
EPiC Series in Computing

Volume 57, 2018, Pages 471–487

LPAR-22. 22nd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning

Improving SAT-based Bounded Model Checking for

Existential CTL through Path Reuse

Chuan Jiang and Gianfranco Ciardo

Department of Computer Science, Iowa State University
Ames, Iowa, USA

{cjiang, ciardo}@iastate.edu

Abstract

A complementary technique to decision-diagram-based model checking is SAT-based
bounded model checking (BMC), which reduces the model checking problem to a propo-
sitional satisfiability problem so that the corresponding formula is satisfiable iff a coun-
terexample or witness exists. Due to the branching time nature of computation tree logic
(CTL), BMC for the universal fragment of CTL (ACTL) considers a counterexample in a
bounded model as a set of bounded paths. Since the existential fragment of CTL (ECTL)
is dual to ACTL, and ACTL formulas are often negated to obtain ECTL ones in practice,
we focus on BMC for ECTL and propose an improved translation that generates a possibly
smaller propositional formula by reducing the number of bounded paths to be considered
in a witness. Experimental results show that the formulas generated by our approach are
often easier for a SAT solver to answer. In addition, we propose a simple modification to
the translation so that it is also defined for models with deadlock states.

1 Introduction

SAT-based bounded model checking (BMC) is a complementary technique to decision-diagram-
based model checking [5]. By exploiting the observation that many real-life models have “shal-
low” counterexamples or witnesses, BMC only considers finite prefixes of infinite paths. It
translates the semantics of temporal logic, bounded by some integer k, into a propositional for-
mula, and leverages a SAT solver to check for satisfiability. If the formula is determined to be
satisfiable, a counterexample or witness can be generated from the truth assignment produced
by the SAT solver. Otherwise, k is increased progressively until either a counterexample or
witness is found, or some preset upper bound is reached. BMC was first proposed for linear
temporal logic (LTL) [1, 2] and later applied to the universal fragment of computation tree
logic (ACTL) [15] and ∀µ-calculus [14, 19]. Decision-diagram-based techniques inspired by the
same idea were also proposed [18, 21].

In computation tree logic (CTL), the existential fragment (ECTL) is dual to ACTL, i.e.,
the negation of an ACTL formula is an ECTL formula. Therefore, these two fragments of
CTL can often be considered together. In this paper, we focus on SAT-based BMC for ECTL,
which is different from applying BMC to LTL, since the general form of ECTL witnesses is

G. Barthe, G. Sutcliffe and M. Veanes (eds.), LPAR-22 (EPiC Series in Computing, vol. 57), pp. 471–487

Improving SAT-based Bounded Model Checking for ECTL through Path Reuse C. Jiang and G. Ciardo

tree-like [9]. In [6, 15, 22], a counterexample or witness in a bounded model is represented
as a set of bounded paths. Different encoding schemes based on proof system were proposed
in [14, 19], in the larger context of ∀µ-calculus. In this paper, we improve the translation to
propositional formulas from [6, 15, 22] by reducing the number of bounded paths that must be
considered. Our approach generates a smaller formula, which is often easier for a SAT solver to
answer, or the same one as in the classic approach, in the worst case. In addition, we propose a
simple modification to the translation so that it is also defined for models with deadlock states.

The remainder of this paper is organized as follows. Section 2 defines ECTL and its bounded
semantics, and presents the translation of bounded semantics into a propositional formula.
Section 3 proposes an improved translation to produce a possibly smaller propositional formula.
Section 4 compares the classic approach and ours with respect to the minimum bound to find
a witness, which determines the earliest possibility for BMC to provide an answer, and with
respect to the complexity of propositional formulas, in terms of the number of symbolic states
considered to form a witness. Section 5 modifies the translation to cope with models containing
deadlock states. Section 6 describes our experimental design and presents the results, while
Section 7 concludes our discussion and outlines future work.

2 Background

We denote sets by calligraphic letters (e.g., A), except for the natural numbers N = {0, 1, ...}.

2.1 Kripke Structures and ECTL

A model is represented as a Kripke structure M = (S,Sinit,N ,A,L), where S is the state
space, Sinit ⊆ S is the set of initial states, N ⊆ S ×S is the total transition relation, A is a set
of atomic propositions, and L : S → 2A is a labeling function that gives the atomic propositions
holding in each state (subject to true ∈ A holding in every state). Let P be the set of paths in
M , i.e., infinite sequences (s0, s1, ...) of states, where (si, si+1) ∈ N for any i ∈ N.

We consider ECTL, the existential fragment of the temporal logic CTL [8], where formulas
have the following syntax (ϕ and ρ are ECTL formulas, a is an atomic proposition):

ϕ ::= a | ¬a |ϕ ∧ ρ |ϕ ∨ ρ |EXϕ |E(ϕUρ) |EGϕ,

and the conditions for state s in model M to satisfy formula ϕ, written s |= ϕ (M is omitted
for brevity), are as follows:

s |= a ⇔ a ∈ L(s)
s |= ¬a ⇔ a 6∈ L(s)
s |= ϕ ∧ ρ ⇔ (s |= ϕ) ∧ (s |= ρ)
s |= ϕ ∨ ρ ⇔ (s |= ϕ) ∨ (s |= ρ)
s |= EXϕ ⇔ ∃(s0, s1, ...) ∈ P, (s0 ≡ s) ∧ (s1 |= ϕ)
s |= E(ϕUρ) ⇔ ∃(s0, s1, ..., si, ...) ∈ P, (s0 ≡ s) ∧ (si |= ρ) ∧ (∀j ∈ {0, ..., i− 1}, sj |= ϕ)
s |= EGϕ ⇔ ∃(s0, s1, ...) ∈ P, (s0 ≡ s) ∧ (∀i ∈ N, si |= ϕ)

(formulas EFϕ and E(ϕRρ) can be expressed as E(trueUϕ) and EGρ∨E(ρU(ϕ∧ρ)), respectively,
so we do not discuss them separately).

Definition 2.1. An ECTL formula ϕ is (existentially) valid in a model M = (S,Sinit,N ,A,L),
written M |= ϕ, iff for some s ∈ Sinit, s |= ϕ.

472

Improving SAT-based Bounded Model Checking for ECTL through Path Reuse C. Jiang and G. Ciardo

ACTL, the universal fragment of CTL, is the dual of ECTL. A counterexample to AXϕ,
AGϕ, or A(ϕUρ) is a witness for EX(¬ϕ), EF(¬ϕ), or E(¬ρU(¬ϕ ∧ ¬ρ)) ∨ EG(¬ρ), respectively
(where the negation ¬ can be recursively “pushed down” to atomic propositions), i.e., the
negation of an ACTL formula is an ECTL formula.

2.2 Bounded Semantics of ECTL

Given a model M = (S,Sinit,N ,A,L) and k ∈ N, a k-path, or a path of length k, is a finite
sequence π = (s0, ..., sk) of k + 1 states such that (si, si+1) ∈ N for any i ∈ {0, ..., k − 1}.
Let π[i] denote si, the i-th state in π. A k-path, though finite, can still represent an infinite
path if the last state is the same as any of the previous states. We define a function loop(π) to
determine if a k-path π is a loop:

loop(π) = {i ∈ {0, ..., k − 1} |π[k] ≡ π[i]} ,

thus loop(π) 6= ∅ iff π is a loop.
In our definition, a loop is thus a k-path containing at least two states [12]. This is slightly

different from the notation in [2, 15], which explicitly requires a back loop from the last state
to some state on the path: {i ∈ {0, ..., k} | (π[k], π[i]) ∈ N}. Figure 1 illustrates the two ways of
thinking about, and defining, the same loop. We choose this notation because encoding state
equivalence is often simpler and more compact than encoding a transition relation step. Our
notation requires k ≥ 1, which we then assume in the rest of the paper.

s0 s1 s2 s3

(a) The loop shape in [2, 15]

s0 s1 s2 s3 s4

s4 ≡ s1

(b) The loop shape in this paper

Figure 1: The two kinds of loop shapes

The k-model of M is a tuple Mk = (S,Sinit,Pk,A,L), where Pk is the set of all the k-paths
in M . The bounded semantics is defined over a k-model Mk.

Definition 2.2 (Bounded semantics of ECTL). Let Mk be the k-model of a model M , s a state
of M , a an atomic proposition, and ϕ, ρ ECTL formulas. The conditions for s in Mk to satisfy
ϕ, written s |=k ϕ (Mk is omitted for brevity), are defined as follows:

s |=k a ⇔ a ∈ L(s)
s |=k ¬a ⇔ a 6∈ L(s)
s |=k ϕ∧ρ ⇔ (s |=k ϕ) ∧ (s |=k ρ)
s |=k ϕ∨ρ ⇔ (s |=k ϕ) ∨ (s |=k ρ)
s |=k EXϕ ⇔ ∃π ∈ Pk, (π[0] ≡ s) ∧ (π[1] |=k ϕ)
s |=k E(ϕUρ) ⇔ ∃π ∈ Pk, (π[0] ≡ s)∧

(∃i ∈ {0, ..., k}, (π[i] |=k ρ) ∧ (∀j ∈ {0, ..., i− 1}, π[j] |=k ϕ))
s |=k EGϕ ⇔ ∃π ∈ Pk, (π[0] ≡ s) ∧ (loop(π) 6= ∅) ∧ (∀i ∈ {0, ..., k}, π[i] |=k ϕ).

Theorem 2.1. Let M be a model, R the reachable states of M , s a state of M , and ϕ an
ECTL formula. Then, s |= ϕ iff s |=k ϕ for some k ∈ {1, ..., |R|}.

Definition 2.3. An ECTL formula ϕ is (existentially) valid in a k-model Mk=(S,Sinit,Pk,A,L),
written M |=k ϕ, iff s |=k ϕ for some s ∈ Sinit.

473

Improving SAT-based Bounded Model Checking for ECTL through Path Reuse C. Jiang and G. Ciardo

Theorem 2.2. Given an ECTL formula ϕ, M |= ϕ iff M |=k ϕ for some k ∈ {1, ..., |R|}.

Based on Theorem 2.2, an ECTL model checking problem is reduced to an ECTL BMC
problem: the unbounded and bounded semantics are equivalent for a sufficiently large bound.

2.3 Translation into a Propositional Formula

SAT-based BMC for ACTL formulas was proposed in [15], and later improved with a more
efficient translation to propositional formulas [6, 22]. Since it begins with negating an ACTL
formula, this approach actually checks an ECTL formula over a bounded model. Compared to
the original BMC for LTL [2], the main difference is that this approach represents a witness
or counterexample as a set of symbolic k-paths, due to the branching time nature of CTL. For
example, a witness for EG(EFa) contains a lasso-shaped loop of length k where EFa holds in
every state, and, for each state on that loop, a path of length k showing that we can reach
a state satisfying a from it. The bound k does not describe the size of a potential witness or
counterexample, but the length of each individual path demonstrating satisfaction or violation
of a subformula in a state.

The number of k-paths needed to check an ECTL formula is given by a function fk:

Definition 2.4. Function fk : ECTL→ N is defined as follows:

fk(a) = 0, where a ∈ A
fk(¬a) = 0, where a ∈ A
fk(ϕ ∧ ρ) = fk(ϕ) + fk(ρ)
fk(ϕ ∨ ρ) = max(fk(ϕ), fk(ρ))
fk(EXϕ) = fk(ϕ) + 1
fk(E(ϕUρ)) = k · fk(ϕ) + fk(ρ) + 1
fk(EGϕ) = k · fk(ϕ) + 1,

where fk(EGϕ) is slightly different from that in [6, 15, 22] because of our loop notation.

For example, given a bound k, the maximum witness to show E(ϕUρ) consists of a k-path
(s0, s1, ..., sk), fk(ρ) k-paths to show sk |= ρ, and, for each i ∈ {0, ..., k − 1}, fk(ϕ) k-paths to
show si |= ϕ.

Symbolically, a state is represented as a vector of boolean variables. Let πi denote the i-th
symbolic k-path, which is a sequence of k + 1 symbolic states. Checking an ECTL formula
ϕ over a bounded model Mk is then reduced to checking the satisfiability of a propositional
formula [M,ϕ]k = [Mk]ϕ ∧ [ϕ]k, where:

• [Mk]ϕ is a propositional formula that enforces the fk(ϕ) state sequences to be valid k-paths
and π0[0] to be an initial state:

[Mk]ϕ = I(π0[0]) ∧
fk(ϕ)−1∧
i=0

k−1∧
j=0

N (πi[j], πi[j + 1]),

where I(s) iff s ∈ Sinit and N (s, s′) iff (s, s′) ∈ N .

• [ϕ]k = [ϕ, π0[0]]0k is a propositional formula that assembles k-paths and enforces ϕ or
subformulas of ϕ on each corresponding k-path; specifically, [ϕ, s]ik enforces ϕ on the i-th

474

Improving SAT-based Bounded Model Checking for ECTL through Path Reuse C. Jiang and G. Ciardo

k-path, where the first state of that k-path must be equivalent to s (unless ϕ is a pure
propositional formula):

[a, s]ik = a(s), where a ∈ A
[¬a, s]ik = ¬a(s), where a ∈ A
[ϕ ∧ ρ, s]ik = [ϕ, s]ik ∧ [ρ, s]

i+fk(ϕ)
k

[ϕ ∨ ρ, s]ik = [ϕ, s]ik ∨ [ρ, s]ik
[EXϕ, s]ik = (s ≡ πi[0]) ∧ [ϕ, πi[1]]i+1

k

[E(ϕUρ), s]ik = (s ≡ πi[0]) ∧
∨k
j=0

(
[ρ, πi[j]]

i+1
k ∧

∧j−1
t=0 [ϕ, πi[t]]

i+1+fk(ρ)+t·fk(ϕ)
k

)
[EGϕ, s]ik = (s ≡ πi[0]) ∧

∨k−1
j=0 (πi[k] ≡ πi[j]) ∧

∧k−1
j=0 [ϕ, πi[j]]

i+1+j·fk(ϕ)
k ,

where, again, [EGϕ, s]ik is slightly different from that in [6, 15, 22].

For example, the interpretation of [E(ϕUρ), s]ik is as follows: First, the first state of πi is
equivalent to the given state s. Then, for each j ∈ {0, ..., k}, we start from πi+1 to search for
a witness for ρ in πi[j], consisting of fk(ρ) k-paths, and from πi+1+fk(ρ)+t·fk(ϕ) to search for a
witness for ϕ in πi[t], consisting of fk(ϕ) k-paths, for each t ∈ {0, ..., j − 1}.

We refer to the translation above as the Classic approach.

Theorem 2.3. Let M be a model, and ϕ an ECTL formula. M |=k ϕ iff [M,ϕ]k is satisfiable.

Theorem 2.4. M |= ϕ iff for some k ∈ {1, ..., |R|}, [M,ϕ]k is satisfiable.

In practice, it is often the case that, if M |= ϕ, there exists a small k such that M |=k ϕ,
i.e., a “shallow” witness exists. This is the reason why BMC is often very efficient in error
detection. The deeper the witness is, the less advantage BMC has.

3 Improved Translation of Bounded Semantics

We now give an example to explain how we improve on Classic. Given an ECTL formula,
the goal of BMC is to find a witness demonstrating satisfaction. Figure 2(a) can be viewed as
a witness for EG(EFa) when k = 3, consisting of two k-paths, (1, 2, 3, 2) and (3, 4, 5, ∗), where
∗ can be any valid state, because we can extract Figure 2(b) from it. By reusing paths, we
can represent a witness in such a compact form. For example, the witness for EFa in state 2
is built by concatenating state 2 to the witness for EFa in state 3. BMC can benefit from this
compact form, since the minimum k to find a witness is determined by the longest subpath
(not counting ∗) in it. We can find the witness in Figure 2(a) when k = 3, since the longest
subpath is (1, 2, 3, 2). Without reusing, we must have k = 4, since the longest subpath is now
(1, 2, 3, 4, 5), the witness for EFa in state 1, and use five k-paths to find that witness (in a
different form) as shown in Figure 2(c): (1, 2, 3, 2, 3), (1, 2, 3, 4, 5), (2, 3, 4, 5, ∗), (3, 4, 5, ∗,
∗), and (2, 3, 4, 5, ∗).

Given two states s and s′ such that (s, s′) ∈ N , if E(ϕUρ) (or EGϕ) holds in s′, and ϕ holds
in s, then E(ϕUρ) (or EGϕ) also holds in s. This is due to the inductive definitions of CTL
temporal operators, and can be exploited to improve the translation of bounded semantics. To
enforce E(ϕUρ) to hold in every state along a finite path, we only need to enforce E(ϕUρ) to
hold in the last state, and ϕ ∨ ρ in any previous state. Similarly, in the case of EGϕ, we only
need to enforce EGϕ to hold in the last state, while ϕ is enough in any previous state. This
potentially reduces the number of necessary k-paths, thus the size of the resulting propositional
formula, to represent a witness in the bounded model.

475

Improving SAT-based Bounded Model Checking for ECTL through Path Reuse C. Jiang and G. Ciardo

1 2 3 2

4

5

∗

a

(a)

1 2 3 2

4

5

2

3

4

5

3

4

5

a

a

a

(b)

1 2 3 2 3

2

3

4

5

3

4

5

∗

4

5

∗

∗

3

4

5

∗

a

a

a a

(c)

Figure 2: Different forms of witnesses for EG(EFa).

We then define an auxiliary function µ : ECTL→ ECTL providing the sufficient predeces-
sor formula to be enforced in “any previous state”:

Definition 3.1. Function µ : ECTL→ ECTL is defined as follows:

µ(a) = a, where a ∈ A
µ(¬a) = ¬a, where a ∈ A
µ(ϕ ∧ ρ) = µ(ϕ) ∧ µ(ρ)
µ(ϕ ∨ ρ) = ϕ ∨ ρ
µ(EXϕ) = EXϕ
µ(E(ϕUρ)) = ϕ ∨ ρ
µ(EGϕ) = µ(ϕ).

Theorem 3.1. Let M = (S,Sinit,N ,A,L) be a model, s, s′ states of M such that (s, s′) ∈ N ,
and ϕ an ECTL formula. If s′ |= ϕ and s |= µ(ϕ), then s |= ϕ.

Proof. We only need to prove correctness in the cases of conjunction, EU, and EG.

• If s′ |= E(ϕUρ) and s |= ϕ ∨ ρ, then s |= E(ϕUρ):
If s |= ρ, it is trivial to see that s |= E(ϕUρ). If s |= ϕ, since s has a successor s′ |= E(ϕUρ),
then s |= E(ϕUρ) by the definition of EU.

The proof for conjunction and EG is based on induction on the structure of the ECTL
formula. The basis is that µ(a) = a, whose correctness is trivial.

• If s′ |= ϕ ∧ ρ and s |= µ(ϕ) ∧ µ(ρ), then s |= ϕ ∧ ρ:
Assume that, if s′ |= ϕ and s |= µ(ϕ) then s |= ϕ, and that, if s′ |= ρ and s |= µ(ρ) then
s |= ρ. By these assumptions, we have s |= ϕ and s |= ρ, thus s |= ϕ ∧ ρ.

• If s′ |= EGϕ and s |= µ(ϕ), then s |= EGϕ:
Assume that, if s′ |= ϕ and s |= µ(ϕ) then s |= ϕ. Since s′ |= EGϕ, we have s′ |= ϕ, thus
s |= ϕ by assumption; since s has a successor s′ |= EGϕ, s |= EGϕ by the definition of EG.

476

Improving SAT-based Bounded Model Checking for ECTL through Path Reuse C. Jiang and G. Ciardo

It is worthwhile to emphasize that Theorem 3.1 does not hold if we define µ(ϕ ∨ ρ) as
µ(ϕ) ∨ µ(ρ). Consider the simple example where ϕ = EGa and ρ = EGb, in Figure 3. (EGa) ∨
(EGb) does not hold in s, because (s, s′, s′), obtained through path reuse, is not a witness for
(EGa) ∨ (EGb) in s, even though a ∨ b holds in s and (s′, s′) witnesses (EGa) ∨ (EGb) in s′.

s s′
a b

Figure 3: An example showing that µ(ϕ ∨ ρ) 6= µ(ϕ) ∨ µ(ρ).

According to Theorem 3.1, given a finite path (s0, ..., sn), to enforce an ECTL formula ϕ
in si for any i ∈ {0, ..., n}, we enforce sn |= ϕ but just si |= µ(ϕ), for i ∈ {0, ..., n − 1}, which
usually simplifies the formula to be enforced in si.

We define function gk, as an improvement of fk, giving the potentially smaller number of
k-paths needed to check an ECTL formula in a bounded model. gk differs from fk only in the
case of EU and EG:

Definition 3.2. Function gk : ECTL→ N is defined as follows:

gk(a) = 0, where a ∈ A
gk(¬a) = 0, where a ∈ A
gk(ϕ ∧ ρ) = gk(ϕ) + gk(ρ)
gk(ϕ ∨ ρ) = max(gk(ϕ), gk(ρ))
gk(EXϕ) = gk(ϕ) + 1
gk(E(ϕUρ)) = (k − 1) · gk(µ(ϕ)) + gk(ϕ) + gk(ρ) + 1
gk(EGϕ) = (k − 1) · gk(µ(ϕ)) + gk(ϕ) + 1.

For example, given a bound k, the maximum witness to show E(ϕUρ), according to our
approach, consists of a k-path (s0, ..., sk), gk(ρ) k-paths to show sk |= ρ, gk(ϕ) paths to show
sk−1 |= ϕ, and, for each i ∈ {0, ..., k − 2}, gk(µ(ϕ)) k-paths to show si |= µ(ϕ), since si |= ϕ
can be inferred.

Theorem 3.2. Given an ECTL formula ϕ, gk(µ(ϕ)) ≤ gk(ϕ).

Theorem 3.3. Given an ECTL formula ϕ, gk(ϕ) ≤ fk(ϕ).

Then, we update the translation of conjunctive, EU, and EG formulas to propositional
formulas (while we just replace fk with gk for the remaining formulas):

[ϕ ∧ ρ, s]ik = [µ(ϕ), s]ik ∧ [µ(ρ), s]
i+gk(µ(ϕ))
k

[E(ϕUρ), s]ik = (s ≡ πi[0]) ∧
(

[ρ, πi[0]]i+1
k ∨

∨k
j=1

(
[ρ, πi[j]]

i+1
k ∧ [ϕ, πi[j − 1]]

i+1+gk(ρ)
k

∧
∧j−2
t=0 [µ(ϕ), πi[t]]

i+1+gk(ρ)+gk(ϕ)+t·gk(µ(ϕ))
k

))
[EGϕ, s]ik = (s ≡ πi[0]) ∧

∨k−1
j=0 (πi[k] ≡ πi[j])

∧[ϕ, πi[k − 1]]i+1
k ∧

∧k−2
j=0 [µ(ϕ), πi[j]]

i+1+gk(ϕ)+j·gk(µ(ϕ))
k .

We refer to this new translation as the Reuse approach.
The templates of ACTL and ECTL formulas guaranteeing that their instances have linear

counterexamples and witnesses (if they exist) have been studied in [4, 20]. For formulas in-
stantiated from linear ECTL templates, gk(ϕ) = fk(ϕ), i.e., Reuse generates exactly the same

477

Improving SAT-based Bounded Model Checking for ECTL through Path Reuse C. Jiang and G. Ciardo

propositional formula as Classic. For some ECTL formulas whose general form of witnesses
is not linear (e.g., EG(EXa), (EGa) ∨ (EGb)), the two approaches may also generate the same
formulas. A complete template of ECTL formulas for which gk(ϕ) < fk(ϕ) is still unclear.

4 Comparison of the Two Translation Approaches

In this section, we compare Classic and Reuse with respect to the minimum bound needed
to find a witness (Section 4.1) and the complexity of propositional formulas (Section 4.2).

4.1 Minimum Bound to Find a Witness

We already saw an example where Reuse finds a witness using a smaller k than Classic, at the
beginning of Section 3. Let kClassic

min and kReuse
min denote the minimum bounds for which Classic

and Reuse find a witness for a particular formula, respectively.

Theorem 4.1. Given an ECTL formula ϕ holding in a model M , kReuse
min ≤ kClassic

min .

Proof. If Classic finds a witness, Reuse can always find a witness in the compact form, as a
substructure of the witness found by Classic, thus using the same k. For example, suppose
Classic finds the witness for E((EFa)Ub) shown in Figure 4(a), using k = 3. Its substructure
(shown in the dashed box) is a witness Reuse can also find. This implies that kReuse

min is never
greater than kClassic

min .

Theorem 4.2. Given an ECTL formula ϕ holding in a model M , kClassic
min can be as large as

2kReuse
min − 1.

Proof. To prove this theorem, it suffices to consider the ECTL formula ϕ = E(E(aUb)Uc) and
the model shown in Figure 4(b). Reuse seeks two k-paths, one path π where some π[j] satisfies
c, π[j − 1] satisfies E(aUb), and π[0], ..., π[j − 2] satisfy µ(E(aUb)) = a ∨ b, and another path σ
where σ[0] coincides with π[j − 1], some σ[l] satisfies b, and σ[0], ..., σ[l − 1] satisfy a. For the
model in Figure 4(b), these two paths correspond to (s0, ..., sn−1, tc) and (sn−1, ..., s2n−2, tb),
respectively, and Reuse finds them using a bound as low as kReuse

min = n.
Instead, Classic seeks k + 1 k-paths, the first one, π, where some π[j] satisfies c, and

π[0], ..., π[j − 1] satisfy E(aUb), as shown by the j k-paths σ0, ..., σj−1 having initial state
π[0], ..., π[j − 1], respectively (the remaining k − j paths can be any valid k-paths). For the
model in Figure 4(b), path π corresponds to (s0, ..., sn−1, tc), the same as for Reuse; however,
path σ0 cannot be built unless k ≥ 2n− 1, thus kClassic

min = 2n− 1.

4.2 Complexity of Propositional Formulas

We now compare the complexity of propositional formulas generated by Classic and Reuse in
terms of the number of symbolic states needed to form a witness, NClassic(ϕ) = (k + 1) · fk(ϕ)
and NReuse(ϕ) = (k + 1) · gk(ϕ). Modern SAT solvers accept formulas in conjunctive normal
form (CNF) as input. A common practice to transform a propositional formula into CNF
is Tseitin transformation [16, 17], which introduces additional boolean variables to avoid an
exponential growth in the size of the CNF formula. Therefore, NClassic and NReuse do not
quantitatively depict the size of the search space a SAT solver explores or the hardness of the
formula, but affect the efficiency of CNF transformation, and it seems plausible to compare and
use them as a way to assess the hardness of the formula.

478

Improving SAT-based Bounded Model Checking for ECTL through Path Reuse C. Jiang and G. Ciardo

1 2 3 4

5

6

∗

7

∗

∗

8

9

10

a

a

a

b

(a) A witness for E((EFa)Ub)

s0 s1 ... sn−1 tc

sn

..
.

s2n−2

tb

a a a c

a

a

b

(b) A model where E(E(aUb)Uc) holds

Figure 4: Examples used in the proofs of Theorem 4.1 and 4.2.

We first consider the simple formula EG(EFa). Table 1 lists the values of NClassic(EG(EFa))
and NReuse(EG(EFa)) w.r.t. k. It can be seen that NClassic(EG(EFa)) grows quadratically,
while NReuse(EG(EFa)) grows linearly, as k increases. The larger k is, the more significant the
difference becomes.

k fk(EG(EFa)) NClassic(EG(EFa)) gk(EG(EFa)) NReuse(EG(EFa))

1 2 4 2 4

2 3 9 2 6

3 4 16 2 8

4 5 25 2 10

5 6 36 2 12

Table 1: Comparing the two translation approaches on EG(EFa):
fk(EG(EFa)) = k · fk(EFa) + 1 = k · (fk(a) + 1) + 1 = k + 1 ,

gk(EG(EFa)) = (k − 1) · gk(µ(EFa)) + gk(EFa) + 1 = (k − 1) · gk(a) + (gk(a) + 1) + 1 = 2 .

Then, let us investigate a family of more complex formulas. Let ai be an atomic proposition
for i ∈ N and consider the family of ECTL formulas {ϕ1, ϕ2, ...}, where ϕ1 = E(a0Ua1) and
ϕi = E(ϕi−1Uai) for i ≥ 2. According to Def. 2.4, fk(ϕ1) = 1 and, for i ∈ {2, ..., n},

fk(ϕi) = k · fk(ϕi−1) + 1 ,

which can be rewritten as
fk(ϕi) + 1

k−1

fk(ϕi−1) + 1
k−1

= k .

This implies that fk(ϕ1)+ 1
k−1 , fk(ϕ2)+ 1

k−1 , ..., fk(ϕi)+ 1
k−1 is a geometric series with ratio k.

Since its first element fk(ϕ1) + 1
k−1 equals 1 + 1

k−1 = k
k−1 , its i-th element fk(ϕi) + 1

k−1 equals
ki

k−1 , from which we can conclude that

fk(ϕi) =
ki − 1

k − 1
.

479

Improving SAT-based Bounded Model Checking for ECTL through Path Reuse C. Jiang and G. Ciardo

Finally,

NClassic(ϕi) = (k + 1) · fk(ϕi) =
k + 1

k − 1
(ki − 1) . (1)

Now we compute NReuse(ϕi). According to Def. 3.2, gk(ϕ1) = 1, gk(ϕ2) = 2, and, for
i ∈ {3, ..., n},

gk(ϕi) = (k − 1) · gk(µ(ϕi−1)) + gk(ϕi−1) + gk(ai) + 1

= (k − 1) · gk(ϕi−2 ∨ ai−1) + gk(ϕi−1) + 1

= (k − 1) · gk(ϕi−2) + gk(ϕi−1) + 1 .

We build two geometric series by rewriting the equation above as

gk(ϕi)− 1−
√
4k−3
2 gk(ϕi−1)− 2

1−
√
4k−3

gk(ϕi−1)− 1−
√
4k−3
2 gk(ϕi−2)− 2

1−
√
4k−3

=
1 +
√

4k − 3

2

and
gk(ϕi)− 1+

√
4k−3
2 gk(ϕi−1)− 2

1+
√
4k−3

gk(ϕi−1)− 1+
√
4k−3
2 gk(ϕi−2)− 2

1+
√
4k−3

=
1−
√

4k − 3

2
.

Therefore, the two geometric series have ratio 1+
√
4k−3
2 and 1−

√
4k−3
2 , respectively. Following

similar steps to those used to compute fk(ϕi), we obtain

gk(ϕi)−
1−
√

4k − 3

2
gk(ϕi−1)− 2

1−
√

4k − 3
= −

(
1 +
√

4k − 3
)2

2
(
1−
√

4k − 3
) · (1 +

√
4k − 3

2

)i−2
= − 2

1−
√

4k − 3
·
(

1 +
√

4k − 3

2

)i
,

gk(ϕi)−
1 +
√

4k − 3

2
gk(ϕi−1)− 2

1 +
√

4k − 3
= −

(
1−
√

4k − 3
)2

2
(
1 +
√

4k − 3
) · (1−

√
4k − 3

2

)i−2
= − 2

1 +
√

4k − 3
·
(

1−
√

4k − 3

2

)i
.

Combining the two equations above, we have:

gk(ϕi) =

(
1 +
√

4k − 3
)i+2 −

(
1−
√

4k − 3
)i+2

(k − 1) · 2i+2 ·
√

4k − 3
− 1

k − 1
.

Finally,

NReuse(ϕi) = (k + 1) · gk(ϕi) =
k + 1

k − 1

((
1 +
√

4k − 3
)i+2 −

(
1−
√

4k − 3
)i+2

2i+2 ·
√

4k − 3
− 1

)
. (2)

Note that i is a constant for a given formula in the family we are considering. Therefore,

according to Equations 1 and 2, NClassic(ϕi) ∼ O(ki) and NReuse(ϕi) ∼ O(k
i+1
2). To visualize

the difference between the two, we plot NClassic(ϕ3) and NReuse(ϕ3) in Figure 5. It can be
clearly observed that, as k increases, NReuse(ϕ3) grows significantly slower than NClassic(ϕ3).

480

Improving SAT-based Bounded Model Checking for ECTL through Path Reuse C. Jiang and G. Ciardo

2 4 6 8 10

0

500

1,000

k

N
u

m
b

er
o
f

S
y
m

b
ol

ic
S

ta
te

s NClassic(ϕ3)

NReuse(ϕ3)

Figure 5: Comparing the growth of NClassic(ϕ3) and NReuse(ϕ3).

5 Coping with Models Containing Deadlock States

Generally, CTL assumes that the model does not contain any deadlock state. Unfortunately,
this assumption is not true for many real-life models. For models containing deadlock states,
using either Classic or Reuse may fail to find a witness if deadlock states are part of every
witness. Figure 6 shows a simple model containing a deadlock state 4. Suppose we are searching
a witness for EF(a∧ EFb), which consists of two k-paths. There is no such witness when k = 1,
because we must take two steps from the initial state to reach a state where a holds. When
k = 2, the corresponding propositional formula is also unsatisfiable, because we are not able to
build a path of length 2 from state 3.

1 2 3 4

a b

Figure 6: A model containing a deadlock state 4.

A common practice to cope with models containing deadlock states is to add a self-loop
to every deadlock state. When using a SAT solver, we propose another approach that adds
additional variables to the propositional formula, so that the formula allows k-paths whose
actual length is smaller than k. Each symbolic state πi[j] is associated with a boolean variable
τi,j , called transition flag, which is true if and only if πi[j] is a true successor of πi[j − 1], i.e.,
N (πi[j − 1], πi[j]). We modify the encoding of [Mk] as follows:

[Mk]ϕ = I(π0[0]) ∧
fk(ϕ)−1∧
i=0

k−1∧
j=0

(N (πi[j], πi[j + 1]) ∨ τi,j+1) ∧
fk(ϕ)−1∧
i=0

k−1∧
j=0

(τi,j+1 ⇒ τi,j).

The constraint N (πi[j], πi[j + 1]) ∨ τi,j+1 relaxes the assumption that πi[j] must have suc-
cessors, by simply setting τi,l to false for l ∈ {j + 1, ..., k} if πi[j] is a deadlock state. The

constraint
∧fk(ϕ)−1
i=0

∧k−1
j=0 (τi,j+1 ⇒ τi,j) assures that, when τi,j+1 is true, the corresponding

481

Improving SAT-based Bounded Model Checking for ECTL through Path Reuse C. Jiang and G. Ciardo

symbolic state πi[j + 1] is reachable from πi[0], i.e.,
∧j
l=0N (πi[l], πi[l + 1]), otherwise πi[j + 1]

can take an arbitrary state.
The translation of EX, EF, and EU formulas is also updated (we demonstrate the modification

to Reuse; similar modification can also be applied to Classic):

[EXϕ, s]ik = (s ≡ πi[0]) ∧ [ϕ, πi[1]]i+1
k ∧ τi,1

[E(ϕUρ), s]ik = (s ≡ πi[0]) ∧
((

[ρ, πi[0]]i+1
k ∧ τi,0

)
∨
∨k
j=1

(
[ρ, πi[j]]

i+1
k ∧ [ϕ, πi[j − 1]]

i+1+gk(ρ)
k

∧
∧j−2
t=0 [µ(ϕ), πi[t]]

i+1+gk(ρ)+gk(ϕ)+t·gk(µ(ϕ))
k ∧ τi,j

))
[EGϕ, s]ik = (s ≡ πi[0]) ∧

∨k−1
j=0 (πi[k] ≡ πi[j])

∧[ϕ, πi[k − 1]]i+1
k ∧

∧k−2
j=0 [µ(ϕ), πi[j]]

i+1+gk(ϕ)+j·gk(µ(ϕ))
k ∧ τi,k.

Of course, if the model is known to be deadlock-free (using a priori knowledge, or some
deadlock detection technique), the proposed modification should not be applied, as it increases
the size of the resulting formulas.

6 Experiments

We describe our experimental design in Section 6.1 and present the results in Section 6.2.

6.1 Experimental Design

We implemented both Classic and Reuse in the model checker SMART [7], making use of
the SAT solver Nigma [10, 11]. Our benchmark suite is a subset of models and CTL formulas
from the CTL cardinality examination of the Model Checking Contest (MCC) 2018 (https:
//mcc.lip6.fr/). Models are described as Petri nets, most of which have one or more scaling
parameters, affecting size and complexity. An experimental instance is a pair of a model instance
and an ECTL formula. To select a set of instances eligible for our experiment, we apply the
following filtering process:

1. Run SMART up to 1 hour to determine if the model instance is a safe Petri net (the
maximum number of tokens at each place is 1). Discard unsafe Petri nets, so that the
places in the remaining model instances can be represented as binary variables (while the
places in bounded unsafe Petri nets can be represented using one-hot or binary encoding,
we restrict ourselves to safe Petri nets for convenience). In practice, we used the results
published in MCC 2018. This leaves 2,256 instances.

2. The formulas associated with the remaining model instances are first simplified if some
subformulas can be determined to be true or false, using knowledge that the model
instance is a safe Petri net. We remove constant true or false formulas and pure proposi-
tional formulas (leaving 1,288 instances). Then, the formulas are transformed into nega-
tion normal form (NNF) and ACTL formulas are negated to obtain ECTL ones. We
remove non-ECTL formulas (leaving 845 instances), non-nested formulas (leaving 278
instances), and formulas that are instances of linear ECTL templates (leaving 110 in-
stances). We also remove formulas containing summations, e.g., the total number of
tokens in a set of places (leaving 89 instances). Therefore, the remaining experimental
instances have non-trivial ECTL formulas that may have non-linear witnesses and do not
contain summations.

482

https://mcc.lip6.fr/
https://mcc.lip6.fr/

Improving SAT-based Bounded Model Checking for ECTL through Path Reuse C. Jiang and G. Ciardo

10−1 100 101 102
10−1

100

101

102

Reuse

C
l
a
ss
ic

Figure 7: Comparing the total time (in seconds) spent on CNF transformation.

Finally, we have 89 instances, taken from 60 model instances from 22 different models.
Among the 89 instances, the ECTL formulas hold in 50 instances, do not hold in 32 instances,
while it is not known whether they hold in the remaining 7 instances, according to SMART.

To compare the performance of the two translation approaches, we run BMC up to k = 20.
For each k, the SAT solver is given 10 minutes to work on the generated CNF formula. BMC
terminates either if a witness is found for some k, or if, for every k up to 20, the SAT solver
reports UNSAT or runs out of time. In the latter case, we cannot conclude satisfaction or
violation of the corresponding ECTL formula, but we can tell that there is no witness up to
the largest k for which the SAT solver reports UNSAT (no “simple” witness exists).

The model instances from MCC 2018 may contain deadlock states, thus we always apply
the modification proposed in Section 5.

6.2 Experimental Results

First, we compare the time spent on transforming propositional formulas into CNF. Since
Reuse never generates a larger propositional formula than Classic, it is expected to outper-
form Classic on this metric, and the results confirm our expectation. Figure 7 presents a
logscale scatter plot comparing the total time (in seconds) spent on CNF transformation for
each experimental instance. A data point above the diagonal means that CNF transformation
completes faster using Reuse. From the plot, we can see that Reuse is often substantially
better than Classic, and equal to it in the remaining cases, thus we conclude that CNF trans-
formation always benefits from Reuse.

483

Improving SAT-based Bounded Model Checking for ECTL through Path Reuse C. Jiang and G. Ciardo

10−1 100 101 102 103 104
10−1

100

101

102

103

104

2,0

0,2

9,9
13,12
13,6

16,16

0,1

2,2
1,1

10,0

6,1

7,0

9,99,9
10,10

Reuse

C
l
a
ss
ic

0.6 0.8 1

·104

0.6

0.8

1
·104

9,9

13,12

13,6

16,16

9,9
9,9

10,10

Category 1
Category 2
Category 3
Category 4

Figure 8: Comparing the total time (in seconds) spent on satisfiability checking.

Then, we compare the time spent on satisfiability checking. The results on each experimental
instance are classified according to the following categories:

Category 1 (4) The ECTL formula holds, and at least one approach found a witness.

Category 2 (©) The ECTL formula holds, but neither approach found a witness.

Category 3 (�) The ECTL formula does not hold.

Category 4 (♦) We do not know whether the ECTL formula holds or not.

Figure 8 presents a logscale scatter plot comparing the total time (in seconds) spent on
satisfiability checking. It also has a zoom-in view of the top-right corner in linear scale for
clarity. A data point above the diagonal means that the SAT solver terminates (reporting
SAT or UNSAT, or running out of time) in a shorter total time, working on the propositional
formulas generated by Reuse. The pair of numbers i, j above a data point (omitted if 0, 0)
report the number of timeouts for Reuse and Classic, respectively. For most instances, we
can observe a better performance using Reuse.

Instances in Category 1 are those where we can take full advantage of BMC. For them,
Reuse always found a witness faster. There is even one instance (the topmost 4 in Figure 8)
where Reuse found a witness but Classic did not. Beside the hardness of formulas, another
reason why Reuse is more efficient is that it may find a witness using a smaller k, thus terminate
earlier than Classic.

484

Improving SAT-based Bounded Model Checking for ECTL through Path Reuse C. Jiang and G. Ciardo

Most instances in Category 2 have relatively “deep” witnesses. BMC may find a witness
running with a larger k, at the risk of working on a huge and complex propositional formula.
The rightmost three ©’s below the diagonal are instances where the SAT solver struggled with
the formulas generated by Reuse. We noticed more timeouts using Reuse in these instances,
which provides more evidence of the well-known fact that there is no strict connection between
the size and the hardness of formulas for satisfiability checking [13].

In practice, BMC is not able to answer the instances in Category 3 and Category 4, since
the upper bound of the maximal length of symbolic paths is the number of reachable states
(see Theorem 2.2), often a huge number. In these cases, BMC can only tell us that no “simple”
witness exists (up to the largest k for which the SAT solver reports UNSAT). We can see that
most of the time, Reuse draws this conclusion faster than Classic.

Finally, we select an experiment instance from Category 1 for a detailed comparison for
each value of k in Table 2. The model instance is AutoFlight-PT-05a and the formula is the
negation of A ((p33 ≤ p79)UAG(p89 ≤ p88)). BMC finds a witness for k = 17 using Classic
and for k = 13 using Reuse. Vars, Clauses and Literals are the numbers of variables,
clauses, and literals in the CNF formulas. We can see that the CNF formulas generated by
Reuse grow slower and are significantly smaller than the ones generated by Classic. CNF
and SAT are the time (in seconds) spent in CNF transformation and satisfiability checking,
respectively. CNF transformation always benefits from Reuse, but satisfiability checking may
not. With Reuse, the SAT solver spends more time reporting UNSAT for k = 8, 9, 10, 11, and
12, though this disadvantage is finally offset by reporting SAT and terminating for a smaller k.
An explanation could be that for some model checking problems, a small CNF formula may also
have a small unsatisfiable core, which can be deep and hard for a SAT solver to identify. For
example, suppose that we are searching a k-path π where π[i] |=k EFa for any i ∈ {0, ..., k− 1}.
For the formula generated by Classic, the SAT solver reports UNSAT as long as it finds an i
such that π[i] 6|=k EFa. However, for the formula generated by Reuse, it reports UNSAT only
when it proves that π[k − 1] 6|=k EFa.

In addition, the SAT solver reports SAT faster on a large formula (k = 17 for Classic;
k = 13 for Reuse) than it reports UNSAT on a small formula (k = 16 for Classic; k = 12 for
Reuse), which confirms that the hardness of satisfiable and unsatisfiable formulas should be
evaluated using different criteria.

7 Conclusions and Future Work

We have presented an improved translation to propositional formulas for ECTL BMC, which
generates smaller, or at worst the same formulas as the ones generated by Classic. Exper-
imental results show that CNF transformation always benefits from our approach, and that
satisfiability checking is more efficient most of the time. In addition, we proposed a simple
modification to the translation so that it is also defined for models containing deadlock states.

BMC for ACTL formulas having linear counterexamples has been investigated in [20]. It
seems promising to combine their work and ours, because our approach has advantages for
formulas that are not instantiated from linear templates, thus the two approaches work on
disjoint sets of ECTL and ACTL formulas and have no conflict in application.

In Def. 3.1, the sufficient predecessor formula of a disjunctive formula does not introduce any
improvement: µ(ϕ∨ρ) = ϕ∨ρ. However, improvement is possible if we “push down” disjunction.
For example, E(aUb)∨E(aUc) can be rewritten into E(aU(b∨c)), then µ(E(aU(b∨c))) = a∨b∨c.
Therefore, simplifying and rewriting CTL formulas [3] may help path reuse achieve a broader
applicability.

485

Improving SAT-based Bounded Model Checking for ECTL through Path Reuse C. Jiang and G. Ciardo

k
Classic Reuse

Vars Clauses Literals CNF SAT Vars Clauses Literals CNF SAT

1 2,357 27,108 56,460 0.04 0.00 2,357 27,108 56,460 0.04 0.00

2 5,384 70,968 147,217 0.12 0.02 4,172 53,661 111,547 0.08 0.01

3 9,353 131,733 272,576 0.23 0.06 5,985 80,213 166,632 0.13 0.02

4 14,266 209,405 432,541 0.41 0.06 7,798 106,766 221,719 0.18 0.03

5 20,123 303,984 627,112 0.59 0.09 9,611 133,320 276,808 0.25 0.05

6 26,924 415,470 856,289 0.82 0.15 11,424 159,875 331,899 0.28 0.06

7 34,669 543,863 1,120,072 1.18 0.22 13,237 186,431 386,992 0.35 0.22

8 43,358 689,163 1,418,461 1.53 0.27 15,050 212,988 442,087 0.4 0.61

9 52,991 851,370 1,751,456 1.68 0.32 16,863 239,546 497,184 0.45 1.67

10 63,568 1,030,484 2,119,057 2.20 0.39 18,676 266,105 552,283 0.52 2.76

11 75,089 1,226,505 2,521,264 2.91 1.64 20,489 292,665 607,384 0.59 5.04

12 87,554 1,439,433 2,958,077 3.03 2.61 22,302 319,226 662,487 0.61 28.66

13 100,963 1,669,268 3,429,496 3.67 2.30 24,115 345,788 717,592 0.64 5.95

14 115,316 1,916,010 3,935,521 4.00 28.05

15 130,613 2,179,659 4,476,152 5.10 27.50

16 146,854 2,460,215 5,051,389 5.28 220.14

17 164,039 2,757,678 5,661,232 6.02 112.17

Total 38.81 395.99 4.52 45.08

Table 2: Searching for a counterexample to A ((p33 ≤ p79)UAG(p89 ≤ p88)) in
AutoFlight-PT-05a.

Acknowledgments

This work was supported in part by the National Science Foundation under grant ACI-1642397.

References

[1] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and Yunshan Zhu. Bounded
model checking. Advances in Computers, 58(11):117–148, 2003.

[2] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic model checking
without BDDs. In Proc. TACAS, pages 193–207. Springer, 1999.

[3] Frederik Bønneland, Jakob Dyhr, Peter G Jensen, Mads Johannsen, and Jǐŕı Srba. Simplifica-
tion of CTL formulae for efficient model checking of Petri nets. In International Conference on
Applications and Theory of Petri Nets and Concurrency, pages 143–163. Springer, 2018.

[4] Francesco Buccafurri, Thomas Eiter, Georg Gottlob, and Nicola Leone. On ACTL formulas having
linear counterexamples. Journal of Computer and System Sciences, 62(3):463–515, 2001.

[5] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill, and Lain-Jinn Hwang.
Symbolic model checking: 1020 states and beyond. Information and Computation, 98(2):142–170,
1992.

[6] Wei Chen and Wenhui Zhang. Bounded model checking of ACTL formulae. In International
Symposium on Theoretical Aspects of Software Engineering., pages 90–99. IEEE, 2009.

486

Improving SAT-based Bounded Model Checking for ECTL through Path Reuse C. Jiang and G. Ciardo

[7] Gianfranco Ciardo, Robert L. Jones, Andrew S. Miner, and Radu Siminiceanu. Logical and
stochastic modeling with SMART. Perf. Eval., 63:578–608, 2006.

[8] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using branching
time temporal logic. In Proc. IBM Workshop on Logics of Programs, LNCS 131, pages 52–71, 1981.

[9] Edmund M. Clarke, Somesh Jha, Yuan Lu, and Helmut Veith. Tree-like counterexamples in model
checking. In Proc. LICS, pages 19–29. IEEE Comp. Soc. Press, 2002.

[10] Chuan Jiang and Gianfranco Ciardo. Nigma 1.2. In SAT Race, 2015.

[11] Chuan Jiang and Ting Zhang. Partial backtracking in CDCL solvers. In International Conference
on Logic for Programming Artificial Intelligence and Reasoning, pages 490–502. Springer, 2013.

[12] Timo Latvala, Armin Biere, Keijo Heljanko, and Tommi Junttila. Simple bounded LTL model
checking. In International Conference on Formal Methods in Computer-Aided Design, pages 186–
200. Springer, 2004.

[13] Zoltán Ádám Mann. Typical-case complexity and the SAT competitions. In Daniel Le Berre,
editor, POS-14. Fifth Pragmatics of SAT workshop, volume 27 of EPiC Series in Computing,
pages 72–87. EasyChair, 2014.

[14] Rotem Oshman and Orna Grumberg. A new approach to bounded model checking for branching
time logics. In International Symposium on Automated Technology for Verification and Analysis,
pages 410–424. Springer, 2007.

[15] Wojciech Penczek, Bożena Woźna, and Andrzej Zbrzezny. Bounded model checking for the uni-
versal fragment of CTL. Fundamenta Informaticae, 51(1-2):135–156, 2002.

[16] David A Plaisted and Steven Greenbaum. A structure-preserving clause form translation. Journal
of Symbolic Computation, 2(3):293–304, 1986.

[17] Grigori S Tseitin. On the complexity of derivation in propositional calculus. In Automation of
reasoning, pages 466–483. Springer, 1983.

[18] András Vörös, Dániel Darvas, and Tamás Bartha. Bounded saturation-based CTL model checking.
Proceedings of the Estonian Academy of Sciences, 62(1):59–70, 2013.

[19] Bow-Yaw Wang. Proving ∀µ-calculus properties with SAT-based model checking. In International
Conference on Formal Techniques for Networked and Distributed Systems, pages 113–127. Springer,
2005.

[20] Zhaowei Xu and Wenhui Zhang. Linear templates of ACTL formulas with an application to
SAT-based verification. Information Processing Letters, 127:6–16, 2017.

[21] Andy Jinqing Yu, Gianfranco Ciardo, and Gerald Lüttgen. Bounded reachability checking of
asynchronous systems using decision diagrams. In Proc. TACAS, LNCS 4424, pages 648–663,
2007.

[22] Andrzej Zbrzezny. Improving the translation from ECTL to SAT. Fundamenta Informaticae,
85(1-4):513–531, 2008.

487

	Introduction
	Background
	Kripke Structures and ECTL
	Bounded Semantics of ECTL
	Translation into a Propositional Formula

	Improved Translation of Bounded Semantics
	Comparison of the Two Translation Approaches
	Minimum Bound to Find a Witness
	Complexity of Propositional Formulas

	Coping with Models Containing Deadlock States
	Experiments
	Experimental Design
	Experimental Results

	Conclusions and Future Work

