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Abstract. We investigate the real-time and autonomous operation of a 12 km2 urban storm 
water network, which has been retrofitted with sensors and control valves. Specifically, we 
evaluate reinforcement learning, a technique rooted in deep learning, as a system-level control 
methodology. The controller opens and closes valves in the system, which enhances the 
performance in the storm water network by coordinating the discharges amongst spatially 
distributed storm water assets (i.e. detention basins and wetlands). A reinforcement learning 
control algorithm is implemented to control the storm water network across an urban 
watershed. Results show that control of valves using reinforcement learning shows great 
potential, but extensive research still needs to be conducted to develop a fundamental 
understanding of control robustness. We specifically discuss the role and importance of the 
reward function (i.e. heuristic control objective), which guides the autonomous controller 
towards achieving the desired water shed scale response.  
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1 “Smarter” Storm Water Networks 

“Smarter” storm water systems, equipped with sensors and actuators, have the 
potential to augment static infrastructure and control its response in real time to 
achieve watershed-scale performance benefits [3]. It has been established, however, 
that control actions at the scale of individual sites (e.g. storing or discharging water at 
a pond, for example) do not necessarily guarantee an improvement at the system scale 
[4]. Any individual control action has the potential to damage or flood the system if 
not carried out in the context of the broader urban watershed. A watershed-level 
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control approach is thus needed to coordinate the flows across the scale of entire storm 
water system. While a number of real-time control approaches have been evaluated in 
the past, our new approach evaluates recent advances in reinforcement and deep 
learning to control storm water systems.  

2  Reinforcement Learning  

Reinforcement learning is a closed loop control approach, adopted from the artificial 
intelligence community. Unlike supervised learning, this approach to control does 
not force the learner (i.e. agent) to choose an action, rather it directs the agent based 
on heuristics (i.e. reward functions), towards discovering the optimal choice of 
action [2].  

During a storm event, a controller trained using deep reinforcement learning will 
observe the state of the spatially distributed storm water assets (e.g. water levels or 
flows in pipes and basins) and implements a control action to drive the system towards 
a desired state. To this end, our approach uses Deep-Q-Learning [1] to learn the state-
action mapping 𝑄	(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛). The approach relies on deep neural networks 
(𝑝𝑎𝑟𝑚𝑎𝑡𝑒𝑟	𝜃) to approximate the action value function using Eq. [1].  
 
𝑄(𝑠1, 𝑎|𝜃) = 	𝑄(𝑠, 𝑎|𝜃) + 𝛾7𝑟 + 𝑚𝑎𝑥9𝑄(𝑠1:;, 𝑎|𝜃) − 	𝑄(𝑠, 𝑎|𝜃)=  
    (1) 
 
Reward, represented by “r” in Eq.1, acts as the heuristic that guides the learning 
process. The value of reward received by the controller during the training process is 
dependent on the state of the system at each time step. Formulating the reward function 
(𝑅(𝑠)) is one of the crucial aspects of reinforcement learning. It can not only effect the 
speed of learning process, but also influence the trajectory of the optimal control 
actions. 
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Figure.1:(a) 5sq.mile storm water network retrofitted for real time control. (b) Plot 
illustrating the training of the controller over 14000 episodes, where controller learns 
to maximize the average reward per episode. 
 

3 System-level Storm Water Control 
Here, we present the simulation-based analysis of a real-world inspired storm water 
network controlled in using reinforcement learning. Basins 1,3,4 (Fig.1) are assumed 
to be retrofitted with valves that can be controlled in real time, while rest of the system 
is uncontrolled. It is assumed that the controlled has access to all water levels and 
sensors in the system. The control objectives are formulated to discharge water from 
the watershed as fast as possible, without causing flooding or exceeding a critical 
outflow level 𝑄?@A1AB9C . The latter constraint seeks to maximize stream stability and 
erosion. These objectives are embedded into a Reward Function, which guides the 
learner during the neural network training procedure: 𝛼, 𝛽, 𝛾, 𝛤 are the scaling 
parameters 
 
𝑅(𝑤𝑎𝑡𝑒𝑟	𝑙𝑒𝑣𝑒𝑙𝑠) = [1.0	1.0	1.0	1.0] ∙ 	 [ℎ;		ℎQ		ℎR	ℎS]T     (2) 
 
ℎA = −𝛼 × 	ℎ𝑒𝑖𝑔ℎ𝑡A	𝑖𝑓	ℎ𝑒𝑔ℎ𝑡A ≤ 𝐻B@A1AB9C	𝑒𝑙𝑠𝑒	– 𝛾	 × ℎ𝑒𝑖𝑔ℎ𝑡AQ + 𝛽  (3) 
 
𝑅(𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔) = [1.0	1.0	1.0	1.0] ∙ [𝑓;		𝑓Q		𝑓R	𝑓S]T      (4) 
 
𝑓A = 10.0	𝑖𝑓	𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔A > 0.0       (5) 
 
𝑅(𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑠) = [1.0	1.0	1.0	1.0]	∙ [𝑜;		𝑜Q		𝑜R	𝑜S]T     (6) 
 
𝑜A = 1.0	𝑖𝑓	𝑜𝑢𝑡𝑓𝑙𝑜𝑤 <	𝑄B@A1AB9C 	𝑒𝑙𝑠𝑒		(𝑄B@A1AB9C − 𝑜𝑢𝑡𝑓𝑙𝑜𝑤A) × 𝛤  (7) 
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	𝑅(𝑡) = 𝑅(𝑤𝑎𝑡𝑒𝑟	𝑙𝑒𝑣𝑒𝑙) + 	𝑅(𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔) + 	𝑅(𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑠)   (8) 
 
The controller was trained over 14000 instances of storms on NVIDIA Tesla K20 
GPUs, to learn the state-action value function of the watershed based on a number of 
design storms (25 year events). Figure.1(b) illustrates the growth in the average reward 
earned per episode during the training process. During each time step, the state-action 
value function observes the water levels in the basins (Fig.1) and previous valve 
positions to determine the action-value. The action in encoded as a scalar value for a 
valve-positions that drives the network towards desired behaviour.  The controller 
picks the action associated with the maximum predicted action-value. 

4 Results 
The reinforcement learning-based controller largely maintained the flow in the 
network below the critical threshold without causing flooding. As such, it shows great 
promise as a potential control tool for storm water systems. However, a number of 
instances and behaviours warrant further investigation.  For example, the outflow from 
the basin 1 exceeded the maximum threshold by almost a factor of 2. This deviation 
was a result of the choice of the weights in the reward function [Eq.6], as all the 
outflows from the ponds were equally weighted. The controller received a positive 
reward for maintaining the flows in the ponds 2,3,4 below the maximum flows.  This 
positive reward overpowered the negative reward caused by the deviations in pond 1. 
A stricter bound on the outflows in the downstream pond could be enforced by altering 
the weights (e.g. increasing the weight from 1.0 to 2.0) in the reward function. This 
result illustrates the importance of reward function shaping in the learning process, 
since the reinforcement learning agent can take advantage of potential loop holes in 
the reward function formulation to maximize the reward it gains. Robustness against 
such a behaviour should be investigated in the future.  
 
The system-level controller was able maintain the flows in the system in a desired 
region by just controlling an upstream pond 4 (Fig.2). While it did throttle the valves 
on basins 1 and 3, the benefits were marginal. While reward function parametrization 
could have influenced this behaviour, it also suggests that reinforcement learning does 
not need to control the entire system to achieve system-level benefits.  

5 Conclusion/Future Work 
 
Our initial case study sought to frame the performance boundaries of a controlled 
storm water network and identify the critical elements that limit the performance. 
Future work is needed to determine if the behaviours observed herein could have been 
driven by the specific intensity, duration or distribution of the storms used in this study. 
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As such, while reinforcement learning shows promise for the real-time control method 
for water networks, its stability and generalizability have to be analysed further. 
 
 

 
Figure 2: Plot comparing the controlled and uncontrolled response of 4 basins in the 

watershed during the storm event. 
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