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Abstract 

Solving inverse kinematics (IK) has been an important problem in the field of 

robotics. In recent years, the solutions based on neural networks (NNs) are popular to 

handle the non-linearity of IK. However, the complexity of IK grows rapidly as the 

degree-of-freedom (DOF) of the robot arms increases. To address this problem, we 

exploit the dependencies among the joints of the robot arms, based on the observation 

that the movements of certain joints of a robot arm will affect the movements of other 

joints. We investigate the idea under a data-driven setting, i.e., the NN models are 

trained based on supervised learning through a given trajectory dataset. Several NN 

architectures are examined to exploit the joint dependencies of robot arms. A greedy 

algorithm is then presented to find a proper sequence of applying the joints to decrease 

the distance error. The experimental results on a 7-DOF robot arm show that the NN 

models using joint dependency can achieve the same accuracy as the single-MLP model 

but use fewer parameters. 

1 Introduction 

In the field of robotics, solving inverse kinematics (IK) is an important problem [1]. The IK 

problem is, given the position of the target point, to determine the angle of each joint of a robot arm to 

allow the end-effector to reach the target point. 

IK has multiple solutions and is non-linear, which make the solution difficult to obtain [2]. Neural 

networks (NNs) are commonly used to solve the IK problem due to the abilities of modeling non-

linear relationships [3]. In many NN-based solutions, the IK function is modeled by a single fully-

connected feedforward neural network, the multi-layered perceptron (MLP), that directly takes the 
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Cartesian coordinate of the target point as input and the joint angles as output [3, 4, 5, 6, 7]. However, 

when the degree-of-freedom (DOF) of the robot arm is high, the problem becomes complicated.  

 In general, the number of parameters required by a NN depends on the complexity of the problem. 

Moreover, the complexity of the IK problem is determined by the robot’s geometry and the nonlinear 

equations that describe the mapping from the joint space to the Cartesian space [8]. It is usually 

proportional to at least the square of the number of DOF [9]. The higher the DOF of the robot, the 

higher the complexity of the IK problem.  

Observing human arm motions, we can see that there are causality relationships between joints of 

a robot arm. Rotating a joint may drive the subsequent joints and the end effector of the robot arm, 

causing those joint angles to change correspondingly to reach the target position. Thus, if we apply 

these joints to the neural networks in sequence according to their dependencies instead of all in 

parallel, we may be able to use smaller neural networks to control the robot arm while maintaining 

similar performance.  

To see how it may work, we assume that the NN models to solve the IK problem for a robot arm, 

which maps from Cartesian space into joint space, can be characterized by the IK function shown 

below. The IK function is decomposable into joint functions that determine the angle of a joint based 

on the target position and the angles of those depending joints. Each output joint is calculated from 

the previous joints. The symbols, x, y and z denote the coordinate of target position, and θ1 ~ θn denote 

the joint angles. We then train the NN models using data collected from human demonstrations to 

show that the assumption is workable. 

 
We propose in this paper four different NN architectures to model the joint functions of IK: 

• Hierarchical neural network (HNN): HNN is the simplest network that is composed of n 

MLPs, which respectively model the n joint functions. 

• Recurrent neural network (RNN): RNN has a cyclic structure, so it can model the recurrent 

joint functions. We take advantage of this property to learn the causality relationship between 

joints, instead of time steps in original RNNs. 

• Recurrent neural network & self-attention (RNN & SA): We use self-attention mechanism to 

improve the information loss of RNN. 

• Self-attention only (SAO): We replace recurrent layers with self-attention layers. 

To verify our architectures, we solve the IK problem of a 7-DOF robotic arm. We trained and 

tested the above models by the trajectories collected from human demonstration. Compared with the 

best MLP model, our models can reduce at best 44.6% distance error than the single MLP with a 

similar amount of parameters. To achieve a similar accuracy, our models only use 0.4% amount of 

parameters in the best case. To further improve our models, we also tried different orders of output 

joints and provide a novel method to optimize the output order of the joints. The result shows that the 

optimized output has an average 19.5% less distance error than the original output order. 

Our contributions can be summarized as follows. (1) We have developed several neural network 

architectures considering joint dependency to solve the IK problem. (2) We have proposed an 

algorithm to optimize the joint output order of the hierarchical neural network. (3) We have applied 

our architectures and algorithm on a 7-DOF robotic arm and evaluated their effectiveness. 
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2  Related Works 

2.1 Recurrent Neural Network 

Recurrent neural network, a.k.a. RNN, is a class of artificial neural network which has a cyclic 

structure. Derived from feedforward neural network, RNN can keep information in their internal state 

to process variable length sequences of inputs. Hence, they are often used in the fields of natural 

language processing and speech recognition [14]. 

Backpropagation through time (BPTT) is commonly used for training RNNs. By unfolding a 

recurrent neural network in time, the backpropagation algorithm can be applied to update the network 

parameters [15].   

2.2 Multi-Head Masked Self-Attention 

Vaswani et al. proposed Transformer, a deep learning model primarily used for natural language 

processing (NLP) [16]. The major component in the transformer is the unit of multi-head self-

attention mechanism. The self-attention is applying attention mechanism between the time steps in a 

sequence. It adopts the scaled dot-product attention written as 

where Q is query, K is keys, V is value, and 𝑑𝑘 is the dimension of K. The parameters Q, K, and V are 

the matrices composed of representation vectors of each timestep. The relationship between timesteps, 

which are words in NLP, is calculated with Q and K, and is used to calculate the weighted sum of V. 

Transformer uses the multi-head mechanism to learn the relationship from different representation 

subspaces. Multi-head attention runs the scaled dot-product attention multiple times in parallel which 

is written as  

MultiHead(Q, K, V) = [ℎ𝑒𝑎𝑑1; … ; ℎ𝑒𝑎𝑑ℎ]𝑊𝑜  

where ℎ𝑒𝑎𝑑𝑖 = Attention(Q𝑊𝑖
𝑄 , K𝑊𝑖

𝐾 , V𝑊𝑖
𝑉) (2) 

The self-attention layer is only allowed to attend to previous positions in the sequence. It can be 

done by masking future positions, that is setting them to -inf, before the softmax step in the self-

attention calculation. 

3 Method 

In this section, we introduce a NN-based IK solution with joint dependency. We use the IK 

problem of a 7-DOF robotic arm as an example (Section A), design several architectures to utilize 

joint dependency (Section B), and propose a novel method to optimize output order (Section C). 

3.1 Inverse Kinematics on a 7-DOF Robotic Arm 

Figure 1 shows the 7-DOF humanoid robotic arm. To compute forward kinematic, we build the 

Denavit-Hartenberg (DH) table, which consists of DH parameters extracted from the robotic arm, see 

Table 1, where 𝜃 is the joint angle between two adjacent x-axes measured around z-axis, d is the link 

offset that is the distance between two adjacent x-axes measured along z-axis, a is the link length that 

is the distance between two adjacent z-axes measured along x-axis, and α is the link twist angle 

between two adjacent z-axes measured around x-axis. 

Attention(Q, K, V) = softmax(
Q𝐾𝑇

√𝑑𝑘

)V  (1) 
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With the DH table, we can write the homogeneous transform matrix from joint k to joint k+1 as 

 𝑇𝑘
𝑘−1 = Rot(z,𝜃)Trans(0,0,d)Trans(a,0,0)Rot(x,𝛼) 

(3)  
= [

cos 𝜃 − sin 𝜃 cos 𝛼 sin 𝜃 sin 𝛼 𝑎 cos 𝜃
sin 𝜃 cos 𝜃 cos 𝛼 − cos 𝜃 sin 𝛼 𝑎 sin 𝜃

0 sin 𝛼 cos 𝛼 𝑑
0 0 0 1

] 

where Rot( ∙ , ∙ ) is the homogeneous rotation matrix and Trans( ∙ , ∙ , ∙ ) is the homogeneous translation 

matrix. Then, we can obtain the homogeneous transform matrix from the first joint to the last joint by 

𝑇7
0 = 𝑇1

0𝑇2
1𝑇3

2𝑇4
3𝑇5

4𝑇6
5𝑇7

6 = [

𝑅11 𝑅12 𝑅13 𝑥
𝑅21 𝑅22 𝑅23 𝑦
𝑅31 𝑅32 𝑅33 𝑧

0 0 0 1

] (4) 

In this work, the forward kinematics is the mapping from the joint angles 𝜃 =
{𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6, 𝜃7} to the end point coordinates 𝑝 = {𝑥, 𝑦, 𝑧} by (3) and (4). On the other hand, 

the inverse kinematics is defined as 𝜃 = 𝐼𝐾(𝑝). 

In traditional NN method for IK problem, we usually build a fully-connected feedforward neural 

network, a.k.a. MLP, which directly takes 𝑝 as input and 𝜃 as output. By minimizing the error 

between output angle and ground truth angle, we can fit the NN model to solve the IK function. 

However, in the case of high DOF, MLP needs to use much more parameters to achieve the same 

accuracy as low DOF, but the resultant accuracy is often unsatisfactory. It is difficult to solve the high 

DOF IK problem by a single MLP. 

3.2 Neural Network Architectures with Joint Dependency 

To exploit the dependencies of joints, we divide the IK function into 7 joint functions as shown in 

Section I. The first joint function only takes the coordinates as input, while other joint functions take 

the previous output joint as input. To model the joint functions, we propose four different NN 

architectures: Hierarchical neural network (HNN), Recurrent neural network (RNN), Recurrent neural 

network & self-attention (RNN & SA), Self-attention only (SAO). 

A. Hierarchical Neural Network 

Figure 1: A 7-DOF robotic arm Table 1: DH table for the robotic arm 
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The most basic way to model all joint functions is to train an MLP for each joint function. All 

MLPs are composed of dense layers as shown in Figure 2. The MLPs’ input and output are same as 

the joint function mentioned above. We use N to represent the number of neurons used in our models. 

In training phase (Figure 3), we use ground truth data collected from human demonstrations as the 

input to train each joint function. In inference phase (Figure 4), we combine the networks of joint 

functions to restore them to the original IK function. The network has a hierarchical structure and is 

thus called hierarchical neural network (HNN). 

 

B. Recurrent Neural Network 

Note that joint functions repeat the same process, i.e., using the information of previous outputs to 

predict the next joint angle. This is very similar to recurrent neural networks (RNNs). Thus, we can 

model the recurrent joint functions, which reflect the causal relationship between joints, by using 

RNN. We thus use joint angles of the IK problem as the input of RNN’s each time step and output 

one joint angle in each time step of RNN. The RNN model takes the coordinate of target point as the 

initial state and outputs one joint angle based on the previous joint angles at each time step, see Figure 

5. RNN model uses different inputs during training and inference as shown in Figures 6 and 7. 

Figure 2: Architecture of MLPs for joint 

function 
Figure 3: Training architecture of hierarchical neural 

network 

Figure 4: Inference architecture of hierarchical neural network Figure 5: Architecture of RNN for joint function 

Figure 6: Training architecture of RNN. Left is the original network, and right is the unfolded network 
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C. Recurrent Neural Network & Self-Attention 

Compared to HNN, RNN can only use one network to model all joint functions of IK. It may lose 

information of previous inputs, especially in long sequence. In order to solve this problem, we add 

self-attention mechanism in our RNN model.  

To be exact, we use multi-head masked self-attention mechanism proposed by [16]. An attention 

layer makes the number of operations between all the time steps the same, so it can learn the 

relationship between current time steps more easily. In addition, multi-head attention allows the 

model to learn the time steps relationship from different representation space. Finally, the illegal 

connection in attention layer is masked to prevent joints from attending to subsequent joints. 

In our model, we put a multi-head masked self-attention layer after the recurrent layer and 

concatenate their outputs as shown in Figure 8. Actually, we use 4 parallel attention layers, and the 

attention dimension is a quarter of the model dimension to keep the computational cost unchanged. 

D. Self-Attention Only 

With attention mechanism, we can shorten the length of the path from input to output, and the 

network can compute the output of each time step in parallel. According to [16], we can even use only 

attention mechanism to achieve the effect of RNN. Hence, we design a network which consists of 

multi-head masked self-attention layers. To be more stable and easier to train the model, we use 

techniques such as residual block and batch normalization [17].  

Figure 9 shows the architecture of the self-attention only (SAO) network. The SAO network is 

composed of 2 identical layers. Each layer has two residual blocks whose output is Layer(x)+x, where 

Figure 7: The inference architecture of RNN. Left is the original network, and right is the unfolded 

network 

Figure 8: Architecture of RNN & SA 

Figure 9: Architecture of SAO 
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Layer(x) is the function of the network in the block. The first is a multi-head masked self-attention 

mechanism, and the second is a feedforward network. The feedforward network concatenates input 

with the feature vector of target point and then connects it to two layers of dense and batch-

normalization. 

 

3.3 Output Order Optimization 

 In this section, we consider the problem of output ordering of the joints. Does the output order of 

joints affect the performance of the model? If so, how can we find a good output order? If we know 

which joint is more suitable for the later outputs, we may improve the model performance by 

choosing a better output order. We thus introduce a greedy algorithm to determine the order of the 

applying the joints with a goal to optimize the distance error of the dataset. 

The algorithm is shown in Algorithm 1. Considering a n-DOF IK problem, we can divide the IK 

function into two joint functions. The first joint function directly outputs n-1 joints with target 

position, and the second joint function outputs the remaining joint with target position and the other 

joints. For n joints, there are n combinations of these two joint functions which output n-1 joints and 

one joint respectively, and each combination is modeled by an HNN. Then, we evaluate models by 

calculating the distance between end point and target point, and we choose the best combination for 

the next iteration as shown in Figure 10. This process is actually searching the most suitable joint to 

be the later outputs, and we repeat this process until we have an HNN which consists of n MLPs. This 

gives an output order which has lower distance error in testing dataset than the original order.  

 

Algorithm 1: Process to optimize output order of HNN for IK problems 
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4 The Experiments 

4.1 Environment 

In our experiments, we used a 7-DOF humanoid robotic arm to be the test subject. Due to the high 

cost in the real world, we simulated the robot in the virtual environment of Webots. To prepare the 

training data for the NN models, we used VR devices to control the robotic arm in the virtual 

environment and collected the data of human demonstration, which is to grasp the bottle on the table 

from the initial position, and the coordinates and joints’ angles of all points in the path would be 

recorded. We collected 20 trajectories from each of 9 locations as training data and 1 trajectory at 

each of 8 locations as testing data. 
We used Python deep learning library Keras to build NN model and use the tensor compiler 

PlaidML as Keras’ backend. Our experiments were performed on AMD Radeon RX590 GPU and 

Intel i7-8700 six-core 3.2GHz CPU. The following is our training configuration: training epoch 2000, 

batch size 4096, optimizer Adam, and loss function MAE. For each model architecture, we used five 

different learning rates 0.00025, 0.0005, 0.001, 0.002, 0.004 to train models and chose the model with 

the best performance as the final result. We evaluated the models’ performance by calculating the 

average distance error which is the coordinate difference between the target point and the predicted 

end point. 
                                                                                              

      

4.2 Comparison of Architectures 

We evaluated the performance of single-MLP and our architectures under different numbers of 

parameters. We only changed the number of neurons of the hidden layers in the models and kept the 

other architecture setting unchanged. Figure 11 shows the experiment result.  

Regardless of the architecture, the distance errors show a downtrend as the number of parameters 

increased. All our architectures outperform the single-MLP. Taking the best single-MLP as the 

baseline, our models can achieve 55.4% distance error of baseline. Moreover, we only used 0.4% 

number of parameters to achieve the accuracy of the baseline. The joint dependency is helpful for 

joint angle prediction, and allows NN models with fewer parameters. 

The models with the self-attention mechanism has lower distance error than the RNN models and 

the HNN models when the number of parameters is larger than 100K. This shows that the self-

attention mechanism is better than RNN to learn the joint dependency. However, the SAO models 

performed worse than the RNN&SA models when the number of parameters is smaller than 10K. A 

possible reason is that self-attention can learn the causal relationship better than RNN but needs more 

parameters. 
 

Figure 10: Choosing the best combination of output orders 
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4.3 Output Order Optimization 

To further investigate the effect of joint output order on model performance, we used the proposed 

greedy algorithm to optimize the joint output order and compared the result with the original order as 

shown in Figure 12. The optimized output order outperforms the original output order under almost 

all number of parameters, resulting in an average 19.5% less distance error. In summary, the joint 

output order affects the performance of the models, and the proposed greedy algorithm can find a 

better output order to reduce the distance error of HNN models. 

 

4.4 Joint Analysis 

The output order found by our algorithm is different from the intuitive joint order, which is from 

the body to the end. To know why, we analyze the training data. In Figure 13, it can be seen that the 

distributions of both joints 2 and 5 are very concentrated, meaning that they are almost unchanged in 

the trajectories of human demonstration. Hence, they are suitable for earlier outputs, because they 

have little effect on the distance errors. Table 2 shows the correlation coefficients of joints, where 

𝑹𝒙𝒚𝒛 takes target coordinate as input variables and 𝑹𝒙𝒚𝒛&𝒋𝒐𝒊𝒏𝒕𝒔 takes target coordinate and other joints 

as input variables. We found joint 6 has the lowest 𝑹𝒙𝒚𝒛 and has the highest improvement by adding 

Figure 11: Performance comparison of architectures 

Figure 12: Performance comparison of output orders 
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other joints as input variables. Adding information about other joints can make joint 6 more 

interpretable and predictable, which explains why joint 6 is the last output in our result. 

        

Table 2: Correlation coefficients of joints 

Figure 13: Joints value distribution. The upper row is the histogram of joint values, and the lower row is the 3D 

scatter diagram of joints value. From left-top to right-top is joint 0~3, and from left-bottom to right-bottom is 

joint 4~6. 
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5 Conclusions 

In this paper, we proposed a NN-based IK solution with joint dependency to reduce parameters of 

NN models. Inspired by human arm motion, we consider the causality relationship among the joint 

angles in the IK problem. We designed four NN architecture to investigate the joint dependency and 

applied them on a 7-DOF robot. The experimental results show that the NN models with joint 

dependency use fewer parameters than the traditional single-MLP models when they have similar 

accuracy. With the joint dependency, we improved NN models for the IK problem. Furthermore, we 

also proposed a simple greedy algorithm to optimize the joint output order. The experimental results 

show that the optimized output order has better performance than the original output order.  
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