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Abstract 
The emerging trend of autonomous shipping has demanded the automation of many 

onboard systems and sub-systems to minimize human involvement in decision-making. 
Given the time- varying nature of the sea, the respective knowledge of ship response 
possesses a variety of applications in real-time operations and guidance, where predicting 
responses a few seconds ahead plays a crucial role in dynamic control. Within current 
literature, many long-run studies lack evaluation of the dynamics of ship response time-
series in a transitory condition between sea states. To address this deficit, the present 
study proposes an innovative algorithm to automatically detect the substantial changes in 
the time series regime for ship response data and adjust the observation window for 
prediction accordingly. For prediction purposes, a well-known classic nonlinear 
regressor, Seasonal Auto-Regressive Integrating Moving Average (SARIMA) has been 
employed in an adaptive sense. Despite this concept being primarily developed for 
advancing ship maneuvering, experimental and simulation data of a moored semi-
submersible vessel has been utilized, given the dynamics' simplicity. The results 
demonstrated the efficiency of the proposed filter in minimizing uncertainty in ship 
response prediction according to the prevailing sea conditions. Although the proposed 
algorithm shortens the prediction length in transitory signals, it essentially improves the 
prediction results, for the estimation models are built only on informative short-term data. 
The proposed workflow can not only increase the autonomy of the involved system with 
ship response data, but also be further used on any onboard system dealing with time-
varying information. 
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1 Introduction 
Short-time ship response prediction possesses a variety of applications including but not limited to 

launching onboard weapons, helicopter, and aircraft landing (Qu, 2016), motions compensation systems 
(Iola, 2011), and seaway estimation (Majidiyan, 2023). More specifically, the ship-response knowledge 
can be fused into any deterministic control and guidance onboard systems. In terms of onboard 
equipment, any system with predictive model control (PMC) and feed-forward control requires 
predicting a specific horizon in future. For autonomous ships and remote control, the acquisition and 
prediction of future events are imperative. 

Fundamentally, the problem can be modelled in three forms: first principal model, grey box 
approach, and black box approach. For the first principal models, the attempt is toward modelling waves 
and ship interaction, however given a large number of associated parameters and pertinent uncertainties, 
this approach has not been of interest. The second and third approaches fall into the area of online 
system identification, where a mathematical model is constructed on the data in a buffer window of 
recent events (finite history algorithm). Thereby, the same model can be utilized for predicting system 
behavior in a few second horizons. As such, the second approach tries to model the ship with a second-
order transfer function to tune the added mass and damping factor according to Equation 1 (Faltinsen, 
1993). However, hydrodynamic coefficients or parameters in Equation 1 for a ship are associated with 
an unknown level of uncertainty and are only based on the linear assumption of ship and wave 
interactions. Due to this, the models cannot explain nonlinear phenomena such as viscosity-dependent 
phenomena. With the advancements in computational resources, the third approach has become 
popular, where all prior assumptions are dropped from the problem, and the data-driven model entirely 
relies on the available data. All models are summarized in Figure 1. In Equation (Qu, 2016), ω denotes 
frequency, β indicates wave relative direction, H is the transfer function (conceptually corresponding 
to G in figure 1), M, A, B, and C stand for hydrodynamic coefficients in brief. The real part of the H 
denotes Response Amplitude Operator (RAO). 

 
                                                                                                                   (Qu, 2016)                 

The available literature in this regard also has followed the same pattern, meaning that the seminal 
attempts endeavoured to define a first principle model such as (Kaplan, 1965). Later, the studies were 

Figure 1: The existing framework of methods for ship response prediction 
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directed toward a grey box approach, like defining a state-space model in (Triantafyllou, 1983) with the 
tremendous computational cost of deriving hydrodynamic coefficients and high noise sensitivity. 
Literature in the third approach is resourceful and is flourishing given the rise and emergence of 
intelligent learning models combined with the signal decomposition techniques such as YutuYe (2022) 
and Zhihong Nie (2022). In these models, the combinations of classic/intelligent regressors, comprising 
Auto-Regressive (AR), SVR, and long-short term memory (LSTM), applies to the sub-signals obtained 
from decomposition. These models have enhanced the prediction of ship response dramatically. 

However, previous studies have mainly focused on predicting ship response in a fixed wave 
condition, and the prediction model has not been investigated in a time series with a significant regime 
change due to alteration of relative wave direction or ship speed. In this regard, the present study aims 
to highlight the issue within the transition and introduce an algorithm to dynamically change the 
observation window length based on the significant short-term memory in the data. The remaining is 
organized as follows: Section 2 illustrates the prediction models and data generation methods, which 
have been utilized for the current sake. Section 3 identifies the problem and proposes an innovative 
algorithm. The algorithm's efficacy in improving the outcomes is discussed in Section 4. Finally, 
Section 5 draws a conclusion and pictures the future works. 

2  Materials And Methods 
Rather than ship data, the data from a semi-submersible platform has been employed for simplicity. 

Although the present synthesized scenario might not exactly reflect the dynamics of the advancing ship, 
the control over the data and reduced degree of uncertainty can better assist in constructing a model for 
tackling the problem. The platform has been experimentally tested at Shanghai Jiao Tong University 
basin for a long exposure of the unidirectional waves with the JONSWAP spectrum. To further extend 
the response scenarios and diversify the data, a simulation has been carried out with a panel method 
base commercial package in ANSYS AQWA. All information regarding the platform dimension, test 
and simulation details can be found in Yiting (2019), YutuYe (2022) and Majidiyan (2023). Since the 
aim is to assess the performance of predictors for online applications, two models of Adaptive SARIMA 
(Box, 1994) as a linear based and SVR as an intelligent nonlinear based, which are amenable to small 
sample sizes have been selected. Although SARIMA is designed for nonstationary data (Tangirala, 
2018), it is crucial to select an appropriate buffer to prevent high- order nonstationarity. Therefore, the 
observation window length is chosen as the 40s for both models. Equation 2 (Tangirala, 2018) indicated 
the basic form of SARIMA (1,n,1) s process, Where L is the lag operator, d denotes the AR coefficient, 
s is the seasonality order, n is the degree of integration, co is the constant term, c is the MA coefficient, 
ɛt is white noise, and yt is the time series in t. 

                                                                                                             (Iola, 2011) 

Here, a low-order SARIMA model is used, according to Equation 3. The terms in the model are set 
according to statistical tests of the Augmented Dickey-Fuller (ADF) test (Dickey, 1979) and 
Kwiatkowski– Phillips–Schmidt–Shin (KPSS) [13] given in Table 1 as the decision matrix. To estimate 
model parameters d in Equation 3, the Maximum Likelihood Estimate (MLE) has been employed. The 
term MA is entirely ignored due to intrinsic invertibility complications (Tangirala, 2018). The 
polynomial’s order is directly and automatically determined through statistically significant lags in 
sample Partial Autocorrelation Function (PACF) as per (Majidiyan, 2023). Also, to reduce propagating 
(parameter uncertainty), reduce computational expenses, and prevent overfitting, the simplest model 
has been set up. Equation Majidiyan (2023) denotes the final SARIMA model that adaptively uses 
different orders and parameters based on the sample PACF and statistical tests. 
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                                                                                                      (Majidiyan, 2023) 
 

Table 1: Scenarios for model selection based on the statistical test outcomes 
Status ADF KPSS Model 

Stationary H=1 Stationary H=0 Stationary AR 
Stationary with detrending H=0 Nonstationary H=0 Stationary SARMA 
Stationary with differencing H=1 Stationary H=1 Nonstationary ARIMA 
Nonstationary with seasonality H=0 Nonstationary H=1 Nonstationary SARIMA 
Non seasonal nonstationary H=0 Nonstationary H=0 Stationary ARIMA with extra 

differencing 

3 Problem Statement and Proposed Solution 
For online system identification, a fixed finite buffer window slides over the data to construct a 

mathematical prediction model. Nevertheless, this fixed window length introduces many complications 
when data in a buffer window contains entirely different statistical regimes. In general, it happens when 
the exciting force to the process u[t] (input) changes. So, the dynamic in the response y[t] in the time 
series shows different behaviour. Moreover, it can occur in the sensor signal glitch or concerning ship 
response context when induced-wave force varies due to alterations in ship speed or relative direction 
to the ship, and phase lag between exciting wave force and respective induced response (Faltinsen, 
1993). As a result, regardless of the type of estimation model, the mathematical model is built based on 
the expired piece of information. Figure 2 perfectly illustrates the problem in which the SARIMA model 
has been used for prediction on 1000 samples of 25 Hz sampling rate corresponding to 40s and the 20s 
window that is chopped up from the transition sample (501:1000). As can be observed, the 20s window 
length indicates a better prediction quantitively and qualitatively, although within the shorter horizon. 
The reason behind shortening the horizon is that the 20s data does not provide sufficient information 
for modelling farther horizons. Looking at the sample PACF plot for both time windows in Figure 3, it 
manifests that the 40s window model included statistically significant lags, which are in the first 
segment of the time series for modelling, or simply, the model is constructed based on the passive 
expired data, while for 20s, the recent lags and the short-term memory of the process has been utilized 
for modelling.  

To address this issue, it is essential to automatically pinpoint the time stamp of substantial transition 
in a primary buffer window in order to adjust the observation window length for constructing an updated 
estimation model. To this end, the following algorithm identifies the regime change in the signal that 
enables adjusting the observation window accordingly.  

 
Figure 2: Transition of platform roll response to the irregular wave (JONSWAP) from 

wave height 5 m to 1 meter with wave direction of 270°, sampling rate 25 Hz. RMSE for 40s= 
0.0323 and for 20s= 0.186 
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Following steps define the algorithm descriptively for discrete signal of x(k) with length N: 
1. The cumulative variance is done in x(k). 
2. The vector of cumulative variance is split into 8 segments (5 seconds each). 
3. All values are rearranged in 8 vectors. 
4. Derivation of vectors in step 3 shows a maxima where the regime has changed. 
5. The segment for prediction must be selected within the beginning of segment where the 

derivation peak is found. 
Also, some constraints must be considered in the algorithm. The horizon is proportional to the 

observation length, and observation length should not be selected below 15s as lack of data complicates 
modelling and increases uncertainty. Furthermore, the peak in the first vector in stage 3 is ignored since 
it might only reflect local oscillations rather than regime change. 

4 Results and Discussion 
Many further response scenarios from synthesized data in AQWA have been employed to examine 

the efficacy of the proposed algorithm. After validating the RAO with experimental data, the simulation 
helped in extending the scenarios. Figure 4 depicts the process according to the algorithm. Figure 4(a) 
indicates (stage 1 in the algorithm) the vector of cumulative variance for a transition response of roll 
motion in wave significant height Hs=2.5 from 0° wave direction to 30°. At this point, the aim is to find 
the highest slope in the cumulative variance diagram. Figures 4(b) and 4(c) indicate that the highest 
value belongs to the difference between the variance of segments 5 and 4, and ultimately, Figure 4(d) 
denotes the maxima, where the buffer window must be split at that time step. 

 The respective prediction results for the above roll response are depicted in Figure 5. As can be 
visually observed, the signal has experienced a regime change at N=20, where the prediction with the 
second batch of data from 20s to 40s shows a better result. While it may be proposed that rather than 
splitting the data in a buffer window, the SARIMA model could have been constructed based on the 
recent statistically significant lags found in sample PACF. However, the confidence interval (CI) 
directly depends on the sample size statistics in the buffer window for 95% confidence level (Tangirala, 
2018). The bigger is N, the tighter is the CI. Therefore, compared to the 40s window, several recent 
significant lags propagate in the modelling in shorter window sizes. In addition, the shorter range of 
data in segments 1s to 20s also influences sample mean and standard deviation. Figure 6 indicates the 
sample PACF for 20 lags of window length 40s and 25s (second batch of data), where CI bounds 
decreased and considering the addressed influences, different lags contributed to the statistically 
significant lags in sample PACFs. As such, the window for a new regime highly depends on different 
lags for modelling, while including the farther lags misleads modelling. 

 

Figure 3: Comparison of sample PACF for window size 40s (left) and window size 20s (right) 
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The same logic can be further generalized for all linear and nonlinear regression models too. In fact, 
the first batch of data has nothing statistically important to contribute in constructing the regression 
model, and may even play a negative role. 

 

 
Figure 5: Prediction results for both window sizes with RMSE= 0.0662 for window size 40 and 0.0541 for 

window size 20 (left). Prediction results for window size 40s and 25s with RMSE=0.0215 and 0.0065 respectively 
(right) 

Figure 4(a): Cumulative variance for buffer window size 40s (left) and Figure 4(b) the spread of variance 
from difference between consecutive segments (right) 

Figure 4(c): Indication of variance difference between consecutive segments (left) Figure 4(d) and 
derivation of variance differences which indicates the time step for splitting the buffer window (right) 
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5 Conclusion 
The current study investigated how inherent dynamics in finite history buffer windows of time series 

can affect estimation modelling. In this regard, the time series responses of a semisubmersible platform 
have been studied. The transitory scenario between wave-induced responses direction demonstrated 
that the latest regime of time series must only be included in modelling for prediction. An innovative 
algorithm has been introduced to identify significant regime change in the buffer window using a 
derivation of cumulative variance in a grid. Results showed that the algorithm works efficiently and 
improves the response prediction at the cost of receding the horizon. To test the idea, responses from 
stationary vessels have been employed, with application of the given mechanism to the dynamics of 
ship response to be the topic of future studies. The proposed workflow reduces human interference 
while reducing prediction errors and increases the autonomy for any areas dealing with outputs of the 
time series record. 
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