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Abstract

Verification techniques have become popular in software and hardware development.
They increase confidence and potentially provide rich feedback. However, with increas-
ing complexity verification techniques are more likely to contain errors themselves. Many
verification tools use invariants of the considered systems for their analysis. These invari-
ants are often generated by the verification tools in a first step. The correctness of these
invariants is crucial for the analysis results.

In this paper we present on-going work addressing the problem of automatically gen-
erating realistic and guaranteed correct invariants. Since invariant generation mechanisms
are error-prone, after the computation of invariants by a verification tool, we formally
prove that the generated invariants are indeed invariants of the considered systems using
a higher-order theorem prover and automated techniques. We regard invariants for BIP
models. BIP (behavior, interaction, priority) is a language for specifying asynchronous
component based systems. Proving that an invariant holds often requires an induction on
possible system execution traces. For this reason, apart from generating invariants that
precisely capture a system’s behavior, inductiveness of invariants is an important goal.

We establish a notion of robust BIP models. These can be automatically constructed
from our original non-robust BIP models and over-approximate their behavior. We mo-
tivate that invariants of robust BIP models capture the behavior of systems in a more
natural way than invariants of corresponding non-robust BIP models. Robust BIP models
take imprecision due to values delivered by sensors into account. Invariants of robust BIP
models tend to be inductive and are also invariants of the original non-robust BIP model.
Therefore they may be used by our verification tools and it is easy to show their correctness
in a higher-order theorem prover.

The presented work is developed to verify the results of a deadlock-checking tool for
embedded systems after their computations. Therewith, we gain confidence in the provided
analysis results.

1 Introduction

Verification tools to ensure properties of complex systems have become popular in many appli-
cation areas. One major goal is to guarantee safety and security properties of the considered
systems. These can be computed by generating invariants of the considered systems in a first
step and analyzing them. However, as verification tools become more and more complex it is
not always easy to see if they are themselves working correctly. An incorrect verification tool
might state a wrong property about a system.

Guided by first experiments on automatically verifying – thereby establishing a correctness
certificate – the results of a verification tool after they have been computed in a higher-order
theorem prover (Coq), we verify invariants of given systems (Bip models) within a theorem
prover, we introduce a notion of robustness for these systems. The invariants that are subject to
this paper are computed and used by the D-Finder [BBSN08] tool that decides deadlock-freedom
of systems modeled in the Bip language [BBS06]. The Bip language features the descriptive
power to model asynchronous systems and is designed for building real-time embedded systems
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consisting of heterogeneous components. Invariants that are both inductive and capture the
behavior of our systems in an adequate way are highly desirable for our analysis and verification
tools.

In our case study, we require invariants to be inductive in order to be verified automatically
by deductive methods. We motivate a technique that is likely to produce inductive invariants:
we establish a notion of robust Bip models. These models take imprecision of values due to
physical measurements into account. Invariants of robust systems are aimed at describing a
system’s behavior in a realistic way taking sensor sensitivity and imprecision into account while
preserving the necessary precision to be used as basis for analysis results. Our invariants are
suitable for automated verification using a discrete semantics. We present a mapping from
non-robust to robust systems and prove that invariants of robust systems are also invariants
of the original non-robust systems. This allows us to reuse invariant based analysis results for
these systems.

1.1 Our Case Study: Guaranteeing Correctness of the Results of a
Verification Tool

Robust Bip models are used to make the process (called certification) of automatically proving
the results of a deadlock-detection verification tool easier thereby guaranteeing the correctness
of its verdict. The overall approach of this tool and the verification process guaranteeing that
its results are correct is described in the following two paragraphs.

1.1.1 The Deadlock-detection Tool D-Finder and the Certification of its Results

The deadlock-detection tool D-Finder takes Bip models as inputs and decides whether they are
deadlock free. In order to do this, in a first step invariants of these are computed. These are
analyzed for potential deadlocks. D-Finder is aimed to be safe in a way that it might detect
false positives, i.e., potential deadlocks that do not exist. The computation of invariants is the
most sophisticated step within D-Finder. In addition to D-Finder’s algorithms an external tool
Omega [Ome00] is used in the invariant generation process to perform quantifier elimination.
In a second step these invariants are checked to be deadlock-free by using the external SMT
solver Yices [DM06] and a definition of deadlock-states.

Verifying that invariants hold is used for guaranteeing the absence of deadlocks in our guiding
case study [BP08, BP08a]. The methodology underlying this case study is depicted in Figure 1.
Bip models are passed to D-Finder, the deadlock-detection tool. In this paper, we do not trust
D-Finder in a first place, but want to establish proofs, that it has indeed worked correctly for
each run of this tool. Apart from detecting deadlocks, a certificate is generated by some part
of the tool (denoted CertGen). This certificate comprises a proof of deadlock-freedom and is
passed to a theorem prover. The D-Finder tool computes invariants and uses them to decide
whether a system is deadlock-free or not. Most important to this paper is the fact, that the
certificates contain these invariants as well as a proof script that is generated by the certificate
generator proving that the invariants do indeed hold. The theorem prover uses this proof script
to prove that a Bip model is indeed deadlock-free.

1.1.2 Proving Deadlock-freedom

To verify that a system is indeed deadlock-free in the theorem prover, we have to check the
certificates. We break this task of verifying deadlock-freedom for a given Bip model BM down
into different subtasks as shown in Figure 2. The proofs for these subtasks are composed to
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Figure 1: Our Methodology

1. ∀s.ReachableStatesBM (s) −→ EnabledBM (s)

↑ transitivity

2. ∀s.ReachableStatesBM (s) −→ ¬DISBM (s) and [PO1] ∀s.¬DISBM (s) −→
EnabledBM (s)

↑ transitivity

3. [PO2] ∀s.ReachableStatesBM (s) −→ ΨBM (s) and [PO3] ∀s.ΨBM (s) −→
¬DISBM (s)

Figure 2: Verifying Deadlock-freedom: The Meta-Proof

prove the top line. In the figure, we use the following definition of enabled states capturing Bip
states from which a state transition to a succeeding state is possible:

EnabledBM (s) ≡ ∃s′.(s, s′) ∈ JBMKBIP ∧ s 6= s′

The JBMKBIP denotes the set of possible state transitions of the Bip model BM thereby
defining its semantics. Furthermore, we use a definition of reachable states ReachableStatesBM
for a Bip model BM which is defined inductively in a way that the initial state is reachable
and all succeeding states of a reachable state are reachable.

The task of verifying deadlock-freedom is performed by using the refinement shown in Fig-
ure 2:

1. The top line in the figure shows our notion of deadlock-freedom for a Bip model. We
ultimately want to prove this line. We demand that all reachable states have at least one
succeeding state. Thus, there is no reachable state where no transition is possible.

2. Instead of a direct proof, we follow the architecture of D-Finder and take advantage of
the invariants discovered by D-Finder (ΨBM ,¬DISBM ): we conduct the proof shown in
the second line consisting of two proof goals. The first goal reformulates the notion of
enabled states and puts a predicate ¬DISBM instead. Thus, we may verify that this goal
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holds for a Bip model BM . The second proof goal [PO1] (Proof Obligation 1) states
that whenever one proves the first goal correct, the correctness property of the first line
is implied – thereby guaranteeing the more human readable notion of correctness.

3. The third line splits the first proof goal of the second line into two proof goals [PO2] and
[PO3]. This line introduces an invariant ΨBM (s) as a transitive step. This invariant is
part of the certificate. To use this line in our proofs we have to show that it also implies
the first line.

The ¬DISBM , and ΨBM are provided by D-Finder.
Most tasks in this proof scheme are relatively easy from a technical point of view. It is

sufficient to prove the three proof obligations and construct the proof for the first line via tran-
sitivity of the implication rule. This, as well as proving [PO1] and [PO3] can easily be done
automatically. However, the generation of the invariant ΨBM (s) can be error prone. Therefore
the automatic verification that

[PO2] ∀s.ReachableStatesBM (s) −→ ΨBM (s)

does hold is a challenging tasks of our methodology. It captures the correctness of the main
task of the D-Finder tool: finding invariants. The work presented in the rest of this paper
concentrates on generating realistic invariants, reports on experiences with case studies and
suggests ways to improve the computation of the invariants thereby making the verification
task easier.

1.2 Overview

We introduce the BIP semantics for modeling our systems in Section 2 and present a small
example. A discussion of invariants of BIP models and their properties is given in Section 3.
Section 4 introduces robust BIP models and a motivation for and proofs of their properties.
The benefits of robust BIP models in verifying invariants for our example application scenario
are presented in Section 5. Related work is discussed in Section 6. In Section 7 we draw a
conclusion and present our goals for future work.

2 BIP Models and their Semantics

In this section we describe the semantics of Bip models. Bip is a software framework designed
for building embedded systems consisting of heterogeneous components. It is characterized by
three modeling layers: behavior of components encoded as transition systems extended with
variables, interactions between components realized via communication ports and priority rules
which reduce non-determinism between interactions (BIP stands for Behaviors + Interactions
+ Priorities). Apart from code generation the Bip tool chain comprises static analyses tools
for checking properties like deadlock-freedom.

Bip models are composed of atomic components [BBS06, BBSN08] that can be composed
into larger components. Components are state transition systems. They communicate via ports
with each other.

Definition 2.1 (Atomic BIP component). An atomic component Bi can be represented by a
tuple
(Li, Pi, Ti, Vi) such that
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• Vi is a set of variables,

• Li = {l0i , l1i , l2i , ..., lki } is a set of control locations,

• Pi is a set of ports,

• Ti ⊆ Li × (Xi → bool)× (Xi → Xi)×Pi ×Li is a set of transitions, each one comprising
a location, a guard function g : Xi → bool, an update function f : Xi → Xi, a port, and
a succeeding location. The Xi denote valuation functions: mappings from variables Vi to
their values Di.

The guard functions are predicates and are formulated on the variables appearing in an
atomic component. The following definition describes a language for these predicates which we
use for the work presented in this paper:

Definition 2.2 (Guard language). A predicate φ belongs to the guard language iff it is con-
structed using the following rules:

φ ::= φ ∧ φ | φ ∨ φ | ¬φ | e
e ::= e′ < e′ | e′ ≤ e′ | e′ = e′ | e′ 6= e′ | e′ ≥ e′ | e′ > e′

e′ := op | e′ + e′ | e′ − e′ | val · e′
op ::= var | val

Assuming the guard function appears in the ith component, the var ∈ Vi are variables ap-
pearing in it. val ∈ Di denotes some numerical type. The variables var ∈ Vi are mapped to the
same type. Typical types are reals and integers.

The semantic interpretation of the guard language follows the rules of predicate logic and
arithmetic. Note, that the expressibility of the guard language corresponds to Presburger
arithmetic when Di denotes integer values.
The atomic components of a Bip model are connected via ports. They communicate via interac-
tions. Thus, a composed component is defined as a tuple ((B1, ..., Bn), Interactions) comprising
the atomic components and their interactions.
An interaction is a tuple (p1, . . . , pn) where pi is a port of the atomic component Bi or ⊥ if Bi
is not involved in this interaction.
The state of an atomic component Bi is a tuple (li, xi) comprising a location and a variable val-
uation function. The state of a Bip model is the product of the state of its atomic components:
(L1 ×X1)× . . .× (Ln ×Xn).
A transition relation for Bip models is defined via the following predicate.

Definition 2.3 (Transition Relation). A transition relation for a Bip model BM (denoted
JBMKBIP ) for Bip models is defined via the following rule:

(p1, . . . , pn) ∈ Interactions
∀i ∈ {1..n}. (li, gi, fi, pi, l

′
i) ∈ Bi ∧ (gi(xi) ∧ x′i = fi(xi)) ∨ (li = l′i ∧ pi = ⊥ ∧ x′i = xi)

(((l1, x1), ..., (ln, xn)) , ((l′1, x
′
1), ..., (l′n, x

′
n))) ∈ JBMKBIP

A state transition from a given reachable state is possible if there is an interaction such
that there is in each component either a possible state transition labeled with the port or
the component is not involved in the interaction. Furthermore, in order to do a transition of
an atomic component the appropriate guard functions must evaluate to true. To derive the
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Figure 3: Temperature Control System

succeeding states the update functions are performed on the valuation functions of the involved
atomic components.

Using the transition relation, reachable states of a Bip model are defined in the following
definition.

Definition 2.4 (Reachable States). The predicate ReachableStatesBM indicating reachable
states of a Bip model BM with an initial state s0 ∈ (L1×X1)× . . .× (Ln×Xn) is defined via
the following inductive rules:

ReachableStatesBM (s0)

ReachableStatesBM (s) (s, s′) ∈ JBMKBIP
∈ ReachableStatesBM (s′)

The first rule says that the initial state is reachable. The second inference rule captures the
transition behavior of Bip using the transition relation.

An Example Figure 3 shows a temperature control system [BBSN08, ACH+95] modeled in
Bip. It controls the cooling of a reactor by moving two independent control rods. It is a simple
example to illustrate D-Finder and its invariants. The goal is to keep the temperature between
θ = 100 and θ = 1000. When the temperature reaches the maximum value one of the rods has
to be used for cooling. The Bip model comprises three atomic components one for each rod
and one for the controller. Each contains a state transition system. Transitions can be labeled
with guard conditions, valuation function updates, and a port. The components interact via
ports thereby realizing cooling, heating, and time elapsing interactions. Initially the system
starts in locations l1, l3, l5 with values of t1 = 3600, t2 = 3600, θ = 100. Note, that the system
does indeed contain a deadlock. Since we are interested in verifying that invariants hold, this,
however, is not important in the context of this paper.
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3 Invariants of BIP Models

In this section we discuss invariants for Bip models and motivate desired properties.

Definition 3.1 (Invariant). A predicate I over the states of a Bip model BM is an invariant
of BM iff
∀s.ReachableStatesBM (s) −→ I(s)

The generated invariants ΨBM that we are verifying in our theorem prover are composed of
component invariants (CI) and interaction invariants (II):

ΨBM
def
= CI1 ∧ ... ∧ CIn ∧ II1 ∧ ... ∧ IIm

The following invariants are computed by D-Finder to approximate the behavior of the
components (component invariants) in the example from Figure 3:

• CI1 = (atl1 ∧ t1 ≥ 0) ∨ (atl2 ∧ t1 ≥ 3600)

• CI2 = (atl3 ∧ t2 ≥ 0) ∨ (atl4 ∧ t2 ≥ 3600)

• CI3 = (atl5 ∧ 100 ≤ θ ≤ 1000) ∨ (atl6 ∧ 100 ≤ θ ≤ 1000)

ati is a predicate denoting the fact that we are at location i in a component. In addition to
component invariants D-Finder computes interaction invariants capturing the behavior induced
by interactions between the atomic components. In addition to component invariants D-Finder
generates interaction invariants which capture the behavior of components interacting with each
other. An example for an interaction invariant for the given Bip model is shown below:

II1 = (atl1 ∧ t1 = 0) ∨ (atl3 ∧ t2 = 0) ∨ (atl5 ∧ 101 ≤ θ ≤ 1000) ∨ (atl6 ∧ (θ = 1000 ∨ 100 ≤
θ ≤ 998))

Definition 3.2 (Inductive Invariants). An invariant I is inductive for a Bip model BM iff

1. It holds for the initial state s0 of BM : I(s0)

2. ∀s s′.I(s) ∧ (s, s′) ∈ JBMKBIP −→ I(s′)

By using the definition of reachable states we can prove the following theorem which is inde-
pendent of concrete Bip models:

Theorem 3.1. Every inductive invariant of a Bip model BM is also an invariant of BM .

Both CI1 and CI2 are inductive. CI3 is not inductive because it evaluates to true for a state
where we are at control location l6 (atl6) and θ = 101. But, it does not hold for the succeeding
state atl6 and θ = 99. Note, that since a state where atl6 and θ = 101 is never reached within
a real system run, CI3 is still an invariant.

For verifying invariants during certificate checking we perform an induction on the set of
reachable states. For this reason, it is highly desirable if invariants are inductive.
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Making Invariants Inductive by Strengthening We can make invariants inductive by
strengthening them. Given an invariant I we can add some strengthening constraints C to
create a stronger invariant I ′. The proof that I ′ implies that I holds for a given state s is a
trivial application of the conjunction elimination rule:

I ′(s)
def
= I(s) ∧ C(s) −→ I(s)

For example CI3 can be made inductive by adding a constraint that at location l6, θ is always
divisible by two (2|θ). We can now verify the inductive invariant and show that it implies the
weaker non-inductive one. Thus, the non-inductive one, is proven to be an invariant, too.

We have experimented with techniques to strengthen invariants automatically. In many
cases it is possible to “guess” the C constraints that make invariants inductive. The additional
constraint could be constructed following the general method presented in [BM08] that refines
the invariant to reach an inductive one.

However, sometimes strengthening invariants seems artificial. Adding the divisibility con-
straint mentioned above to a variable that represents a physical measure could also indicate
some design flaw of the original system. We should not base the verification of a system on the
fact that the temperature measured by some sensors is an even number.

So, instead of strengthening the constraints on physical measures, we introduce in this paper
a way to model the uncertainty of measurement. We concentrate on finding slightly weaker
invariants of systems that represent the nature of variables depending on physical measurements
in a more natural way.

For each invariant there is always a weaker invariant that is inductive: I ≡ true is the
weakest invariant for all Bip models and is inductive.

4 Robust BIP Models

In this section we introduce robust Bip models. Robust Bip models and their invariants are
aimed at describing systems in a more natural way. Specifically, the target of our approach
are systems whose values represent physical measurements. These are performed by sensors,
which are usually not exact but have some tolerance range of imprecision associated with them.
The measured value can vary within this range differing from the actual value. To capture the
behavior in Bip models that are based on this imprecise information, we introduce special sets
of measurement variables. Guard functions depending on an exact measurement variable in a
Bip model are changed in a way that they evaluate to true – i.e. may perform a transition –
within a range of unpreciseness to achieve robust Bip models.

Robust Bip models are realized by exchanging guards by robust guards described by a
robust guard language:

Definition 4.1 (Robust guard language). A robust guard language describing predicates φ is
defined for a set of measurement variables VR ⊆ Vi if the guard appears in the ith component
in the following way:

φ ::= φ ∧ φ | φ ∨ φ | ¬φ | e
e ::= e′ < e′ | e′ ≤ e′ | e′ = e′ | e′ 6= e′ | e′ ≥ e′ | e′ > e′

e′ ::= op | e′ + e′ | e′ − e′ | val · e′
op ::= var | val | m+ δm
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〈(φ1 ∧ φ2)〉2 = 〈φ1〉2 ∧ 〈φ2〉2 〈(φ1 ∨ φ2)〉2 = 〈φ1〉2 ∨ 〈φ2〉2
〈(e′1 < e′2)〉2 = 〈e′1〉2 < 〈e′2〉2 〈(e′1 ≤ e′2)〉2 = 〈e′1〉2 ≤ 〈e′2〉2
〈(e′1 ≥ e′2)〉2 = 〈e′1〉2 ≥ 〈e′2〉2 〈(e′1 > e′2)〉2 = 〈e′1〉2 > 〈e′2〉2
〈(e′1 = e′2)〉2 = 〈e′1〉2 = 〈e′2〉2 〈(e′1 6= e′2)〉2 = 〈e′1〉2 6= 〈e′2〉2
〈(e′1 + e′2)〉2 = 〈e′1〉2 + 〈e′2〉2 〈(e′1 − e′2)〉2 = 〈e′1〉2 − 〈e′2〉2
〈(val · e′)〉2 = val · 〈e′〉2 〈val〉2 = val

〈m〉2 = m+ δm if m ∈ VR
〈var〉2 = var otherwise

Figure 4: Function for Introducing the δm

var ∈ (Vi\VR), m ∈ VR, val denotes some numerical type var like reals or integers.

Each reference to a measurement variable within a robust guard function is accompanied
by some unknown constant δm which captures its imprecision. Compared to the original guard
language, the interpretation of the δm in the robust guard language requires some non-trivial
definitions.

The semantical interpretation of guard functions is adapted in a way that a robust system is
an abstraction of a non-robust system. This means that due to non-determinism it allows more
possibilities of transition but preserves the transition possibilities of the non-robust system.
Given a set of measurement variables VR, for each m ∈ VR there is some unknown δm within
some fixed range −∆m ≤ δm ≤ ∆m (∆m ≥ 0). This range captures the level of imprecision
which a value that represents a physical measurement can have.

A robust guard is constructed from a non-robust guard in two steps:

• In the first step, negations are eliminated by putting them to the lowest level thereby
changing (in)equalities using a function 〈...〉1. This function is defined inductively on the
term structure of the guards and performs e.g. the following transformations:

– 〈¬(φ1 ∧ φ2)〉1 = 〈¬φ1〉1 ∨ 〈¬φ2〉1
– 〈¬(e′1 > e′2)〉1 = (e′1 ≤ e′2)

– 〈¬(e′1 = e′2)〉1 = (e′1 6= e′2)

Thus, it eliminates all cases of ¬φ.

• The second step introduces the δm for the measurement variables and is performed by a
function 〈...〉2 which is shown in Figure 4.

Consider as an example the guard ¬θ = 1000. It is transformed into 〈〈¬θ = 1000〉1〉2 =
〈θ 6= 1000〉2 = θ + δθ 6= 1000 for a measurement variable θ.
The semantic interpretation of such a guard φ is done in the following way for measurement
variables m1...mn:

∃δm1 ...δmn .φ with −∆m1 ≤ δm1 ≤ ∆m1 ... −∆mn ≤ δmn ≤ ∆mn .

Thus, in the above example, we have ∃δθ.θ + δθ 6= 1000 with −∆θ ≤ δθ ≤ ∆θ.
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The existential quantification of the δm ensures that the robust guard function over approx-
imates the corresponding non-robust guard function. We need the first transformation step
eliminating the negations, because our methodology only works, if there are no negations in our
guard: an existential quantification over a negated δm would result in an under approximation.

Note, that robust guards can be transformed back into the non-robust guard language
while preserving their semantics. θ + δθ 6= 1000 can be equivalently written as 1000 − ∆θ >
θ ∨ 1000 + ∆θ < θ by only using the constant ∆θ. For practical applications, the computations
performed in D-Finder can be done, using either the robust guards having been translated
back into the non-robust guard language, or with slight modifications in D-Finder, by using the
robust guard language directly.

A non-robust guard function can be constructed from a robust guard function by setting
each δm to zero.

Definition 4.2 (Robust BIP Models). A BIP model is considered robust for a set of variables
VR iff all guard functions depending on a variable m ∈ VR are formalized in the robust guard
language.

Each guard can be substituted by a robust guard by replacing each occurrence of m ∈ VR
by m+ δm as shown above. We define a function RobustVR

for a set of measurement variables
VR to map Bip models to robust Bip models by replacing the guard functions by robust ones.

Theorem 4.1 (Reachable State Inclusion). For a robust BIP model BM∆ and a BIP model
BM with BM∆ = RobustVR

(BM), given a set of measurement variables VR the following
property holds :
ReachableStatesBM ⊆ ReachableStatesBM∆

Proof:
We have to show that the robust guard functions allow at least all state transitions that the
non-robust guard functions allow. We do an induction on the term structure of φ to show:
〈〈...〉1〉2 evaluates at least in all cases to true where δm1 ...δmn fixed to 0 would evaluate to

true.

An example robust Bip model constructed from our temperature controller example (cp.
Figure 3) for a measurement variable θ is shown in Figure 5.

Theorem 4.2 (Invariant Preservation). Each Invariant I of a robust BIP model BM∆ is
an invariant of a BIP model BM for a given set of measurement variables VR if BM∆ =
RobustVR

(BM)

Proof:
∀s ∈ ReachableStatesBM∆

.I(s) (since I is an invariant of BM∆) and
ReachableStatesBM ⊆ ReachableStatesBM∆

(reachable states inclusion) implies
∀s ∈ ReachableStatesBM .I(s) 2

5 Application of Robust BIP Models

In this section we discuss the deadlock checking of robust Bip models with D-Finder and sum-
marize and extend our comparison of invariants used in the process of certifying the deadlock
freedom of a Bip model for usage with a higher-order theorem prover after D-Finder has pro-
vided its verdict.
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Invariants of Robust and Non-robust BIP models and D-Finder The relations be-
tween different invariants of bip models BM and its robust counter-part BM∆ is shown in
Figure 6

Starting from the weakest inductive invariant (true), D-Finder computes a sequence of
stronger invariants using the initial conditions and the provided bip model BM . Due to ab-
stractions performed by D-Finder this process can provide an invariant ΨBM that is not in-
ductive. Using non-robust Bip models in our certification process the proof of the (dashed)
implication can not be established for non-inductive invariants and the certificate generation
fails. The critical abstraction used in D-Finder is in elimination of existential quantifiers in
the logical formula that defines the successors of a state which becomes part of the provided
invariant. D-Finder uses the Omega library for that step [Ome00]. A closer look at the original
formula and its abstraction reveals the constraints that were lost during abstraction. The loss
of precision is due to the fact that (1) some facts are implicit (e.g., for a variable x, the fact
x ≥ 0 is eliminated if x is of type nat), or (2) facts cannot be represented in the logic (this is
the case for divisibility constraints in the Omega library). The addition of these lost constraints
leads to an inductive invariant. The divisibility constraints can be useful for variables of the
program that range over discrete domains (e.g., counters). However it produces inductive but
unrealistic invariants for variables that represent physical measurements provided by sensors.

Furthermore, Figure 6 shows the goals sketched in the introduction and in Section 3 on
invariants. In order to conduct the proof we seek for an inductive invariant ΨInductive that
contains the (non-computable) sets of reachable states and that entails the deadlock-freedom
property (EnabledBM ), such that the following implications holds:

ReachableStatesBM ⇒ ΨInductive ΨInductive ⇒ EnabledBM

To build ΨInductive we can try to strengthen the invariant provided by D-Finder by guessing
a suitable constraint such that ΨBM ∧ Guess is inductive. The certificate then encapsulates
the proof of the right-most chain of implications. Otherwise we can try the approach promoted
in this paper for building an inductive invariant weaker than ΨBM but still strong enough to
entail deadlock-freedom. This approach comprises the ΨBM∆

invariant of the robust Bip model
and corresponds to the left-most chain of implications of Figure 6.

Each approach can lead to a certificate based on a proof by induction which can be auto-
matically generated and then provided to a higher-order theorem prover for checking.

Evaluation In contrast to non-robust Bip models, D-Finder produces inductive invariants of
robust Bip models in the case studies that we examined so far. The model of Figure 5 is the
robust version of our running example of Figure 3. In all guards the uncertainty δ is added
to the θ variable that corresponds to the measure of the temperature. This transformation
prevents the generation of over constrained invariants. Obviously, the generated invariants are
less precise than those obtained for the original model. Hopefully, in our experimentations this
did not introduce new deadlock possibilities. Actually, it is highly desirable that the deadlock-
freedom property of a system does not depend on the sensitivity of sensors.

Figure 7 summarizes our approach using the running example. It shows the invariant CI3
generated by D-Finder on the original bip model BM (in the middle) compared to the corre-
sponding stronger invariant obtained by strengthening (on the left) and the weaker but robust
invariant generated by D-Finder from the robust model BM∆ (on the right).

The CI3 invariant relates the value of θ to the location of the controller state machine.
The original invariant is not inductive. It can be either strengthened by adding the additional
constraint, 2|θ. This leads to an inductive but unrealistic invariant. A more realistic invariant
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strengthening techniques

non−inductive inductive
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(Guess)

impl.

of invariants
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invariant computed by

D−Finder on BM

invariant computed by

D−Finder on BM

∨

atl6 ∧ 100 ≤ θ ≤ 998 ∧ 2|θ

atl5 ∧ 100 ≤ θ ≤ 998

∨

atl5 ∧ 99−∆ ≤ θ ≤ 998 + ∆

atl6 ∧ 99−∆ ≤ θ ≤ 998 + ∆

−→∨

atl5 ∧ 100 ≤ θ ≤ 998

∆

∆

atl6 ∧ 100 ≤ θ ≤ 998

Figure 7: Handling the Example Invariant

is obtained by running D-Finder on the robust model. The resulting invariant is inductive and
strong enough to conduct the last step of the deadlock analysis. The final result is as precise
as the ones obtained with the two other invariants; no false deadlocks are generated by robust
invariants.

Not all invariants of robust Bip models have to be necessarily inductive. It may be possible
that we need to strengthen them sometimes e.g. by using the technique discussed in [BM08].
These techniques, however, must not add constraints bearing unnatural facts on the measuring
process of the measurement variables.

6 Related Work

This paper describes the modification of systems in order to generate realistic inductive invari-
ants for a verification tool. These invariants are verified to hold by a higher-order theorem
prover for certifying the results of the verification tool. Inductiveness is crucial for deductive
proofs in the certification process. To our knowledge this particular subject has not yet been
studied before.

Certification The certification of analysis results is an important aspect of this work. We
generate certificates in the form of proof-scripts for a higher-order theorem prover. The gener-
ation of proofs to certify the verdict of a model-checker was first introduced in [Nam01]. Other
important work for certifying the results of verification tools comprise the use of support sets for
a model checker [TC02], keeping track of justifications for the blast model-checker [HJM+02],
and a SAT solver that generates certificates [ZM03]. Further related is Proof-Carrying Code
(PCC) [Nec97], a method to guarantee that executable code fulfills a policy on access and
resource management and Foundational PCC [WAS03] characterized by a small set of axioms
and a simpler proof-checker. In this paper we concentrate on certifying invariants via a formal
proof done by induction.
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Generation of Inductive Invariants Automatic generation of invariants has been studied
for a long time (see e.g. [MP95]). For the invariants considered in this paper the papers [BLS96]
and [SDB96] where most influential. [BLS96] describes many principles that have been imple-
mented in our deadlock-verification tool D-Finder.

[BM08] focuses on techniques to incrementally generate inductive invariants. The main idea
is to use counter-examples to refine an invariant until it becomes provable by induction. The
paper features in addition to the description of general techniques, further valuable techniques
to refine invariants by splitting large conjunctions into subparts and refine selected subparts
independently. This method has been successfully used in the refinement of boolean invariants.
The presented techniques require a deep knowledge of the class of systems in consideration, in
order to cleverly take advantage of the presented counter-example guided refinement approach
of invariants.

In this paper we regard strengthening of non-inductive invariants by taking advantage of
our knowledge of the verification tool D-Finder – we know when the invariant can lose their
inductiveness quality – as one possibility to achieve inductive invariants.

Robustness Another feature of this paper is robustness. Robustness of timed automata is
described in [GHJ97]. This notion is similar to our notion and has been introduced for real-time
systems in order to cope with properties that e.g. occur when transforming continuous signals to
discrete values or problems due to imprecision of sensors. The theory of verification of systems
is enriched with a so called tube-semantics to capture uncertainty. Similarly, [AM95] introduces
the notion of finite variability for properties of continuous systems to capture semantics intervals
of continuous time. The presented method allows proving properties of a continuous semantics
by reasoning on a discrete semantics which is more appropriate for automated verification and
deductive reasoning. A constrained solving based method for generating inductive invariants
for hybrid systems is presented in [SSM04].

In contrast to these work, we do not consider real-time system with continuous semantics.
The bip system has a discrete semantics and acquires information about the physical quantities
through sensors. One of our our goals is introducing uncertainty about the sensors measure-
ments while reusing D-Finder invariant generation techniques based on a discrete semantics.

7 Conclusion and Future Work

In this paper we have introduced the notion of robust Bip models for systems containing values
representing the results of physical measurements. Robust Bip models can be obtained from
non-robust Bip models and over approximate their behavior. We proved that each invariant
of the robust Bip model is also an invariant of the corresponding non-robust Bip model. We
motivated that invariants that have been automatically generated by the deadlock detection
tool D-Finder for robust Bip models tend to be inductive while those of non-robust systems
are likely to be non-inductive. Inductivity of invariants allows for easy formal verification that
they do indeed hold in a higher-order theorem prover. Our technique is developed for certifying
the results of D-Finder at runtime. It allows to keep a discrete representation instead of a
continuous representation of values occurring in a system, thus enabling the use of tools like
D-Finder which work on discrete representations.

Future work continuing this on-going work involves the analysis of further case studies to
discover more benefits and potential limitations of our approach. We have achieved first results
in producing realistic and inductive invariants by running D-Finder on robust Bip models. It
seems that instead of using strengthening techniques, we can use robust (and therefore weaker)
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constraints to achieve inductive invariants. Once D-Finder provides analyzes for Bip models
with value exchange during component interaction, we will model sensors and provided values
as distinct components. Future work includes further reasoning on robustness to ensure that
inductiveness of D-Finder invariants is guaranteed by the construction process of robust Bip
models. More technical challenges comprise the addition of ranges of unpreciseness that can
deal with non-linear errors such as a certain error percentage of a measured value. This can
be modeled as functions depending on measured values and have to be integrated in our guard
language. These functions are difficult to handle since the Yices SMT-solver can only deal
with invariants generated from guard functions formalized in Presburger arithmetic. Another
task reserved to future work is fixing invariants by adding constraints in order to make them
inductive. Such constraints might be generated by using hints from unresolved theorem prover
goals created during the process of trying to prove an invariant correct.
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