediate parameter values are chosen with respect to the originally considered 
parameter range. Table 1 shows the parametrizations for the different vehicle categories. Where the 
entry is not a single number, it has the format normal(<mean>, <std>); [<min>,<max>], specifying a 
cut off Gaussian distribution for the vehicle instances in the corresponding category. 

 
Table 3: Parametrization of vehicle models 

Parameter Name Parameter 
description 

Parameter values 
MV  

(CF Model 
Krauss) 

CV 
(CF Model 

ACC) 

CAV 
(CF Model 

ACC) 
sigma Driver 

imperfection 
normal(0.2, 

0.5); [0.0, 1.0] 0.0 0.0 

tau [s] Desired time 
headway 

normal(0.6, 
0.5); [0.5, 1.6] 

normal(1.6,0.2); 
[1.3,1.8] 

normal(1.6,0.2); 
[1.3,1.8] 

decel [m/s²] Preferred maximal 
deceleration 

normal(3.5, 
1.0); [2.0, 4.5] 

normal(3.0,1.0); 
[2.0,4.0] 

normal(3.0,1.0); 
[2.0,4.0] 

accel [m/s²] Maximal 
acceleration 

normal(2.0, 
1.0); [1.0, 3.5] 

normal(1.5,1.0); 
[0.75,2.0] 

normal(1.5,1.0); 
[0.75,2.0] 

emergencyDecel 
[m/s²] 

Physically 
maximal 
deceleration 

9.0 9.0 9.0 

lcAssertive Lane-change 
aggressiveness 
(willingness to 
accept lower gaps) 

1.3 1.0 normal(0.7,0.1); 
[0.6,0.8] 

actionStepLength 
[s] 

Interval length at 
which vehicle 
maneuver logic is 
executed 
(~reaction time) 

0.1 0.1 0.1 

speedFactor 
 

Proportionality 
factor for the 
desired speed 

normal(1.1, 
0.2); [0.8, 1.2] 1.0 1.0 

responseTime [s] Time to takeover 
after request - 1.0 normal(7,2.5); 

[2,60] 
timeTillMRM Available lead 

time to takeover - 1.0 10.0 

initialAwareness Driver awareness 
after takeover - normal(0.5,0.3); 

[0.1,1.0] 
normal(0.5,0.3); 

[0.1,1.0] 
recoveryRate [s-1] Relaxation rate of 

post-ToC 
awareness 

- normal(0.2,0.1); 
[0.01,0.5] 

normal(0.2,0.1); 
[0.01,0.5] 

mrmDecel [m/s²] Constant 
deceleration rate 
during MRM 

- 3.0 3.0 
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