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Abstract

Given the vast amount of publicly available CCTV surveillance and the capabilities
of modern computer vision algorithms, the task of automatic anomaly detection is due
to be solved in the near future. A solution that is competent over the large problem
domain requires a certain level of sophistication such that it can replicate the contextual
understanding of a human monitor. It is hypothesised that a single approach to anomaly
detection can not be expected to perform both low-level and high-level monitoring of video
frames which is required for robust anomaly detection. This paper proposes a solution to
the anomaly detection problem in the form of a consensus framework that combines inputs
from three sources to provide a final verdict on the perceived degree of anomaly contained
in a video. The first approach, later introduced as the base model, is an implementation
of previous work in anomaly detection that is specifically chosen for its emphasis on the
learning of high-level context. The second and third are novel anomaly detection heuristics
that operate on a per-frame basis i.e., with no regard for high-level context. The paper
concludes with an evaluation and analysis of the three approaches and a discussion of the
merit of a consensus framework. A final AUC of 0.7156 is achieved on the UCF Crime
dataset; however, this result is not attributable to the consensus framework.

1 Introduction

In 2012, only 0.5% of all data was analysed [38]. The quantity of data accumulated in the years
2015 and 2016 exceeded that of the entire previous history [38]. Currently, the ratio between
unique and replicated data is projected to be between 1:10 by 2024 [38]. In the context of CCTV
surveillance, this information suggests that the use of human monitors for anomaly detection
is no longer realistic, nor is it necessary. This is for two reasons in particular: first, there is a
glaring deficiency in the use of surveillance cameras due to an unworkable ratio of surveillance
data to human monitoring capabilities; second, recent progress in the fields of computer vision
and deep learning implies that artificial agents are capable of performing anomaly detection
with competitive accuracy and full coverage of footage. These agents are frameworks that
detect anomalies through various techniques which aim to learn the appearance, motion and
context which characterise anomalies. In unseen footage, the unpredictability of appearance
and motion, or replication of learned anomalous context, is flagged by a competent framework.
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The task of real-world anomaly detection spans a variety of diverse and complex situations,
each with different versions of normal and anomalous activity. In this work, the anomaly
detection problem is somewhat reduced to thirteen classes of anomalous activities contained
within the University of Central Florida (UCF) Crime dataset [6]. The dataset consists of real-
world videos captured by CCTV surveillance cameras. The setting is not constrained in any
way, although the majority of instances depict roads, public walkways, residential areas, and
shops. The problem statement, at the highest level, is to detect anomalies within footage by
mapping sequences of frames to anomaly scores. Frames that correspond to scores that exceed
a discriminative threshold are considered to be anomalous. Hypothetically, a trained model of
the proposed solution is applicable to on-line anomaly detection on a vast majority of unseen
CCTV footage by way of transfer learning.

The lack of a general definition for ’normal’ and ’anomalous’ poses a difficult challenge when
attempting to develop a robust framework i.e., one that performs across the full spectrum of
anomalies. Additionally, anomalous events occur infrequently in comparison to normal activities
and therefore solutions should have a certain degree of sophistication to deter false positives.

Given the pressing need for artificial surveillance monitoring and the complexity that comes
with developing such a system, robust real-world anomaly detection is currently an important
field of research that receives a considerable amount of attention [34] [39] [25] [26] [12] [24].

This paper presents a solution in the form of a consensus between three models. Where
the majority of solutions in the literature rely on a single measure of anomaly in all scenarios
(provided by a single approach) [34] [25] [26] [24], the proposed solution receives input from three
models/heuristics with contrasting approaches. That way, the strengths of multiple solutions
can be leveraged to assist in covering the spectrum of potential anomalies. The benefits of this
decision are expected to be two-fold: multiple detection techniques are at the disposal of the
framework, and false positives are required to be redundant if they are to prevail.

Of the three models implemented, the most substantial approach is adopted from Sultani
et al. [34] - an architecture that implements a 3D Convolutional Network for feature extraction
(C3D), Artificial Neural Network (ANN), and Multiple Instance Learning (MIL) ranking loss.
This approach uniquely formulates anomaly detection as a weakly supervised regression problem
and achieved state-of-the-art results in 2019. The remainder of this paper will refer to this model
as the base model.

Furthermore, two novel unsupervised approaches were developed during this work, namely
CRAFT (Consecutive frame construction with RAFT optical flow estimation) and LKKM
(Lukas Kanade K-Means pattern deviation). These approaches, which are better described
as anomaly detection heuristics, serve the purpose of detecting the locality of anomalies on a
fine-grained level by performing computations on a per-frame basis. CRAFT, in particular,
only has a single frame look-ahead. CRAFT translates recent research in optical flow estima-
tion into a frame construction heuristic that quantifies anomaly by reconstruction error. LKKM
applies cumulative clustering to sparse optical flow vectors to provide a measure of deviation
from regular patterns.

The rationale behind the structure of the consensus framework is as follows: the base model
learns the context surrounding anomalies and how that differs from normal, yet anomalous
seeming, footage. The expectation is that it detects anomalies on a coarse level - not necessarily
with pinpoint accuracy. Thereafter, CRAFT and LKKM will be applied to suspicious sections
of footage (identified by the base model) to detect the locality of a potential anomaly. If the
base model is sufficient in deterring false positives, the result is a filtered version of anomalous
flags (supplied by CRAFT and LKKM) which mostly correspond to true positives. In summary,
this paper makes the following contributions:
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• The consensus framework - a combination of three approaches to form a robust anomaly
detection strategy

• A modified version of the framework proposed by Sultani et al. [34] was implemented in
Tensorflow [1] & Keras [7]. The modifications are listed:

– modifications to the training method such that contribution from the full training
set is ensured

– cross-validation of additional video-level evaluation metrics to measure performance
during training

– an early stopping callback function for prevention of overfitting

– experimentation with a deeper architecture and an additional loss constraint to pro-
vide improved training incentive

• CRAFT - a novel unsupervised heuristic for anomaly detection

• LKKM - a second novel unsupervised heuristic for anomaly detection

• A web application to demonstrate the performance of the anomaly detection framework
on the UCF Crime dataset [6]

The results provide evidence to support the argument for the use of deep learning in anomaly
detection, specifically the approach suggested by Sultani et al. [34]. Additionally, CRAFT
and LKKM prove to be effective at quantifying anomalies on a fine-grained level but have the
expected drawback of being over-sensitive owing to the lack of higher-level context on footage.
The merit of a consensus framework is questioned as a result of the difficulties introduced during
the combination of the scores of the base model, CRAFT, and LKKM.

2 Related Work

2.1 Anomaly Detection

Anomaly detection aims to quantify the degree of abnormality by assigning anomaly scores along
the temporal axis of a video such that peaks in anomaly scores correspond to true anomalies.
This problem statement is inherently vague because there is no prior information provided on
the contents of videos - the only assumption is that the camera position is fixed.

Consider two scenarios: a rare bicycle passing through a sidewalk of pedestrians; and a road
accident on a highway. It seems obvious that the second example is more anomalous than the
first, given the context that humans possess. Technically, both are anomalous in the absence of
this context. This comparison highlights that anomalies are difficult to describe to computers.
It is not the appearance and motion aspect, but rather the contextual aspect of anomalous
activity that is the source of difficulty. With that being said, deep learning approaches, such as
the one implemented by the base model, allow the training data to loosely dictate the general
type of anomaly to be detected by formulating the appropriate loss function.

This research focuses on anomaly detection in its most useful application to society i.e. as
an alerting system to unwanted activity (accidents, crime, malice). Note that anomalies are
not classified, but rather recognised as anomalous as opposed to normal.
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2.2 Existing Approaches to Anomaly Detection

A common approach in the literature is to learn an idea of normal activity and judge the degree
of anomaly in unseen footage on whether or not it conforms to the learned idea of normal.
This approach is prevalent in anomaly detection frameworks which fall under the category of
encoder-based methods, which train both the feature encoder and classifier simultaneously [12].
The approach is implemented with various methodologies [25] [26] [24]. All of them operate
on the assumption that part of the definition of an anomaly is that it is rare and therefore not
learned as part of the framework’s idea of normal activity. Frame reconstruction is a popular
method used in determining the similarity between an unseen frame and the idea of normal.
The reconstruction error is inversely proportional to the similarity to the learned representation
of normal activity and thus proportional to the contained anomaly in a video.

Specific implementations are elaborated on: Appearance-Motion Correspondence [25] learns
to reconstruct deconstructed normal frames, using a Convolutional Auto-encoder, in terms of
plain appearance and motion (motion represented as optical flow). In testing, anomalous frames
yield high reconstruction error because the reconstruction of anomalous frames is not learned.
Memory guided normality [26] takes a similar approach to Appearance-Motion Correspondence
except a memory module is introduced. The memory module records many prototypical features
of commonly seen items, forming a dictionary of normal features from different viewpoints. A
robust collection of normal activity is learned and queried with the features of new frames to
retrieve similar features which aid in reconstruction. Anomaly is quantified by reconstruction
error and the distance between query features and the nearest items in the memory module.

Conceptually, there are some obvious problems with the general approach of normal frame
reconstruction:

• It is required that a new concept of normal is learned for each situation because it is not
anomalies that are learned but rather the absence of normal activity.

• It is difficult to account for all normal events.

• A dictionary of normal events does not adjust well to environmental changes (for example,
day to night) and, as a result, a high false-positive rate manifests.

In contrast, encoder-agnostic methods use task-agnostic features of videos extracted from a
vanilla feature-encoder [12] (e.g. C3D) to estimate anomaly scores. Most recently, a new
stance on the formulation of the anomaly detection problem, falling under the encoder-agnostic
category, has been developed by Sultani et al. [34]. The approach attempts to associate
anomalous features with higher anomaly scores by learning a mapping between features and
scores. Anomaly detection is converted into a regression problem where the weights of an ANN
are the predictors and the anomaly score is the response. The complexity of this approach comes
with providing appropriate incentive, in the form of a custom loss function, during training of
the ANN. The work of Sultani et al. marks significant progress in encoder-agnostic anomaly
detection, reflected by state-of-the-art results and further extensions contributed by Zhang et al
(inner-bag score gap regularisation) [43], and Wan et al. (dynamic MIL loss and center-guided
regularisation) [40]. The components introduced in the original paper [34] are elaborated on in
2.4 and 2.5.

2.3 Recurring Shortfalls

At the highest level, there are two recurring challenges faced by many anomaly detection frame-
works:
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• Frameworks struggle to cover the wide spectrum of potential anomalies. Each framework
has its strengths and weaknesses and therefore lacks the robustness to generalise across
polar examples of anomaly. For example, obvious explosion versus subtle petty theft.

• False positives are difficult to identify. If predicted scores become saturated with false
positives, a framework becomes useless.

2.4 3D Convolutional Neural Networks

Convolutional neural networks (CNNs) enable generic image description by reducing images into
vectors which provide a compact representation of an image’s defining features. This is achieved
through a series of convolution and pooling layers which ultimately reduce the resolution of an
image by extracting the most significant pixels within a receptive field [36]. These compact
representations enable the application of deep learning techniques to computer vision problems
by reducing model complexity and the computational expense required to process visual data.

C3D [36] refers to a specific architecture of a 3D Convolutional Neural Network (3D Con-
vNet) that is a simple yet effective approach for spatiotemporal feature learning which selec-
tively attends to both motion and appearance. CNNs are typically applied in a 2-Dimensional
setting i.e., each frame is processed independently. 3D ConvNets differ in the sense that frames
are processed in volumes (a stack of consecutive frames). In 3D ConvNets, convolution and
pooling operations are performed spatiotemporally while in 2D ConvNets they are performed
only spatially. Therefore, the use of C3D is necessary to provide a general video descriptor that
expresses both an image’s appearance and salient motion. C3D uses a homogeneous architec-
ture with small 3×3×3 convolution kernels in all layers - this kernel size is empirically selected
by the authors. With a linear SVM classifier, the video descriptor outperforms state-of-the-art
methods [41] [15] on three different activity classification/scene recognition benchmarks [32] [8]
[31] and is comparable on a fourth [17]. Finally, C3D’s learned features are generic, compact
and relatively efficient to compute.

2.5 MIL

Multiple Instance Learning (MIL) is a weakly supervised learning approach. MIL is applied
in the case where instances are collected into bags and labels are only known at bag-level i.e.,
bags are labeled based on whether they contain a certain type of instance or not; however,
no information is provided on individual instances. By repeatedly observing the features of
instances in labeled bags, MIL learns to associate labels with instances and thus features. In
the context of anomaly detection, bags are labeled as either normal or anomalous. Normal
bags only contain normal instances whereas anomalous bags contain at least one anomalous
instance. The training process learns certain features to be characteristic of anomaly by way
of determining recurring features in all anomalous scenarios. The approach can also be used to
learn false positives - which is impressive given the complexity of a false positive in anomaly
detection and the simplicity of the concept behind MIL. Sultani et al. [34] propose this idea by
employing MIL ranking loss to provide training incentive to an ANN which converts a bag of
video segments into a bag of corresponding anomaly scores. Bags are processed in pairs (one
anomalous and one normal) and the maximum score of each bag is used in computing loss. The
loss equation incentivises the maximum distance between scores that are associated with true
positive features and false-positive features.

MIL relaxes the assumption of having accurate temporal annotations of anomalies while
still enabling the precise features of anomalies to be learned. This is vital in anomaly detection,

108



Robust Anomaly Detection in CCTV Surveillance Scholtz and Ngxande

where a fully supervised approach is unrealistic due to the variety of situations to be considered
and the laborious task of obtaining temporal annotations on necessarily large datasets.

2.6 Optical Flow

Optical flow quantifies the relative motion of objects in video by estimating the displacement
of pixels between two consecutive frames. In the case of dense optical flow, estimations are
computed for each pixel in a frame. This differs from sparse optical flow where estimations
are computed for key features in the frames. There have been a significant amount of recent
applications of optical flow to higher-level problems in computer vision i.e., anomaly detection
[23], view synthesis [44] and video prediction [20]. Traditional optical flow estimation systems
formulate hand-crafted optimisation problems over the space of dense displacement fields be-
tween a pair of images [28]. In contrast, modern approaches apply deep learning techniques in
the form of recurrent neural networks to iteratively learn and refine the quality of estimations
[35] [27] [10]. Deep learning approaches are trained once-off to learn to produce estimations
that generalise to unseen footage without the need to train the model for that specific context.

RAFT [35] is a state-of-the-art deep learning architecture for dense optical flow estimation.
RAFT produces optical flow as a result of three phases of computation: feature extraction,
correlation volume construction, and iterative update of predicted flow through correlation
look-up. At the time of publishing, the framework achieved the best results in the field, beat-
ing the previous best by a thirty percent error reduction. RAFT also exhibits considerable
computational efficiency and strong generalisation, which are of high relevance in the anomaly
detection task.

The Lukas Kanade method [4] is a long-standing traditional approach for sparse optical
flow. Under the assumption that optical flow is uniform over a nxn pixel window, optical
flow is computed for that window by constructing a system of linear equations containing n2

rows. Each equation expresses optical flow in terms of the partial derivative of pixel intensity
in both the x direction and y direction, as well as the derivative on the temporal axis. The
system is solved via the least-squares method for the optical flow vector which is subsequently
applied to all pixels in the window. Commonly, these windows are formed around significant
features of a frame (determined by Shi-Tomasi corner detection [30]), rather than the full frame
- that way the Lukas Kanade method is applied to textured regions where spatial gradients
are significant. This results in a large variance of values in the system of equations and linear
independence between equations which ultimately realises well-defined optical flow after least
squares regression.

2.7 K-Means Clustering

K-Means clustering [22] is a method of vector quantisation that aims to partition n observations
into k clusters in which each observation belongs to the cluster with the nearest mean (cluster
centroid), serving as a prototype of the cluster. K-Means finds optimal centroids by alternating
between assigning data points to clusters based on the current centroids and choosing centroids
based on the current assignment of data points to clusters. This process is an iterative min-
imisation of within-cluster variance (measured by Euclidean distance), with respect to centroid
positions.
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3 Implementation

This section details the implementation of the consensus framework’s components, each of
which converts videos into score profiles. The evaluation process of the framework, along with
an explanation of performance metrics, is contained in 4.

3.1 Base Model

The implementation of the base model is divided into two parts: extraction of descriptive
features from videos and training of an ANN to map said features to anomaly scores.

3.1.1 C3D: Feature Extraction

The C3D architecture is used for feature extraction. A version of Du Tran’s [36] architecture
is implemented in Keras & Tensorflow. The architecture is comprised of eight convolution
layers, five pooling layers, two fully connected layers, and a softmax output layer. For the
purpose of this work, only the output of the first fully connected layer, fc6, is relevant - the
final fully connected layer, together with the softmax output, is for classification purposes. l2
normalisation is applied to the output of fc6 to form a final descriptor. Figure 1 contains a
diagram of the implemented C3D architecture.

C3D lends itself well to transfer learning which allows for the use of pre-trained weights
from the Sports-1M dataset [17]. Feature extraction is executed once-off for all videos as the
features yielded are deterministic and the extraction process is computationally expensive and
time-consuming. The result of the feature extraction phase is, for each video in the relevant
dataset, a mapping per 16 frames to a 4096D column vector which can be used as input to the
ANN.

3.1.2 ANN: Mapping Features to Scores

The ANN maps feature vectors to anomaly scores. An anomaly score is a floating-point number
in the range [0, 1], with higher scores correlating to a higher degree of contained anomaly within
features. The ANN architecture is comprised of 3 layers. The input layer has 4096 units followed
by two hidden layers, 512 and 32 units, respectively. The output layer has one unit. ReLU and
Sigmoid activation functions are used for the first and last fully connected layers, respectively.
Dropout regularisation is applied after each hidden layer to prevent overfitting [33].

3.1.3 MIL: Provision of Loss

The loss function dictates that training is conducted according to the following structure: videos
are divided into S segments and all 4096D feature vectors within a segment are averaged to form
a single 4096D feature vector to represent a segment. A video is now described by a S × 4096
array. Videos, represented by respective S feature vectors, feed through the ANN in batches
of 2× B (B normal, B anomalous). Each of the 2× B videos are now represented by S scalars
(anomaly scores) corresponding to S feature vectors, this S-score representation of a video is
referred to as a bag, B. Each of the B normal bags is paired with one of the B anomalous bags.
The maximum score is extracted from the S instances in each bag of the pairing - ideally the
maximum score of the anomalous bag is a true positive and that of the normal bag is a false
positive. To obtain the loss, the maximum scores from each of the B pairings are inputted into
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the following loss function:

l(Ba, Bn) = max(0, 1−max
i∈Ba

f(Si
a) + max

i∈Bn

f(Si
n)) (1)

where:

Ba, Bn are anomalous and normal bags, respectively.

f is the mapping from 4096D feature vector to anomaly score scalar.

Si is the 4096D feature vector representing the ith segment of the relevant video.

Note that loss is only computed as a function of the maximum scores of each bag such that
the difference between true and false positives is maximised. It is expected that the ANN
learns weights such that the network will learn a generalised model to predict high scores for
anomalous segments in positive bags, and low scores for anomalous-seeming scores in negative
bags.

Additional constraints are introduced to the loss function to provide sufficient incentive with
respect to the regularisation of weights and sophistication of score profiles.

A temporal smoothness constraint penalises erratic score profiles, incentivising the minimi-
sation of differences between temporally consecutive scores:

t(Ba) = λ1

m=S−1∑
i

(f(Si
a)− f(Si+1

a ))2 (2)

A sparsity constraint penalises the abundant allocation of high anomaly scores, incentivising
the minimisation of anomaly scores:

s(Ba) = λ2

m=S∑
i

f(Si
a) (3)

The final loss function combines the above components and appends a regularisation term,
extending the regression problem to a ridge regression problem:

L(W) = l(Ba, Bn) + s(Ba) + t(Ba) + ||W|| (4)

W refers to the weights of the network. A shrinkage penalty is applied to the values of the
weights to constrain them towards zero, thus reducing the variance of the model in exchange
for a small amount of bias, ultimately improving generalisation of the model [16]. A third
constraint, which incentivises large differences between minimum and maximum scores in score
profiles of anomalous videos, is introduced for the purpose of experimentation on the base model
in 4. The third constraint is multiplied by coefficient λ3.

The computed loss is back-propagated for the whole batch by way of mini-batch stochastic
gradient descent. The above process describes a single training batch. Training batches are
executed sequentially over the dataset such that all normal and anomalous data is used. The
completion of training on the full dataset, in batches, represents one training epoch. The dataset
is shuffled between batches to obtain different pairings between normal and anomalous videos.

An early-stop callback function is implemented to prevent overfitting of the training in-
stances. This function computes validation loss after a fixed number of epochs and monitors
the validation loss divided by the training loss. If the metric is monotonically increasing for a
certain amount of consecutive epochs, execution is halted as a precaution against overfitting.
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Finally, video-level evaluation (VLE) is conducted at fixed intervals in the training such
that improved feedback on the ability of the model can be obtained throughout training. VLE
involves evaluating the current state of the model by considering a normal video with a full
score profile below a threshold as a true negative instance; and an anomalous video with at least
one score above the same threshold as a true positive. The VLE metric is represented as area
under curve (AUC) [3], thereby conducting this evaluation at multiple thresholds. VLE is a
lenient metric with respect to anomalous instances; however, it provides a good approximation
of the model’s quality as the only aspect it does not account for is the locality of a flagged
anomaly in anomalous video.

Figure 1 displays a diagram that outlines the base model’s training process.

Figure 1: A flow diagram of the base model’s training procedure. The pair of anomalous and
normal videos represent a single training instance in a batch of B pairs. Note that the L(W)
refers to equation 4.

3.2 CRAFT

The CRAFT anomaly detection heuristic is developed to reflect low-level abnormalities in ac-
tivity in the consensus score, where the approach of the base model is too high-level to detect
such a low-level anomaly. Du Tran states that C3D is not a good descriptor for low-level vi-
sion tasks; and that C3D is designed to complete a high-level vision task [37], therefore the
heuristic is based around RAFT’s optical flow estimations instead of the already computed
C3D features. CRAFT uses RAFT [35] to construct future frames by applying optical flow
to current frames i.e., realising predictions of motion by literally displacing pixels according to
their predicted displacement. RAFT is trained on normal data with the expectation that it will
output sub-standard optical flow estimations when presented with anomalous data. CRAFT
is designed to exploit RAFT’s poor performance on precarious sections of video such that a
significant reconstruction error can be obtained, thereby quantifying the degree of anomaly
within a video.

One problem with CRAFT’s initial approach was that it depended on ground truth optical
flow between frames such that optical flow predictions could be evaluated. The solution to this
problem draws inspiration from the prevalent reconstruction error approach appearing in pre-
vious anomaly detection frameworks [25] [26]. CRAFT’s implementation is adapted such that
ground truth can be obtained as the consecutive frame, the frame which is to be reconstructed.
In the case that perfect optical flow is computed, an application of the optical flow to the
current frame results in the consecutive frame. Therefore, the quality of prediction of optical
flow can be judged as proportional to the Euclidean distance between the predicted consecutive
frame and the true consecutive frame. Pseudo-code for CRAFT is displayed in Algorithm 1.
Furthermore, due to the absence of ground truth optical flow for common datasets and the
challenging problem that optical flow evaluation presents [2], RAFT is trained on datasets that
have ground truth optical flow available, namely, KITTI [13] and MPI-Sintel [5]. The quality
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of each dataset is judged qualitatively by plotting the profile of reconstruction errors produced
by CRAFT when applied to normal and anomalous videos. By inspection, MPI-Sintel pro-
duces better score profiles (for a subset of UCF Crime) as RAFT outputs flow estimations of
higher quality, therefore resulting in less frequent peaks in CRAFT scores. RAFT trained on
MPI-Sintel is used in the application of CRAFT to the test set.

3.3 LKKM

LKKM is a second novel anomaly detection approach that shares a similar purpose to CRAFT
in terms of its relevance to the consensus score. However, LKKM specialises in the deviation
of the trajectory of objects’ paths from typical paths learned throughout the processing of the
video.

Given two consecutive frames in a video and a vector of 2D significant points for which flow
estimation is required, a vector of 2D points containing the calculated new positions of input
features in the second frame is obtained via the Lukas-Kanade method. A data vector is formed
with the initial points being the initial coordinates and the returned points being the terminal
coordinates. These coordinates are normalised by dividing them by the applicable dimension
of the frame (width or height).

To initialise LKKM, the data vectors of the first ten frames contribute to a partial fit of a
K-Means model operating in 4D feature space. For each additional frame after initialisation
is complete, the K-Means clustering of previous data vectors is queried to obtain the nearest
centroid distance for each data vector extracted from the frame. A frame’s score is computed
as an average of the largest distances of data vectors to nearest cluster. Thereafter, the data
vectors are accumulated into the training set for the K-Means instance and new centroids are
computed. The optimal number of centroids to be used is updated throughout execution via
the elbow method [18].

As a video progresses, typical trajectories of paths are repeated and stronger clusters are
formed, therefore the quality of anomaly scores improves (consider the scene of a highway or
walkway). The incremental improvement of the model was verified by applying LKKM to a
video that repeats the same clip multiple times - the results show that the same score profile is
repeated except with a significant drop in the average level of scores for each repetition.

This issue is addressed by applying a time series decomposition of the score profile of a
video to separate any cyclical/seasonal trend which occurs as the quality of the model improves.
The score profile is selected as the residual component of the time series decomposition i.e.,
changes that are not cyclical/seasonal but originate as a result of inherent noise (anomaly) in
a time series. A concise description of the LKKM algorithm is provided in the pseudo-code of
Algorithm 2.

4 Experiments

This section provides a detailed description of the experiments conducted to apply the proposed
methodology (3) to the UCF Crime dataset.

4.1 UCF Crime Dataset

Recall that this work focuses on anomaly detection in its most useful application to society
i.e. as an alerting system to unwanted activity. The UCF Crime dataset [6] is of significant
relevance to public safety. The dataset contains 950 anomalous videos and 950 normal videos.
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The cumulative length of footage is 128 hours, with the average number of frames per video equal
to 7247 (approximately 4 minutes at 30 fps). Only footage sourced from CCTV surveillance
cameras is included - edited video or staged anomaly is excluded. The anomalous videos
contain anomalies classified into 13 classes of dangerous/malicious/alarming activity: Abuse,
Arrest, Arson, Assault, Accident, Burglary, Explosion, Fighting, Robbery, Shooting, Stealing,
Shoplifting, and Vandalism. UCF Crime provides a worthy challenge to the anomaly detection
problem for the following reasons:

• The dataset contains long, untrimmed surveillance videos which truly replicate the sce-
nario of real-world anomaly detection.

• The problem-domain of unwanted activity still leaves the anomaly detection problem
under-specified, differentiating anomaly detection (regression) from activity recognition
(classification), and implying that the solution should be highly generalisable.

• State-of-the-art anomaly detection frameworks, many of which are subjected to unrealistic
or artificial datasets, achieve poor results on UCF Crime [21] [14].

For both anomalous and normal videos, 850 instances form the training set and 140 instances
are reserved for the independent test set. Videos within the dataset are vastly different from
one another and, for this reason, an evaluation on the test set is a good approximation of a
test of the mapping learned on the full problem domain even though the test set is only a finite
sample of the problem domain. That is, the evaluation is better described as an evaluation
of the ability for the framework to perform transfer learning as unseen footage is likely to be
dissimilar to the training set and overfitting on the training set will result in a severe penalty
to performance.

4.2 Base Model Experiments

The first phase of experimentation is concerned with training an optimal base model. Five
versions of the base model are trained. The standard base model, discussed in previous sec-
tions, is the first version and represents a base case. Additional versions are characterised by:
modification to ANN architecture, the introduction of an additional constraint in the objective
function, a combination of the previous two modifications, and transfer learning with weights
provided by Sultani et al. (followed by a short fine-tuning stage). Each version is trained for
a number of epochs determined by the patience threshold. That is, the number of consecutive
epochs for which ρ = LV

LT
is monotonically increasing before training is terminated (where LV

and LT are VLE validation loss and VLE training loss, respectively). Three patience thresholds
are tested such that performance of the model can be measured at multiple balances of bias and
variance - training schedules are dictated by patience rather than epochs as it provides a better
indication of the model’s expected ability to generalise to unseen data. For comparison, an ad-
ditional experiment is run at an over-estimated fixed number of epochs. A version is therefore
represented by four experiments, each of which reports VLE-AUC that is cross-validated over
ten folds for a certain patience threshold.

The best version, with the optimal training schedule, is identified from a table of VLE-
AUC and a final experiment is run with identical settings, except that no cross-validation
is performed, therefore allowing training to execute on the totality of the training set. The
resulting weights represent the base model in 4.3.
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4.3 Inference & Score Combination

The consensus framework is introduced during the evaluation of the three models/heuristics
(base model, CRAFT, LKKM). Each approach is applied to the independent test set to yield
respective score profiles. The CRAFT and LKKM heuristics are applied, as explained, to each
frame in a test instance, whereas the base model obtains scores by performing inference on each
video, represented by S × 4096D vectors, and subsequently obtaining a score profile consisting
of S temporal scalars.

During score combination, just as the base model scores are divided into S segments and
averaged within segments, so too are the CRAFT and LKKM score profiles. CRAFT and
LKKM scores are then standardised and filtered such that all scores below two standard de-
viations from the mean are set to 0. This is necessary as CRAFT and LKKM are sensitive
heuristics that produce erratic score profiles. Thereafter, three score profiles, each of length S,
are combined according to the pseudo-code in Algorithm 3. Note the intention to leverage the
higher-level context contained in the scores of the base model with the expectation that false
positives are deterred.

4.4 Implementation details

4.4.1 Feature Extraction

Videos contain 8-bit unsigned integer pixel values in range [0, 255]. In line with C3D’s training
procedure, frames are not normalised/standardised/centered in any way. The UCF Crime
dataset does not lend well to standard image/video preprocessing techniques as videos originate
from vastly different settings and computing the mean frame of the dataset for standardisation
does not seem to be a sensible approach. Standardising per frame or per video was considered
but decided against so as to preserve temporal continuity in 16-frame video sequences which
otherwise may have been disrupted by sudden shifts in means. Before feature extraction, videos
are converted to RGB in three channels and resized to 112×112×3 (by intercubic interpolation).
Features resulting from normalised C3D are stored in 32-bit floating-point representation with
scale of 4 decimals. A video’s features are averaged within S = 32 segments. Feature extraction
is performed on a Tesla V100-PCIE-32GB GPU with 80 cores and 1.38GHz core clock. The
total elapsed time for feature extraction on this architecture is 25 hours 41 minutes.

4.4.2 Base Model

Version Key ANN Architecture Weight Initialisation Loss Constraints
base 4096-512-32-1 glorot-uniform λ1 = 8× 10−5, λ2 = 8× 10−5, λ3 = 0

base-arch 4096-512-32-8-1 glorot-uniform λ1 = 8× 10−5, λ2 = 8× 10−5, λ3 = 0
base-constrain 4096-512-32-1 glorot-uniform λ1 = 8× 10−5, λ2 = 8× 10−5, λ3 = 8× 10−4

base-arch-cons 4096-512-32-8-1 glorot-uniform λ1 = 8× 10−5, λ2 = 8× 10−5, λ3 = 8× 10−4

base-transfer 4096-512-32-8-1 Sultani et al. [34] λ1 = 8× 10−5, λ2 = 8× 10−5, λ3 = 8× 10−4

Table 1: Base Model: Experiment design.

The experimental design for obtaining an optimal base model is detailed in Table 1. Each
version is run at patience thresholds of 25, 50 and 100 training epochs and the additional
fixed-epoch experiment is run for 8000 training epochs.
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The batch size is held constant at B = 30 i.e., 60 videos forming 30 anomalous-normal
pairs. l2 regularisation is applied to the ANN weights at penalty coefficient of (l2 = 0.001).
Adagrad optimiser [9] is employed with an initial learning rate of 1× 10−3. The dropout rate
is set to 0.6 - note that this is the probability of retaining a unit p within a hidden layer on
a given training pass i.e., units are randomly deactivated with a probability of 1 − 0.6 = 0.4.
Temporal and sparsity constraints are set to λ1 = 8×10−5 and λ2 = 8×10−5, respectively. On
the same hardware used for feature extraction, it takes 14 hours and 43 minutes to execute the
maximum length training simulation (8000 epochs). For clarity, base-transfer, listed in Table
1, describes a version of the base model where weights resulting from the training of Sultani
et al. [34] are loaded into the standard base model. Thereafter the top layer is removed and
replaced by an 8-unit fully connected layer, fc-8, which is followed by a single unit output,
fc-1. During training, all layers’ weights except for fc-8 and fc-1 are frozen i.e., not trainable.
After the frozen model has been trained to exceed the patience threshold, all weights are set to
trainable and 100 epochs of fine-tune training is conducted with Adadelta optimiser [42] at a
learning rate of 1× 10−5.

4.4.3 CRAFT and LKKM

Videos are converted to the format detailed in 4.4.1, except for the case of LKKM where videos
are represented in single-channel format i.e., 112× 112× 1. Before computation of optical flow
via RAFT, Gaussian blur with a kernel size of 5×5 is applied to each frame to remove excessive
detail, thereby reducing the general difficulty of the optical flow problem. In line with original
RAFT settings [35], CRAFT produces optical flow estimations after 24 prediction iterations.
For LKKM, K-Means is initialised with 5 centroids and k-means++ centroid initialisation. The
optimal number of centroids is computed every 5 iterations. A maximum of 300 significant
features is extracted per frame by Shi-Tomasi corner detection [30]. The window size set for
the Lukas-Kanade flow is 15× 15 pixels in dimension. The number of centroids is recomputed
with the elbow method every 5 frames. The maximum distance of data vector to cluster center
is computed as an average over that of the largest 50 distances yielded by LKKM. Time series
decomposition is performed with a period equal to 10.

4.5 Performance Metrics

The consensus score profiles of videos in the independent test set are evaluated according to
the following criteria: the test set contains annotations correlating to the anomalous frames
of anomalous videos. A true positive (TP) occurs in the case that at least one score within
the annotated window exceeds the threshold. A false negative (FN) occurs if no score in the
annotated window exceeds the threshold. In the case that there are two anomalies in one video,
each is treated as an individual instance according to the same criteria. In the case that a score
outside of the annotated window exceeds the threshold, provided it is an anomalous video,
the score is not penalised. This is because anomalies tend to disrupt the environment, often
eliciting further anomalous activity which can not be objectively defined as anomalous or not.
Instead, the deterrence of false positives is tested on the normal videos of the test set.

For normal videos, the requirement for a true negative (TN) is that not one score exceeds
the threshold. For a false positive (FP) to occur, at least one score must exceed the threshold.
A full normal video is considered to be one normal instance.

The decision boundary of the mapping between features and scores is an arbitrary constant
in the range [0, 1] and, provided a discriminative threshold is fixed for a complete evaluation
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process, a specific discriminative threshold (such as 0.5) does not need to be manually chosen.
The threshold referred to in the criteria above is a variable in the range [0.1, 0.9].

At each threshold, the confusion matrix is computed and the true positive rate (TPR) and
false-positive rate (FPR) are subsequently computed as:

TPR =
TP

TP + FN
=

#true-positive instances

#anomalous instances
(5)

FPR =
FP

FP + TN
=

#false-positive instances

#normal instances
(6)

Thereafter, a frame-based receiver operating characteristic (ROC) curve is employed. Area
under curve (AUC) [3] is used to evaluate the performance of the framework, as in earlier
research in anomaly detection [19]. Equal error rate (EER) [19] is disregarded because it does
not accurately measure anomaly, especially if only a small fraction of a long video contains
anomalous behavior.

5 Results

AUC
Version Key P = 25 P = 50 P = 100 E = 8000
base 0.7251 0.7235 0.7356 0.7808
base-arch 0.7825 0.8233 0.8154 0.7176
base-constrain 0.7525 0.8012 0.8242 0.7793
base-arch-cons 0.8031 0.8267 0.8148 0.7413
base-transfer 0.7535 0.7756 0.7693 0.6982
with fine-tuning 0.7767 0.7945 0.8015 0.7424

Table 2: Base Model: Cross-validated AUC at patience threshold P and number of training
epochs E.

Table 2 reports VLE-AUC for each version of the base model, trained at the specified
patience threshold (or number of epochs in case of the last column). The general quality of the
base model’s predictions, irrespective of version, is relatively high in comparison to AUC quoted
in previous works 1. This is largely owing to the fact that VLE ignores precise locality of an
anomaly; however, that is the only factor that VLE does not take into account and any penalty
that the base model incurred during strict evaluation is as a direct result of inability to perform
accurate locality of anomaly. The highest VLE-AUC is achieved by base-arch-cons at P = 50,
suggesting that the base model benefits from a deeper architecture and/or further specification
of training incentive. However, note that there is a clear tendency for deeper architectures
to overfit given an extended number of training epochs (base-arch and base-arch-cons at
E = 8000). Interestingly, the standard base version reports better AUC for E = 8000 than
for training simulations conducted with patience thresholds. It is plausible that the significant
levels of dropout result in a convoluted profile of ρ ratios, causing training to converge to local
minimas which require an extended amount of training epochs to escape.

Strict evaluation of the base model with respect to annotations yields the blue ROC curve
depicted in Figure 2, corresponding to AUC of 0.7156. This is a quality result from the base

10.5060 [14], 0.6551 [21]
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model considering the complexity of the problem, which is highlighted by the AUC of 0.5 that
results from application of a binary SVM classifier to the anomaly detection problem. Sultani
et al. [34] suggests the use of the binary SVM classifier as a generic representative of traditional
classification methods 2.

With that being said, the decline from VLE-AUC to strict evaluation AUC is approxi-
mately 10%. This result confirms the expectation that the base model may struggle to provide
fine-grained anomaly detection over a large problem domain, thereby reinforcing the case for
combining the base model with additional CRAFT and LKKM heuristics. The CRAFT and

Figure 2: Receiver operating characteristic (ROC) comparison of binary SVM classifier, base
model, CRAFT, LKKM, and consensus framework.

LKKM heuristics perform as intended i.e., with an excessive amount of flaggings, although often
including true anomalous flags. The purple and orange curves in Figure 2 correspond to ROC
for CRAFT and LKKM, respectively. These curves represent CRAFT and LKKM as stand-
alone anomaly detection solutions. Both CRAFT (AUC=0.5951) and LKKM (AUC=0.5403)
out-perform the binary SVM classifier, thereby indicating that there is merit to the methods.
Figure 3 depicts an analysis of score profiles provided by CRAFT and LKKM on anomalous
video Explosion011. Notice how CRAFT, denoted by yellow scores, yields a peak in recon-
struction error by exploiting poor optical flow prediction from RAFT in the case that a white
cloud of smoke suddenly appears against a bus in the frame. Thereafter, a tuk-tuk swerves
left to avoid the commotion and LKKM, denoted by red scores, yields a peak in its scores
due to a significant deviation from relatively repetitive patterns of motion (road traffic). Both
CRAFT and LKKM provide monitoring of frames at a level of detail that can not be expected
from the base model; however, the heuristics suffer from the type of scores seen earlier on the
temporal axis of Figure 3 where, in this case, CRAFT produced a peak in scores due to a
vehicle suddenly coming into view at the bottom of the frame. Given the high FPR and high
TPR which characterise the CRAFT and LKKM curves, it is evident that the competency of
the heuristics is attributable to their anomaly detection ability and not at all to their ability
to deter false positives. This behavior prevents the use of CRAFT or LKKM as a stand-alone
anomaly detection solution as an excessive amount of false positives is guaranteed.

Finally, the base model is combined with the CRAFT and LKKM heuristics to form the

2AUC of 0.5 in binary classification implies a model which is equivalent to random class selection at
P (ANOMALOUS) = 0.5 and P (NORMAL) = 0.5
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consensus framework. Ideally, the consensus framework is able to combine the scores in such
a way that the merit of all three approaches is reflected in the score profile. The red curve in
Figure 2 depicts the performance of the consensus framework. By inspection, the consensus
framework does not provide a clear improvement in anomaly detection in comparison to the
original base model. A comparison of AUC (consensus: 0.7041, base: 0.7156) indicates that
the combination of approaches results in an adverse effect on overall anomaly detection ability.
The combination of the three score profiles is the point of failure in the consensus framework.
Without prior information on whether a particular video may contain anomaly or not, the
task of optimal combination of score profiles is surprisingly non-trivial. The score combination
technique applied in this case (detailed in Algorithm 3) was chosen via an empirical comparison
between various alternatives. The selected technique prioritises low scores provided by the base
model for normal videos as this feature of the base model is paramount to robust anomaly
detection. Under this score combination technique, the CRAFT and LKKM heuristics play a
supporting role where the base model’s scores are only amplified by the heuristics’; however, in
the case that the base model produces scores below a minimum threshold, successful anomaly
detection from CRAFT and LKKM is discarded (refer to Shooting022 in Figure 13). With
a more elaborate score combination process, the consensus framework may be able to better
utilise the heuristics for an improvement in overall anomaly detection ability.

The optimal anomaly detection performance amongst all experiments is displayed in the
confusion matrix of Figure 4 - this evaluation is performed at a discriminative threshold of 0.4.
The source of the result, base-arch-cons, confirms that there is in fact utility to be gained from
an additional layer of abstraction and the addition of a constraint to loss specification such that
increased ’peakedness’ is incentivised by the training process of the base model. Furthermore,
the number of true positive and true negative cases is well balanced, indicating a certain level
of sophistication to the base model’s approach in that sufficient context is learned to deter false
positives.

Figures 5 to 14 present a selection of qualitative results from the consensus framework. The
score profiles (base model, CRAFT & LKKM, consensus framework) depicted for each instance
are those used in evaluation of the particular instance to arrive at the ROC curves and confusion
matrix. In particular, note in Figure 5 how base model scores are amplified by CRAFT scores
such that a clear indication of anomaly is provided by the consensus framework. Also, note in
5 and 6 that base model scores which are below a threshold are mapped to zero scores in the
consensus score profile.

Figures 5, 6, 7, 8, 9 provide a demonstration of CRAFT and LKKM’s tendency to pro-
duce an excessive amount of false positives, although the frequency of true positives should
also be noted. Referring back to frequent shortfalls of anomaly detection frameworks, dis-
cussed in 2.3, recall that a prevalent problem of anomaly detection is that frameworks cannot
generalise across polar examples of anomaly. The consensus scores in Figure 6 and Figure 9
demonstrate instances where the consensus framework successfully detects anomaly in opposing
classes, namely explosion and fighting. Additionally, in the fighting instance, notice that the
contribution by CRAFT and LKKM reinforce the detection of the specific anomaly. Figures
10, 11, 12 demonstrate the value of the base model in deterring false positives which may arise
in normal instances. In particular, the base model is able to produce a score profile of zeros in
Figure 10 which corresponds to a score profile for nighttime CCTV surveillance. The fact that
the base model has not associated anomalous activity with nighttime activities is a positive
reflection on the depth of context learned by the base model.

Figures 13 and 14 show failure cases of the consensus framework. In particular, Figure 13
shows a case where CRAFT and LKKM accurately detect anomaly however, the base model
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Figure 3: Optimal confusion matrix produced by anomaly detection framework at the discrim-
inative threshold of 0.4. ’A’ corresponds to anomalous instances and ’N’ to normal.

produces an inaccurate score profile. The score combination process discards the scores from
CRAFT and LKKM to prioritise the zero-scores from the base model and the heuristics are
unable to contribute to successful anomaly detection. This demonstrates the heavy depen-
dency placed on the base model by a score combination process which may seem somewhat
rudimentary in some instances. Figure 14 demonstrates a false positive produced by the base
model which may be attributable to the unusual camera angle (birds-eye) of Normal041. The
base model would not have been trained on footage from this perspective and therefore it may
misinterpret appearance and motion to be similar to that of anomalous activity.

The respective score profiles for videos in the test set are available at: https://share.

streamlit.io/tomschdev/cctvanomalydetection/demo/src/pred_evaluation.py

6 Conclusion

This paper investigates automated anomaly detection from three perspectives. First, a modified
version of a prevalent deep learning approach, devised by Sultani et al. [34], is implemented
and evaluated with thorough experimentation on a challenging dataset. The results indicate
that this approach presents a realistic solution to anomaly detection, confirming that deep
learning approaches are indispensable to the development of state-of-the-art anomaly detection
frameworks.

Second, the usefulness of low-level anomaly detection heuristics, CRAFT and LKKM, is
investigated. Through qualitative analysis of a selection of score profiles and quantitative
analysis by AUC of respective ROC curves, CRAFT and LKKM are proven to be of use in an
anomaly detection setting; however, the heuristics are sensitive and erratic which implies that
the underlying concepts are not necessarily useful in isolation but need to be combined with a
more sophisticated solution.

Finally, the consensus framework attempts to combine the base model, CRAFT, and LKKM
into a single, robust solution. Qualitative analysis of score profiles demonstrates instances
where this concept is useful however, the decline in AUC from the base model to the consensus
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framework shows that the consensus framework ultimately fails to add value to the overall
anomaly detection ability of the base model.

7 Future Work

The UCF Crime dataset contains videos that include impurities such as cut-scenes, branding,
and black-screen introductions that contain text. Technically, the base model is equipped to deal
with these impurities by recognising such frames as false positive instances that are naturally
assigned lower scores by the loss equation. However, this only holds under the assumption
that the impurities are well represented in the set of normal videos. Nonetheless, it would
undoubtedly benefit the base model if such impurities were removed so that the learned idea
of anomalous activity is more accurate.

The performance of the consensus framework suggests that a single source of anomaly scores
is preferred over a combination of scores. Additionally, CRAFT and LKKM do not receive
enough incentive to correspond peaks in scores with true anomalies. These two observations
suggest that the utility provided by CRAFT and LKKM can only be accessed if their method-
ologies can be integrated with the base model such that heuristics can be refined/trained based
on the quality of scores produced, and the score combination problem can be avoided. Fur-
thermore, the base model is not trained end-to-end as pre-trained weights are substituted into
the C3D implementation. An end-to-end version of the anomaly detection framework should
be a priority in future work as it would enable the learning of specific low-level features which
correspond to anomaly. By improving the low-level monitoring abilities of the base model, the
need for low-level heuristics such as CRAFT and LKKM may be invalidated altogether, there-
fore end-to-end training of the base model should be investigated before considering integration
between CRAFT/LKKM and the base model.

The base model can be extended to perform activity classification, rather than just event
detection, by removing the single-unit top layer of the ANN and attaching a 13-unit output
layer. Each of the 13 units will correspond to one of the 13 anomaly classes of UCF Crime and,
by employing a softmax activation function, the output activations can be interpreted as the
probability of activity belonging to the corresponding class. Perhaps the output layer includes
14 units, with the extra unit corresponding to normal activity.

Finally, a lower priority enhancement is the implementation of active learning i.e., uncer-
tainty sampling [29] or sensitivity analysis for selective learning [11], for the ANN of the base
model. This enhancement allows for more informative patterns, which lie closer to decision
boundaries, to be prioritised in training - a useful function given a large, dissimilar dataset.
Note that the implementation would require predictions of the base model to be strictly eval-
uated at a discriminative threshold during training as active learning applies to classification
problems only.
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Figure 4: Arson009: Left: video instance. Second from left: base model score profile (orange)
with annotation (blue). Second from right: CRAFT (orange) and LKKM (red) score profiles
with annotation (blue). Right: consensus framework score profile (orange) with annotation
(blue). The score profiles of instances displayed in Figures 6 to 14 follow identical order.

Figure 5: Explosion008

Figure 6: RoadAccidents010
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Figure 7: Vandalism007

Figure 8: Fighting033

Algorithm 1 Frame Construction with RAFT (CRAFT)

1: Require: V, video instance
2: Require: R, RAFT instance
3: E ← []
4: D ← []
5: fi ← read(V)
6: f ′

i ← gaussianBlur(fi)
7: while hasNext(V) do
8: fi+1 ← read(V)
9: f ′

i+1 ← gaussianBlur(fi)
10: h← height(f ′

i+1)
11: w ← width(f ′

i+1)
12: pi+1 ← [0]h×w

13: oi ← estimateOpticalFlow(R, f ′
i , f

′
i+1)

14: ˆfi+1 ← applyFlowMap(f ′
i , oi, pi+1)

15: ei = ||( ˆfi+1 − f ′
i+1)||

16: di = ||(f ′
i − f ′

i+1)||
17: E appends ei
18: D appends di
19: f ′

i ← f ′
i+1

20: end while
21: return E , D ▷ E and D contain reconstruction error and similarity between consecutive

frames, respectively, for all frames in a video.
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Figure 9: Normal010

Figure 10: Normal019

Figure 11: Normal006

Figure 12: Failure Case: Shooting022

Figure 13: Failure Case: Normal041
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Figure 14: Analysis of CRAFT and LKKM score profiles to demonstrate CRAFT’s ability
to detect anomaly characterised by unexpected change in appearance (sudden appearance of
smoke cloud against bus), and LKKM’s ability to detect deviation from repetitive patterns of
motion (tuk-tuk swerves to avoid commotion).
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Algorithm 2 Lukas-Kanade K-Means (LKKM) Algorithm

1: Require: V, video instance.
2: Require: K, initialised K-Means model.
3: Require: L, frequency of update of optimal number of centroids.
4: Require: c, initial number of centroids.
5: S ← []
6: D ← []
7: fi ← read(V)
8: g⃗i ← extractFeatures(fi)
9: iter ← 0

10: while hasNext(V) do
11: increment iter
12: fi+1 ← read(V)
13: g⃗i+1 ← LukasKanade(fi, fi+1, g⃗i)
14: dfi ← computeDataVectors(g⃗i, g⃗i+1)
15: if iter > 10 then
16: p⃗i ← assignDataVectorsToCentroids(K, dfi)
17: q⃗i ← computeDistToCentroids(K, p⃗i)
18: s← 1

m

∑m
maxm(q⃗i)

19: S append s
20: D append dfi
21: if iter mod L == 0 then
22: c = computeOptimalCentroids(K,D)
23: end if
24: partialFit(K,D, c)
25: else
26: D append dfi
27: partialFit(K,D, c)
28: end if
29: fi ← fi+1

30: gi ← gi+1

31: end while
32: return S ▷ S is a collection of anomaly scores per frame, each score quantifies the

similarity of a frames’ optical flow to that of previous frames.

Algorithm 3 Consensus Score Combination

1: Require: Bp, base model score profile for video p.
2: Require: Rp, CRAFT heuristic score profile for video p.
3: Require: Lp, LKKM heuristic score profile for video p.
4: Cp ← []
5: for i← S do
6: if Bpi < 0.1 then
7: Cpi ← 0
8: else
9: Cpi ← max(Bpi ,R

p
i ,L

p
i )

10: end if
11: end for
12: return Cp
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