
On Logical Relations and Conservativity

Philippe de Groote

Inria Nancy - Grand Est
France

Philippe.deGroote@inria.fr

1 Introduction

Having developed a Montague-like interpretation of a fragment of natural language, one may
want to modify it in order to accomodate further linguistic phenomena. This may require
radical changes in the semantic interpretation of syntactic categories. For instance, one may
want to raise the semantic type assigned to the category of adverbial modifiers in order to
account for quantified adverbial modifiers, i.e., to interpret adverbial modifiers as terms of type
(((e → t) → e → t) → t) → t rather than (e → t) → e → t. Such a modification must then
be propagated throughout the current interpretation, which might be cumbersome if it cannot
be done in a systematic way. Ideally, one would like to propagate the change by applying some
automatic procedure that would guarantee that the new obtained interpretation is faithful to
the original one.

The intensionalization procedure introduced in [5] is an example of such a systematic pro-
cedure. It allows the extensional interpretation of a language to be transformed into an in-
tensionalized interpretation that offers room for accommodating truly intensional phenomena.
Moreover, this procedure is conservative in the sense that it preserves the truth conditions of
sentences. Another instance of such a systematic procedure is provided by the dynamization
procedure described in [6], which allows a static interpretation to be turned into a dynamic
one capable of accommodating phenomena related to discourse dynamics. This procedure,
which is also conservative, presents several similarities with the intentionalization procedure.
This raises the following question: is there some abstract general scheme of which both the
intensionalization and dynamization procedures would be instances?

This paper reports some ongoing work along this research direction. It attempts to develop
an abstract construct that generalizes the intensionalization and dynamization procedures, and
for which conservativity results may be established using the notion of logical relation.

2 Logical Relation

This section presents the main technical tool that we use in this paper, namely, the notion of
logical relation.

We assume from the reader some familiarity with the simply typed λ-calculus. Given a
set A of atomic types, we write T (A) for the set of simple types built upon A. We will be
concerned with simply typed λ-calculi built upon different sets of typed constants. Such “sets”
of typed constants are called higher-order signatures, and are formally defined as follows.

Definition 1. A higher-order signature consists of a triple Σ = 〈A,C, τ〉, where:

(i) A is a finite set of atomic types;

(ii) C is a finite set of constants;

M.K̄anazawa, L.S.M̄oss, V.d̄e Paiva (eds.), NLCS’15 (EPiC Series, vol. 32), pp. 1--11 1

On Logical Relations and Conservativity Philippe de Groote

(iii) τ : C → T (A) is a function that assigns to each constant in C an implicative type in
T (A).

Given a higher-order signature Σ = 〈A,C, τ〉, we write Λ(Σ) for the set of simply typed
λ-terms built upon Σ. Given a type α ∈ T (A), we write Λα(Σ) for the set of simply typed
λ-terms of type α built upon Σ.

Given two sets of atomic types A and B, a map h : T (A) → T (B) is called a type
homomorphism when it satisfies the following condition:

h(α→ β) = h(α)→ h(β)

Similarly, given two signatures Σ1 and Σ2, a map h : Λ(Σ1) → Λ(Σ2) is called a term homo-
morphism when it satisfies the following conditions:

h(x) = x h(λx. t) = λx. h(t) h(t u) = h(t) (h(u))

The notions of type and term homomorphisms allow us to define the notion of a morphism
between two signatures.

Definition 2. Let Σ1 = 〈A1, C1, τ1〉 and Σ2 = 〈A2, C2, τ2〉 be two higher-order signatures. A
morphism H : Σ1 → Σ2 is defined to be a pair of maps 〈h1, h2〉 such that:

(i) h1 : T (A1)→ T (A2) is a type homomorphism;

(ii) h2 : Λ(Σ1)→ Λ(Σ2) is a term homomorphism;

(iii) For every α ∈ T (A1), and every t ∈ Λα(Σ1), we have that h2(t) ∈ Λh1(α)(Σ2).

For H = 〈h1, h2〉 such a morphism, we will write H(α) and H(t) for h1(α) and h2(t),
respectively.

Logical relations may be defined between λ-terms or between denotations of λ-terms. This
corresponds to the distinction between the notions of syntactic and semantic logical relations [1].
In this paper, we adopt an intermediate standpoint: we define at the syntactic level a logical
relation that has the flavor of a semantic logical relation. To this end, we introduce the notion
of span.

Definition 3. A span is a tuple 〈Σ0,Σ1,Σ2, F,G〉 where

(i) Σ0, Σ1, and Σ2 are higher-order signatures;

(ii) F : Σ0 → Σ1 is a morphism between Σ0 and Σ1;

(iii) G : Σ0 → Σ2 is a morphism between Σ0 and Σ2.

Σ0

F

~~

G

Σ1 Σ2

In the sequel of this paper, we will let Σ0, Σ1, and Σ2 range over signatures, and we adopt
the convention that Ai, Ci, and τi stand for the three respective components of Σi.

We are now in a position of giving our definition of a logical relation.

2

On Logical Relations and Conservativity Philippe de Groote

Definition 4. Given a span 〈Σ0,Σ1,Σ2, ()∗, ()〉, a logical relation is defined to be a family
of binary relations, R = {Rα}α∈T (A0), such that:

(i) Rα ⊂ Λα
∗
(Σ1)× Λα(Σ2), for α ∈ T (A0);

(ii) t1Rα→β t2 iff ∀u1 ∈ Λα
∗
(Σ1).∀u2 ∈ Λα(Σ2). u1Rα u2 ⇒ (t1 u1)Rβ (t2 u2)

We will only be concerned with logical relations that are βη-closed, i.e., logical relations
that obey the following definition.

Definition 5. A logical relation R defined on a span 〈Σ0,Σ1,Σ2, ()∗, ()〉 is said to be βη-closed
if for every a ∈ A0, every t1, u1 ∈ Λa

∗
(Σ1) such that t1 =βη u1, and every t2, u2 ∈ Λa(Σ2) such

that t2 =βη u2, if t1Ra t2 then u1Ra u2.

In the above definition, the very property of βη-closure is only required at atomic type. The
next lemma shows that this is indeed sufficient to ensure βη-closure at every type.

Lemma 1. Let R be a logical relation defined on a span 〈Σ0,Σ1,Σ2, ()∗, ()〉. If R is βη-
closed then for every α ∈ T (A0), every t1, u1 ∈ Λα

∗
(Σ1) such that t1 =βη u1, and every

t2, u2 ∈ Λα(Σ2) such that t2 =βη u2, if t1Rα t2 then u1Rα u2.

Proof. The proof proceeds by structural induction on α. If α is atomic, the property holds by

definition. Now, let α ≡ β → γ. For every v1 ∈ Λβ
∗
(Σ1) and every v2 ∈ Λβ(Σ2) such that

v1Rβ v2, one has (t1 v1)Rγ (t2 v2). Then, by induction hypothesis, (u1 v1)Rγ (u2 v2), which
establishes u1Rβ→γ u2.

We now state and prove a version of the so-called fundamental theorem of logical relations.

Proposition 1. Let 〈Σ0,Σ1,Σ2, ()∗, ()〉 be a span, and let R be a βη-closed logical re-
lation defined on this span such that c∗Rτ0(c) c, for every c ∈ C0 . Let t ∈ Λα(Σ0) be
a λ-term whose free variables are among x1, . . . , xn of types α1, . . . , αn, respectively. Let
u11 ∈ Λα

∗
1 (Σ1), . . . , u1n ∈ Λα

∗
n(Σ1), u21 ∈ Λα1(Σ2), . . . , u2n ∈ Λαn(Σ2) be such that u11Rα1

u21,
. . ., u1nRαn

u2n. Then,

t∗[x1 := u11, . . . , xn := u1n]Rα t[x1 := u21, . . . , xn := u2n].

Proof. The proof proceeds by structural induction on t.

Let t ≡ c be a constant.

c∗Rτ0(c) c holds by hypothesis.

Let t ≡ xi be a variable.

We have:

t∗[x1 := u11, . . . , xn := u1n] t[x1 := u21, . . . , xn := u2n]

= x∗i [x1 := u11, . . . , xn := u1n] = xi[x1 := u21, . . . , xn := u2n]

= xi[x1 := u11, . . . , xn := u1n] = xi[x1 := u21, . . . , xn := u2n]

= u1i = u2i

Then, u1iRαi u2i by hypothesis.

Let t ≡ λx. t1 be a λ-abstraction.

3

On Logical Relations and Conservativity Philippe de Groote

In this case, there exist β and γ such that α ≡ β → γ. Then, by induction hypothesis,

for every u1 ∈ Λβ
∗
(Σ1) and every u2 ∈ Λβ(Σ2) such that u1Rβ u2, we have:

t∗1[x1 := u11, . . . , xn := u1n, x := u1]Rγ t1[x1 := u21, . . . , xn := u2n, x := u2].

Hence, because R is βη-closed:

(λx. t∗1[x1 := u11, . . . , xn := u1n])u1Rγ (λx. t1[x1 := u21, . . . , xn := u2n])u2.

Consequently,

(λx. t∗1)[x1 := u11, . . . , xn := u1n]u1Rγ (λx. t1)[x1 := u21, . . . , xn := u2n]u2,

which establishes:

λx. t∗1[x1 := u11, . . . , xn := u1n]Rβ→γ λx. t1[x1 := u21, . . . , xn := u2n].

Let t ≡ t1 t2 be an application.

In this last case, there exists β such that t1 is of type β → α and t2 is of type β. Then,
by induction hypothesis:

t∗1[x1 := u11, . . . , xn := u1n]Rβ→α t1[x1 := u21, . . . , xn := u2n]

and
t∗2[x1 := u11, . . . , xn := u1n]Rβ t2[x1 := u21, . . . , xn := u2n].

Hence, because R is logical:

(t1 t2)∗[x1 := u11, . . . , xn := u1n]Rα (t1 t2)[x1 := u21, . . . , xn := u2n].

In the case of closed λ-terms, we obtain the following corollary.

Corollary 1. Let 〈Σ0,Σ1,Σ2, ()∗, ()〉 be a span, and let R be a βη-closed logical relation
defined on this span such that c∗Rτ0(c) c, for every c ∈ C0 . Let t ∈ Λα(Σ0) be a closed λ-term.
Then,

t∗Rα t.

3 Embedding and Projection

Throughout this section, we assume the existence of a span 〈Σ0,Σ1,Σ2, ()∗, ()〉. One may
think of it as modelling the following situation:

• a λ-term t ∈ Λ(Σ0) corresponds to the logical form of some natural language utterance;

• t∗ ∈ Λ(Σ1) corresponds to the current (semantic) interpretation of t;

• t ∈ Λ(Σ2) corresponds to the new intended interpretation of t.

4

On Logical Relations and Conservativity Philippe de Groote

With this picture in mind, the kind of conservativity properties we are seeking must ensure
that the new interpretation φ of a sentence φ is valid if and only if its current interpretation φ∗

is.
Our goal is to establish such conservativity properties by using logical relations. Corollary 1

ensures that the two interpretations of a sentence (i.e., φ∗ and φ) will be logically related
provided that the interpretations of the constants of Σ0 are logically related. In order to ensure
this latter property, we construct a procedure that allows a term of type α∗ to be transformed
into a term of type α in such a way that the original term and its transform are logically
related. To this end, we define a family of embedding functions, {Eα}α∈T (A0), and a family of
projection functions, {Pα}α∈T (A0). These functions are typable with the following types:

Eα : Tα∗ → α

Pα : α→ Tα∗

where T is a type transformer coming with three operations: U, • (written as an infix operator),
and C. These operations are assigned the following type schemes:

U : α→ Tα

• : T(α→ β)→ Tα→ Tβ

C : (α→ Tβ)→ T(α→ β)

In addition, they obey the following laws:

(U f) • (U a) = U (f a) (C1)

C (λx.U (f x)) = U f (C2)

The embedding and projection functions are defined by induction on the types in T (A0).
For every atomic type a ∈ A0, we assume the existence of an embedding Ea and a projection
Pa such that:

Pa (Ea (U t)) = U t (C3)

Then, at functional type, the embedding and the projection functions are defined by means of
the following equations:

Eα→β t = λxα.Eβ (t • (Pα x))

Pα→β t = C (λxα
∗
.Pβ (t (Eα (Ux))))

We may now define an operation, say T, that allows a term of type α∗ to be transformed
into a term of type α:

T t = Eα (U t)

As we said, we want t and (T t) to be somehow logically related. For this purpose, we define
the following relation, which is logical by construction.

t1 ≺a t2 iff t2 =βη Ea (U t1), for a ∈ A0

t1 ≺α→β t2 iff ∀u1 ∈ Λα
∗
(Σ1).∀u2 ∈ Λα(Σ2). u1 ≺α u2 ⇒ (t1 u1) ≺β (t2 u2)

The next proposition is the main technical result of this paper. It will be used in the next
section when establishing conservativity results.

5

On Logical Relations and Conservativity Philippe de Groote

Proposition 2. Let t1 ∈ Λα
∗
(Σ1) and t2 ∈ Λα(Σ2). The following properties hold:

(i) If t2 =βη Eα (U t1) then t1 ≺α t2.

(ii) If t1 ≺α t2 then Pα t2 =βη U t1.

Proof. The proof proceeds by structural induction on α.

Let α be atomic.

(i) We have that t1 ≺α t2 by definition of ≺.

(ii) By definition of ≺, we have that t2 =βη Eα (U t1). Hence,

Pα t2 =βη Pα (Eα (U t1))

=βη U t1 (by C3)

Let α ≡ β → γ.

(i) Let u1 ≺β u2.

t2 u2 = Eβ→γ (U t1)u2

= (λxβ .Eγ ((U t1) • (Pβ x)))u2

→β Eγ ((U t1) • (Pβ u2))

=βη Eγ ((U t1) • (Uu1)) (by induction hypothesis ii)

=βη Eγ (U (t1 u1)) (by C1)

Hence, by induction hypothesis i, we obtain

(t1 u1) ≺γ (t2 u2),

which establishes

t1 ≺γ t2.

(ii) By induction hypothesis i, we have that x ≺β (Eβ (Ux)). Consequently,

(t1 x) ≺γ (t2 (Eβ (Ux))).

Then, we have:

Pβ→γ t2 = C (λxβ
∗
.Pγ (t2 (Eβ (Ux))))

=βη C (λxβ
∗
.U (t1 x)) (by induction hypothesis ii)

=βη U t1 (by C2)

6

On Logical Relations and Conservativity Philippe de Groote

4 Applications

4.1 Intensionalization

As a first application, we show that the intensionalization procedure defined in [5] may be
obtained as an instance of the general scheme we have developed in the previous section.

We consider as given a signature Σ0 = 〈A0, C0, τ0〉, where A0 = {e, t}. This signature must
be thought of as specifying an object language used for expressing the Montague semantics
of some extensional fragment of natural language. We also consider as given a subset Cr ⊂
C0. Intuitively, this subset corresponds to the rigid constants, that is the constants whose
interpretations do not vary from one possible world to another.

We then construct two signatures, Σ1 = 〈A1, C1, τ1〉 and Σ2 = 〈A2, C2, τ2〉 as follows:

A1 = {e, t, s} A2 = {e, t, s}
C1 = C0 ∪ {i} C2 = C0

τ1(c) =

s if c = i

τ0(c) if c ∈ Cr
(s→ τ0(c)) if c 6∈ Cr

τ2(c) =

{
τ0(c) if c ∈ Cr
(s→ τ0(c)) if c 6∈ Cr

We define a first morphism, ()∗, from Σ0 to Σ1:

e∗ = e

t∗ = t

c∗ =

{
c if c ∈ Cr
(c i) if c 6∈ Cr

Finally, we define a second morphism, (), from Σ0 to Σ2:

e = s→ e

t = s→ t

c = Eτ0(c) (U c∗)

where the primitives that are needed for defining the embedding and projection operators are
defined as follows:

Tα = s→ α Ee t = t

U t = λi. t[i := i] Et t = t

t • u = λi. t i (u i) Pe t = t

C t = λix. t x i Pt t = t

One can easily verify that Conditions (C1), (C2), and (C3) are satisfied. In the case of (C1),
for instance, we have:

(U t) • (Uu) = λi.U t i (Uu i)

→β λi. t[i := i] (Uu i)

→β λi. t[i := i] (u[i := i])

= λi. (t u)[i := i]

= U (t u)

7

On Logical Relations and Conservativity Philippe de Groote

Now, by Proposition 2, we have c∗ ≺τ0(c) c for every c ∈ C0. Consequently, by Corollary
1, we have t∗ ≺α t for every closed term t ∈ Λα(Σ0). In particular, for every sentence φ (i.e.,
every closed term of type t), we have that φ =βη λi. φ

∗[i := i]. Consequently, φ denotes λa. 1
if and only if φ∗ denotes 1 for every possible valuation of i. This establishes the conservativity
of the intensional interpretation over the extensional one.

4.2 Dynamization

A second instance of our general scheme is the dynamization procedure given in [6]. This pro-
cedure is based on the continuation-based approach to dynamics introduced in [4]. Accordingly,
dynamic propositions are seen as terms of type c → (c → t) → t, where c is the type of the
discourse contexts, and (c→ t) is the type of the discourse continuations.

Here again, we consider as given a signature Σ0 = 〈A0, C0, τ0〉, with A0 = {e, t}. We then
take Σ1 to be Σ0, and ()∗ to be the identity.

As for Σ2, it consists of Σ0 enriched with a set Cd of dynamic primitives. Accordingly, we
have:

A2 = {e, t, c}
C2 = C0 ∪ Cd

τ2(c) = τ0(c) for every c ∈ C0

We leave Cd unspecified. Nevertheless, we require the existence of a constant nil ∈ Cd, such
that τ2(nil) = c. Intuitively, nil stands for the empty context.

Finally, the morphism () from Σ0 to Σ2 is defined as follows:

e = e

t = c→ (c→ t)→ t

c = Eτ0(c) (U c∗)

where the needed primitives are defined as follows:

Tα = c→ α Ee t = t nil

U t = λc. t Et t = λck. (t c) ∧ (k c)

t • u = λc. t c (u c) Pe t = λc. t

C t = λcx. t x c Pt t = λc. t c (λc. true)

A conservativity result may then be established along the same lines as in the case of
intensionalization.

It is to be noted, however, that the dynamization procedure given in [6] uses the above
general scheme for dynamizing all the constants but the logical connectives, for which special
translations are given. Dynamic conjunction, for instance, is defined as follows:

∧ = λabek. a e (λe. b e k)

Consequently, in order to establish the conservativity result, it must be shown “by hand” that
the logical connectives are logically related to their dynamic interpretations.

8

On Logical Relations and Conservativity Philippe de Groote

4.3 Type Raising

As a last example, we consider Montague’s type raising. Here the picture is a little bit different.
The signatures Σ0 and Σ1, which are given, are such that A0 = {n,np, s} and A1 = {e, t}.
Intuitively, Σ0 specifies the syntax of a fragment of natural language that does not contain
quantified noun phrases. Σ1 specifies the object language in which a Montagovian interpretation
of this fragment is given, and the morphism ()∗ corresponds to this Montagovian interpretation.
In particular, at type level, we have:

n∗ = e→ t

np∗ = e

s∗ = t

Σ2 is then identical to Σ1, while the morphism () interprets noun phrases as type-raised
entities:

n = e→ t

np = (e→ t)→ t

s = t

c = Eτ0(c) (U c∗)

with the following primitives:

Tα = (α→ t)→ t En t = λx. t (λk. k x)

U t = λk. k t Enp t = t

t • u = λk. t (λx. u (λy. k (x y))) Es t = t (λx. x)

C t = λk. k (λx. L (t x)) Pn t = λk. k t

Pnp t = t

Ps t = λk. k t

where L is a function of type ((α→ t)→ t)→ α such that L (λk. k t) = t.1

To illustrate the above embedding, assume that C0 contains a constant which of type
(np→ s)→ n→ n, with the following Montagovian interpretation:

which∗ = λcnx. (nx) ∧ (c x)

Then, we obtain:

which = E(np→s)→n→n (Uwhich∗)

= λcnx. (nx) ∧ (c (λk. k x))

5 Future Work

As explained in the introduction, this paper reports some ongoing work. Several questions
remain to be settled.

1At the semantic level, such a function exists for every type α. However, it is not λ-definable. Consequently,
at the syntactic level, we must add constants of the appropriate types, together with additional reduction rules.

9

On Logical Relations and Conservativity Philippe de Groote

A first question concerns the genericity of the approach. Did we reach an appropriate level of
abstraction? To answer this question, we should study more possible instances of our construct.
With this respect, a possible candidate is Champolion’s proposal of interpreting sentences as
generalized quantifiers over events [2].

One may also question the nature of the type transformer T. Does it correspond somehow
to any known kind of structure? For instance, the types assigned to U and • make sense from
a modal logic point of view. This, however, is not the case for the type assigned to C. It is also
the case that operations U and • can be defined in every strong monad in such a way that C1
holds. Again, this is not the case for C. Is there any sensible condition that one could add to
the definition of a monad in order to ensure the existence of C?

We have chosen to work at the syntactic level of the λ-terms because we think that it captures
Montague’s strategy of expressing the semantic interpretation of a natural language fragment
through a translation into an intermediate object language [8]. Our treatment, however, is not
completely satisfactory. For dynamization, for instance, the notion of equality we need at type
t is a relation of logical equivalence stronger than βη-equivalence. Similarly, for type-raising,
we need to require that L (λk. k x) = x. The situation would be simpler at the semantic level of
Henkin models because the needed notions of equality would correspond with the equality in
the models. So, maybe would it better to define our construct at a model theoretical level (as it
is the case in [5]). The syntactic version of the construct would then be obtained by considering
term models.

Our ultimate goal is to establish conservativity properties. To this end, it would be nice to
prove a generic conservativity theorem at the abstract level of our construct. This requires the
definition of an abstract notion of consequence relation.

The types and the λ-terms built upon a given signature may be seen as the objects and
the arrows of a Cartesian closed category. With respect to this vision, our notion of morphism
between two signatures is a functor between two Cartesian closed categories. This turns out
to be a particular case of the notion of type refinement system recently introduced by Melliès
and Zeilberger [7]. In fact, it might be the case that Melliès and Zeilberger’s setting provides
a good abstract framework in which we could express our generic construct. This is a question
we would like to explore.

References

[1] H. Barendregt, W. Dekkers, and R. Statman. Lambda Calculus with Types. Cambridge University
Press, 2013.

[2] L. Champollion. The interaction of compositional semantics and event semantics. Linguistic &
Philosophy, 38(1):31–66, 2015.

[3] Ph. de Groote. Towards abstract categorial grammars. In Association for Computational Lin-
guistics, 39th Annual Meeting and 10th Conference of the European Chapter, Proceedings of the
Conference, pages 148–155, 2001.

[4] Ph. de Groote. Towards a montagovian account of dynamics. In Semantics and Linguistic Theory
XVI. Cornell University, Ithaca, NY, 2006.

[5] Ph.de Groote and M. Kanazawa. A note on intensionalization. Journal of Logic, Language and
Information, 22:173–194, 2013.

[6] E. Lebedeva. Expression de la dynamique du discours à l’aide de continuations. Thèse de doctorat,
Universit de Lorraine, 2012.

10

On Logical Relations and Conservativity Philippe de Groote

[7] P.-A. Melliès and N. Zeilberger. Functors are type refinement systems. In Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2015, pages 3–16, 2015.

[8] R. Montague. The proper treatment of quantification in ordinary english. In J. Hintikka, J. Moravc-
sik, and P. Suppes, editors, Approaches to natural language: proceedings of the 1970 Stanford work-
shop on Grammar and Semantics, Dordrecht, 1973. Reidel. Reprinted: [9, pages 247–270].

[9] R. Montague. Formal Philosophy: selected papers of Richard Montague, edited and with an intro-
duction by Richmond Thomason. Yale University Press, 1974.

11

	Introduction
	Logical Relation
	Embedding and Projection
	Applications
	Intensionalization
	Dynamization
	Type Raising

	Future Work

