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Abstract

Turing’s involvement with computer building was popularized in the 1970s and later.
Most notable are the books by Brian Randell (1973), Andrew Hodges (1983), and Martin
Davis (2000). A central question is whether John von Neumann was influenced by Turing’s
1936 paper when he helped build the EDVAC machine, even though he never cited Turing’s
work. This question remains unsettled up till this day. As remarked by Charles Petzold,
one standard history barely mentions Turing, while the other, written by a logician, makes
Turing a key player.

Contrast these observations then with the fact that Turing’s 1936 paper was cited
and heavily discussed in 1959 among computer programmers. In 1966, the first Turing
award was given to a programmer, not a computer builder, as were several subsequent
Turing awards. An historical investigation of Turing’s influence on computing, presented
here, shows that Turing’s 1936 notion of universality became increasingly relevant among
programmers during the 1950s. The central thesis of this paper states that Turing’s in-
fluence was felt more in programming after his death than in computer building
during the 1940s.

1 Introduction

Many people today are led to believe that Turing is the father of the computer, the father
of our digital society, as also the following praise for Martin Davis’s bestseller The Universal
Computer: The Road from Leibniz to Turing1 suggests:

At last, a book about the origin of the computer that goes to the heart of the story: the
human struggle for logic and truth. Erudite, gripping, and humane, Martin Davis shows
the extraordinary individuals through whom the groundwork of the computer came into
being , and the culmination in Alan Turing, whose universal machine now dominates the
world economy . [14, first page, my italics] [16, back cover, my italics]

∗This paper is an extract from the book The Dawn of Software Engineering: from Turing to Dijkstra [18].
1See [15]. The paperback version of the book is entitled Engines of Logic: Mathematicians and the origins of

the Computer [14]. The second edition of the book [16] was published in 2012. There is essentially no difference
between the first and the second edition except for some technical editing.

42 A. Voronkov (ed.), Turing-100 (EPiC Series, vol. 10), pp. 42–52
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These words are from no one less than Andrew Hodges, the biographer of Turing.
The central thesis in Davis’s book is that logic and especially Turing’s work have played a

central role in the advent of the first universal computers2. He tries to defend this claim by
writing mostly about logicians and mathematicians — including Frege, Cantor, Hilbert, Gödel,
Turing, and Von Neumann — and intentionally leaving the work of the many engineers out of
the picture3.

Davis does not elaborate on the early work of the many engineers and numerical analysts
like Konrad Zuse and Howard Aiken. As a result, his claim about Turing’s priority with
regard to the first universal computers is unwarranted. Both Zuse and Aiken had already
built “universal” computers by 1941 and 1944, respectively. They did not use the adjective
“universal” to describe their machines because they did not depend on developments in logic,
nor on Turing’s 1936 notion of universal machine in particular, to further their early research4.

To put it gently, Davis overstates Turing’s role in the history of the computer5.
Turing’s involvement with computer building was popularized in the 1970s and later. Most

notable are the accounts by Brian Randell [43], Andrew Hodges [27], and, as mentioned previ-
ously, Martin Davis [13][14][15]. A central question is whether John von Neumann was influ-
enced by Turing’s 1936 paper when he helped build the EDVAC machine, even though he never
cited Turing’s work. This question remains unsettled up till this day. As remarked by Charles
Petzold [39, p.164], one standard history [8] barely mentions Turing, while the other, written
by a logician [15], makes Turing a key player6.

The influence of Turing’s 1936 paper on computer programming, on the other
hand, has barely been documented. This is a rather peculiar observation when one notes
that the first Turing Award was given in 1966 to a computer programmer (Alan J. Perlis), as
were several subsequent Turing Awards. In 1966, the potentially significant connection between
Turing and Von Neumann concerning the EDVAC was not public knowledge: the popular accounts
of Randell (1973), Hodges (1983), Davis (1988, 2000), and others had yet to be published!

Therefore, instead of only documenting Turing’s alleged role in the advent of the first uni-
versal computers, it is no less fundamental to examine why Turing’s 1936 paper was, and is, of
great importance for the field of computer programming. Doing so leads to the conclusion that
(i) many first-generation programmers did not read Turing’s 1936 paper, let alone understand
it, and (ii) those computer practitioners who did become acquainted with Turing’s 1936 work
during the 1950s–1960s received it in at least one of the following three ways:

1. The (universal) Turing machine was viewed as a model for a digital (all-purpose) stored-
program computer. Furthermore, some researchers tried to actually build Turing machines
during the 1950s, i.e. after the first all-purpose computers were already available.

2Davis claims that Turing played a central role in the advent of the “first universal computers” and, in
particular, in influencing Von Neumann’s work with the EDVAC [14, p.186–187][16, p.166].

3As Davis states himself in [14, p.xii][16, p.xiv]. Some engineers are treated toward the end of the book.
4See Chapters 5 and 6 in Mark Priestley’s book A Science of Operations [41]. Zuse’s 1941 machine was called

the Z3 and Aiken’s 1944 machine was called the Mark I. See page 46 in Zuse’s biography for his later reception
of the propositional calculus [52].

In the first edition of his book, Davis does not mention Zuse who started building computing machines even
before Turing began writing his 1936 paper [43, p.155]. A similar concern has also been raised by Blanke in his
book review of Davis’s bestseller [4]. In the second edition of his book, Davis has only added two stand-alone
sentences about Zuse. See [16, p.158].

According to Zuse’s biography [52, p.34,53,135], he was initially not aware of Babbage nor of Turing. Other
sources that back up this claim are presented in the sequel.

5Extensive support for this conclusion can be found in Priestley [42, p.89][41, p.125].
6See also Priestley [41, p.136–137, 139] for scrutiny of Davis’s account of Turing’s role in influencing Von

Neumann’s work with the EDVAC.
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2. Turing’s universal machine helped lay the foundations of automatic programming, i.e.
the activity of seeking automatic techniques and programming styles to overcome the
tediousness of instructing computers.

3. The unsolvability of the Halting Problem helped some researchers lay bare certain limi-
tations in automatic programming. The 1972 Turing award winner, Edsger W. Dijkstra,
was definitely one of the first to do so.

The first and second item are discussed in the sequel. For the third item, I refer to Chapter 2
in my book The Dawn of Software Engineering: from Turing to Dijkstra [18]. All three items,
together, lead to my central thesis: Turing’s influence was felt more in programming
after his death than in computer building during the 1940s.

The first item alludes to the 1950s when switching theorists, hardware engineers, and some
mathematical logicians tried to close the gap between Turing’s theoretical 1936 paper and
already existing stored-program computing machines. Notable actors are the switching theorist
Edward F. Moore and the logician Hao Wang. The second item will mainly be illustrated by
discussing the work of two strong and early proponents of machine-independent programming
languages: Saul Gorn and John W. Carr, III. These men grasped Turing’s 1936 notion of
universal machine in the context of programming languages and also explicitly referred to the
work of the logicians Gödel and Kleene. Concerning the third item, Dijkstra was one of the first
programmers to apply the unsolvability of the Halting Problem in the context of programming.
He used it as preparatory work for his now-famous 1968 letter ‘Go To Statement Considered
Harmful’ [19]. Likewise, he applied it in his 1978 correspondence with the American Department
of Defence (DoD) on a technical programming example in order to convey the need to separate
language design from language implementation [20]. Dijkstra’s work, in short, shows that
undecidability has practical implications in software engineering today.

2 Contextualizing Turing’s 1936 Paper

Grasping Turing’s now-famous 1936 paper ‘On Computable Numbers, with an Application to
the Entscheidungsproblem’ [47] requires appreciation for the work of mathematical logicians,
including Hilbert, Gödel, Church, and Kleene. Unsurprisingly, then, Turing’s paper is rather
difficult to understand for the modern-day computer professional (cf. [39]). A similar remark
held for first-generation programmers in the 1950s, as the following words from 1953 illustrate:

Türing Machine: In 1936 Dr. Turing wrote a paper on the design and the limitations of
computing machines. For this reason they are sometimes known by his name. The umlaut
is an unearned and undesirable addition, due, presumably, to an impression that anything
so incomprehensible must be Teutonic. [1]

According to Dijkstra, Turing’s seminal 1936 paper had, at least until 1950, not attracted
much attention in the mathematical world at large [21]. Moreover, Hoare tried to comprehend
Turing’s paper during the early 1950s but with difficulty. To understand Turing’s work better,
he later read Davis’s 1958 book Computability and Unsolvability [12], but also without full
comprehension [18, Chapter 4]. Likewise, Naur tells me in an interview [17] that he became
acquainted with Turing’s work early on, but only started studying it in detail during the early
1990s (cf. [34, 35]). Toward the end of his professorship, Naur asked several computer profes-
sionals in conferences whether they had ever heard of Turing’s 1936 paper. The vast majority
of answers were negative.
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Many other computer practitioners of the 1950s were either not aware of Turing’s 1936
paper, or did not clearly see the connection between it and computing. The 1973 Turing Award
recipient Charles W. Bachman, for instance, “did not really know who Alan Turing was” prior
to 1973 [25, p.100]. And, the leading lady in compiler building, Grace Hopper, said the following
in 1978:

I think I can remember sometime along in the middle of 1952 that I finally made the
alarming statement that I could make a computer do anything which I could completely
define. I’m still of course involved in proving that because I’m not sure if anybody believes
me yet. [29, p.9]

The last sentence shows that Hopper and, hence, also many of her colleagues, were not well
acquainted with Turing’s theory of computation. For, the crux of Turing’s work is that there
are well-defined problems that cannot be computed (i.e. are algorithmically unsolvable).

The previous paragraphs are not meant to belittle researchers in computing; they serve to
illustrate that the implications of Turing’s work only surfaced gradually, if at all, in certain
quarters of computing.

Turing’s machines and Turing machines

Turing’s 1936 paper was rather peculiar, compared with the work of Church and Gödel, in that
he introduced an “automatic machine” as a model for a human computing a real number7.
Each of Turing’s machines, in essence, computes a real number r, just as a very disciplined and
patient human can compute r on paper with a pencil and eraser [47, p.249–251]. Consider,
for instance, the real number 1/3, which is equal to 0.01010101 . . . in binary notation. The
dots in the sequence signify the fact that the digits 0 and 1 alternate forever. Turing explained
how to construct an automatic machine that computes the sequence 0.01010101 . . .. Likewise,
to compute 1/4, which in binary notation is equal to 0.01, Turing’s corresponding automatic
machine prints the digits 0 and 1, and then forever prints the digit 0 in accordance with the
sequence 0.0100000 . . .. In short, Turing was only interested in machines that print digits forever
and not in machines that print a finite number of digits [39, p.76].

Important in Turing’s paper was his construction of the universal machine, a construction
which relied on Gödel numbering but which I shall not delve into here. In the words of Hodges:

Turing had the vital perception that operations and numerical data could be codified alike
[. . . I]n a remarkable application of that perception, Turing showed that ‘it is possible to
invent a single machine which can be used to compute any computable sequence’. This
invention was his universal machine. [28, p.4, Hodges’s italics]

By 1946 and perhaps a bit earlier, but definitely not during the 1930s, Turing was well aware
of the fact that his 1936 universal machine could, essentially, serve as a mathematical model of
an all-purpose stored program computer [28, p.4,6][42, p.76]. Turing and his close associates
may well have been the only people to have seen this connection during the 1940s [42, p.79, 84].
It was by presenting his 1950 paper ‘Computing machinery and Intelligence’ [49], in which he
devoted a section to ‘The Universality of Digital Computers’, that Turing was able to change
the common perception among some of his contemporaries8.

7Besides Turing, also Post conducted research along these lines [42, p.36]. And, it was Church who, in 1937,
had reformulated Turing’s machines as modelling arbitrary machines instead of human calculators [28, p.8–9].

8Priestley mentions Wilkes, Prinz, and Oettinger as people who, during the early 1950s, had clearly grasped
the practical implications of Turing’s theoretical notion of universal machine [42, p.86–87]. Other examples are
presented later.
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The work of Church, Turing, and Post of the 1930s led logicians like Post [40], Kleene9,
and Davis [12] to reformulate Turing’s automatic machines during the 1940s–1950s. The recast
machines compute integer functions10 instead of real numbers, similar to the way real computing
machines work. In this modified setting, a machine is provided with a finite number of digits
as input, representing an integer. The machine then either computes forever and, hence, does
not halt. Or, the machine only prints a finite number of digits and halts. In Petzold’s words:

In the Kleene and Davis formulation, machines that don’t halt are considered bad machines.
Determining whether a Turing Machine will properly complete its calculation and halt was
termed — by Davis — as the halting problem. [39, p.234, Petzold’s italics]

In the previous quote and in the rest of this paper, the words “Turing machine” describe the
reformulated machines, not Turing’s original automatic machines.

At this point it is interesting to delve a bit deeper into Martin Davis’s own recollections.
In a 2008 interview, he explained that after having given a course on mathematical logic in
1950–51, which included the work of Turing, he became one of the world’s first programmers by
programming the ORDVAC [3, p.565–566]. Doing so allowed him to connect Turing’s theoretical
work with physical computing machines:

I began to see that Turing machines provided an abstract mathematical model of real-
world computers. (It wasn’t until many years later that I came to realize that Alan Turing
himself had made that connection long before I did.) [7, p.60]

Davis’s realization of the connection between Turing’s work and real-world computing ma-
chines cannot be emphasized enough. It led him to write his 1958 book, Computability &
Unsolvability (cf. Calude [7, p.60]). As Davis stated himself, the book was technically not
novel, but placing Turing machines to the fore was [12, p.vii–viii]. In fact, one of the reviewers
of his book derided the connection he was proposing with actual computing machines11. It was
Davis’s book which initiated the study of computability in the curriculum of computer science
majors (cf. Petzold [39, p.328]).

In his book, Davis also formulated and proved a theorem stating the unsolvability of the
Halting Problem12. In plain English and under some widely accepted assumptions, the unsolv-
ability of the Halting Problem amounts today to stating that:

[I]t is impossible to devise a uniform procedure, or computer program, which can look at
any computer program and decide whether or not that program will ever terminate. [32,
p.153]

This theoretical result has had practical implications in the design and implementation of
programming languages, some of which are described in this paper.

The theoretical work in mathematical logic was paralleled by the work of many engineers
who built physical programmable computing machines. Between 1938 and 1941, Konrad Zuse
built his Z3 machine in Germany [44, 52]. During and especially after World War II, engi-
neers in the USA and England built several machines, which were primarily used by applied

9Kleene’s monumental Introduction to Metamathematics [30] was published in 1952. It covers several topics
of mathematical logic, including the concepts of “recursively defined functions” and “Turing machines”. In
Chapter XIII, Kleene showed that both concepts are equivalent, thereby reformulating what he, Church, Turing,
and others had accomplished during the 1930s.

10Functions whose domains and ranges are restricted to the integers.
11See Calude [7, p.66]. Martin Davis thinks the anonymous reviewer was the logician J. Barkley Rosser as he

conveyed to me in a private discussion in Ghent, Belgium on 8 November 2011.
12Cf. Davis [12, p.70]. The essential ideas underlying the proof were not novel, due to the prior work of Church

and Turing [10, 11, 47].
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mathematicians to solve numerical problems. Among those involved were Howard Aiken, Pres-
per Eckert, Herman Goldstine, John Mauchly, John von Neumann, Alan Turing, and Maurice
Wilkes [13, 14].

The advent of the physical programmable computing machine had a great impact on the field
of numerical analysis. Unlike the logicians and the electrical engineers, the numerical analysts,
by their very profession, took programming seriously [31, p.3]. Several of them gradually
became more involved in seeking automatic techniques and programming styles to overcome the
tediousness in programming their machines. The corresponding activity, first called automatic
coding and later automatic programming, would eventually include the design of high-level
programming languages and their implementation by means of compilers and runtime systems.

3 Different Receptions of Turing’s 1936 Paper

During the 1950s, an increasing number of computer practitioners began to view the Turing ma-
chine as a model for a digital stored-program computer, including Van der Poel [50], Burks [6],
and Moore [33]. Concerning the latter, Edward F. Moore was a switching theorist who in
1952 wrote a paper entitled ‘A Simplified Universal Turing Machine’ [33]. In his paper, Moore
started off by connecting Turing’s 1936 work with his own field of expertise and then noted
that Turing’s machines were initially used by Turing to model humans, and that in later years
they had become models for actual computers [33, p.50]. In his words:

In fact, several present-day digital computers do actually use magnetic or perforated paper
tapes as auxiliary memories, instead of merely as input-output media. Hence, a Turing
machine could also be considered a mathematical model [. . .] of a digital computer. [33,
p.50, my italics]

Moore also wrote that the universal Turing machine “can, loosely speaking, be interpreted as
a completely general-purpose digital computer” [33, p.51].

Besides switching theorists and hardware engineers, also mathematical logicians tried to
close the gap between Turing’s 1936 theory and practical computing machinery. In 1954, Hao
Wang presented ‘A Variant to Turing’s Theory of Computing Machines’, which was published
three years later [51]. To simplify Turing’s theory and to make it more accessible to the machine
designer, he defined a machine which is equivalent in power to a Turing machine but which
cannot erase data from its tape. In his words: “erasing is dispensable, one symbol for marking is
sufficient, and one kind of transfer is enough” [51, p.63]. Lecturing to computer designers, Wang
talked about physically realizing his machines and, likewise, about the “physical realization of
a universal Turing machine” [51, p.87–88]. Being concerned about both logicians and engineers,
he made three analogies:

• “Just as logicians speak of theorems and metatheorems, there are programs and metaprograms.

• Just as logicians distinguish between using and mentioning a word, automatic coding must ob-
serve the distinction between using an instruction and talking about it.

• Just as logicians contrast primitive propositions with derived rules of inference, there is the
distinction between basic commands and subroutines.” [51, p.88]

Wang concluded by expressing his hope that logic and computing would bond deeper than had
been the case up till 1954.

Also in post-war western Germany, researchers such as Hasenjaeger tried to build actual Tur-
ing machines, even though their own Konrad Zuse had already succeeded in building several
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computing machines independently of both Turing and Von Neumann13. According to Hasen-
jaeger’s recollections, he and his colleagues, in an attempt to materialize a “Turing tape”, were
greatly aided by Wang’s variant machine in which erasing is dispensable14. For, the practical
implication of Wang’s machines is that writing on the tape may be realized by punching holes
in the tape. Although this particular technique of the West-Germans never worked quite well,
it did pave the way for their register15 version of the Turing machine [26, p.183].

Besides viewing the Turing machine as a model for a digital stored-program computer,
there were also researchers who focused on Turing’s key notion of universality in the context
of programming. Two such researchers were Saul Gorn and John W. Carr, III. As we shall see,
they advocated a universal machine-independent language in computing. By doing so, they
contributed greatly to introducing the language metaphor and, hence, the word “language” —
as in “programming language” — into computing during the 1950s.

To set the stage, it was spring 1954 and the venue of interest was a conference in Wa-
shington D.C. called Automatic Programming for Digital Computers [38]. Instead of having a
programmer tediously write down machine code, the conference attendees wanted to be able to
provide the programmer with a more mathematical notation in which he could express himself
more easily. The research challenge was to design a computer program that could automatically
translate the mathematical expressions of the programmer into the instructions of the machine.
Various automatic-translation programs were presented and discussed at the conference.

Most presentations at the 1954 conference covered mathematical notations and automatic
translation programs that only worked for a specific kind of machine. Two exceptions, however,
were the presentations of Gorn [23] and Brown & Carr [5]. These three researchers discussed
translation techniques that were applicable for any type of machine. To obtain such a general
technique, they realized that the mathematical notation, intended for the programmer, had
to be independent of any computing machine. Furthermore, Gorn, Brown, and Carr sought a
universal machine-independent language, i.e. a language that was close to the universal language
of mathematics and, hence, applicable to a large class of mathematical problems.

Brown and Carr distinguished in their paper between the “outside human language” (i.e. the
“language of mathematics and formal logic”) and the “less understandable interior instruction
languages” [5, p.84]. They wanted to bridge the “gap” between such languages and, hence,
contribute to the emerging discipline called automatic programming.

While many people at the aforementioned 1954 conference hardly used the word “language”
in their lectures — Hopper, for instance, did not use it a single time — Gorn and Carr did
so extensively. Furthermore, their inspiration to do so came clearly from mathematical logic.
Carr, for instance, referred to metamathematics in his paper:

Most machine users know intuitively “how to program”, now must come the stage where
this intuition is formalized and transferred into the heart of the machine itself. What are
the steps by which a code is developed?

Such investigations would appear to lead into the regions of metamathematics, where the
problems deal with the generation of systems rather than the systems themselves. [5, p.89,
my italics]

Likewise, Gorn referred to metamathematics and Gödel in particular [23, p.75].

13See Hasenjaeger [26, p.182], Zuse [52, p.34,53,135], Blanke [4], Rojas [44], and Randell [43, Chapter IV].
14Hasenjaeger was also aided by the work of Moore and by Shannon’s seminal paper ‘A universal Turing

machine with two internal states’ [45].
15In this regard, see also the register machines proposed by Shepherdson and Sturgis in 1963 [46]. Their

paper can be viewed as furthering Wang’s research agenda, namely closing the gap between the theoretical and
practical aspects of computation.
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Gorn and Carr’s inspiration from mathematical logic becomes even more apparent when
studying their 1957 work. At Purdue University, Carr gave a lecture in which he advocated
an “outside-in view” (i.e. a problem-oriented view) toward computing, and where he viewed
computers as “symbol manipulators”. The machine user “must become much more problem
oriented and much less equipment oriented” [9, p.21]. In this regard, Carr mentioned the
work of Turing, Post, and Markov, and the “Universal Turing Machine” in particular. Gorn,
in turn, did not only refer to Turing’s 1936 paper, but also explicitly referred to Kleene’s
Metamathematics [30] and the equivalence between general recursive functions and Turing’s
machines. The central notion of interest was Turing’s universal machine, as Gorn’s words
illustrate:

On the one hand the sequence of imperative and interrogative sentences which constitutes
a code of instructions causing a general purpose machine to produce a desired output may
be looked upon as the recursive [i.e. computable] definition of that output[.]

[O]n the other hand such a sequence of instructions may be looked upon as the set of
specifications of a special purpose machine designed specifically to give the desired output,
and which the general purpose machine copies and imitates. From this second point of
view the general purpose machine is the equivalent of the “Universal Turing Machine”
which could produce anything producible by any special machine by its ability to accept
and react to the description of such a machine as input data. [24, p.255, my italics]

Gorn furthermore introduced the contradistinction between syntax and semantics in the
emerging field of what many would later call computer science [24, p.260–261]. He promoted
the language metaphor by making an analogy between verbs and nouns, on the one hand,
and order types and variables on the other hand. That is, he projected linguistics (verbs and
nouns) onto the practice of coding a machine (order types and variables) [24, p.259]. As a
result, the phrase “programming language” eventually became standard jargon in computing.
The metaphor of language has proved to be extremely successful; it is, after all still with us
today16.

Gorn and Carr were, of course, not the only researchers in automatic programming who had
grasped Turing’s 1936 notion of universality. In the spring of 1959, a working conference was
held on automatic programming in Brighton, England, where Andrew Booth in his opening
address credited the late Dr. A. M. Turing17 as he who “first enunciated the fundamental
theorem upon which all automatic programming is based” [22, p.x]. Continuing, Booth said:

In its original form the theorem was so buried in a mass of mathematical logic that most
readers would find it impossible to see the wood for the trees. Simply enunciated, however,
it states that any computing machine which has the minimum proper number of instructions
can simulate any other computing machine, however large the instruction repertoire of the
latter. All forms of automatic programming are merely embodiments of this rather simple
theorem and, although from time to time we may be in some doubt as to how FORTRAN,
for example, differs from MATHMATIC or the Ferranti AUTOCODE from FLOW-MATIC,
it will perhaps make things rather easier to bear in mind that they are simple consequences
of Turing’s theorem. [22, p.1, my italics]

Given that Turing’s work was recognized to be of fundamental importance, Booth continued
his speech by openly wondering why Turing’s 1936 work had received so little recognition until

16The first occurrence of the words “programming language” in a technical paper seems to be in ‘Empirical
Explorations of the Logic Theory Machine: A Case Study in Heuristic’ [36], by Newell, Shaw, and Simon in
1957. An earlier occurrence can be found in a 1956 newsletter [2]. Source: Nofre et al. [37] which covers the
metaphor “programming language” in greater detail.

17All papers were collected in a book, edited by Richard Goodman [22]. That book is dedicated to Alan
Mathison Turing and Appendix One contains Turing’s 1936 paper [47] and his follow-up correction [48].
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recently; that is, only after the advent of the computer did Turing’s work “assume importance”.
Booth’s answer, in short, was that the first computing machines were used almost exclusively by
their constructors and, hence, by people who were intimately aware of their internal construc-
tion. It took some years before the machines were used for scientific applications, devised by
people who were and wanted to remain ignorant of the machine itself and, hence, had to rely on
automatic programming techniques. At that same conference, Stanley Gill, too, elaborated on
Turing’s notion of universal machine and discussed a “hierarchy of programming languages” [22,
p.186]. All of this happened before the 1960s.

4 Closing Remarks

To examine logic’s role in the history of computing, it is fruitful to investigate where and how
papers from logic were cited and why those papers were discussed at conferences. I have tried
to do just that with regard to Turing’s 1936 paper and primarily for the field of automatic
programming. Similar investigations have yet to be conducted for artificial intelligence and
complexity theory. My thesis is that Turing’s influence was felt more in programming and after
his death than in computer building during the 1940s. From this historical perspective, it is no
surprise that the first Turing award went to Alan J. Perlis for his contributions in the area of
advanced programming techniques and compiler construction (i.e. automatic programming).

Moreover, claiming that Turing played a crucial role in the advent of the first universal com-
puters requires elaboration on the earlier work of Zuse, Aiken, and others. Research conducted
by professional historians shows, however, that both Zuse and Aiken had already built “uni-
versal” computers by 1941 and 1944, respectively. They did not use the adjective “universal”
to describe their machines because they did not depend on Turing’s 1936 notion of universal
machine to further their research.

Therefore, instead of plunging into the history of the computing machine, I have pondered
Turing’s influence on programming. Doing so has brought much of Turing’s true legacy to
the fore. Turing’s 1936 notion of universal machine was recast by logicians like Post, Church,
Kleene, and Davis. Eventually and gradually, during the 1950s, recast notions helped some
leading switching theorists, hardware engineers, and researchers in automatic programming
to see the bigger picture of what they were accomplishing. Later, the undecidability results
of Church and Turing, in the form of Davis’s Halting Problem or in a form equivalent to it,
influenced some experts in the emerging field of high-level programming. This last observation
lies outside the scope of this paper and is discussed at length in my book The Dawn of Software
Engineering: from Turing to Dijkstra [18].
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