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Abstract 
Wetlands are ubiquitous topographic depressions on landscapes and form critical 

elements of the mosaic of aquatic habitats. The role of wetlands in the global 
hydrological and biogeochemical cycles is intimately tied to their geometric 
characteristics. We used DEM analysis and local search algorithms to identify wetland 
attributes (maximum stage, surface area and storage volume) in four wetlandscapes 
across the United States. We then derived the exceedance cumulative density functions 
(cdfs) of these attributes for the identified wetlands, applied the concept of fractal 
dimension to investigate the variability in wetland’ shapes. Exponentially tempered 
Pareto distributions were fitted to DEM derived wetland attributes. In particular, the 
scaling exponents appear to remain constant through the progressive water-filling of the 
landscapes, suggesting self-similarity of wetland geometrical attributes. This tendency 
is also reproduced by the fractal dimension (D) of wetland shorelines, which remains 
constant across different water-filling levels. In addition, the variability in D is 
constrained within a narrow range (1 <D < 1.33) in all the four wetlandscapes. Finally, 
the comparison between wetlands identified by the DEM-based model are consistent 
with actual data. 
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1 Introduction 
Wetlands are critical elements of landscape aquatic habitat mosaics. Some of their functions 

impact the physical and biogeochemical process dynamics, which, in turn, influence the ecological 
integrity of terrestrial and aquatic habitats (Cohen, et al., 2016; Rains, et al., 2016). Natural 
landscapes characterized by multiple wetlands (hereafter wetlandscapes) occur as a result of complex 
interactions between climate, terrain, soil, water availability and biota (Whittaker, 1975). Formal 
analyses of topographic data suggest that some landscapes may be either self-similar or self-affine 
(Gallant, Moore, Hutchinson, & Gessler, 1994; Mandelbrot, 1983; Turcotte, 1997; Rodriguez-Iturbe 
& Rinaldo, 2001). Intersecting a horizontal plane through a self-affine fractal surface (e.g., 
topographic surface), the points where fractal surface returns to the horizontal plane form a fractal 
known as random Cantor set (Russ, 1994; Seekell, Pace, Tranvik, & Verpoorter, 2013). The direct 
analogy of this approach is to measure the areas of the wetlands (or lakes) which lie below this 
threshold. In particular, the intersection of the horizontal plane with the self-affine fractal surface 
produces boundary line which are self-similar rather than merely self-affine. Therefore, if we repeat 
the process for a fractal surface using several thresholds, we obtain several sets of self-similar 
wetlandscapes characterized by constant values for wetland shorelines fractal dimension (𝐷). In 
particular, D constrained between 𝐷 = 1 (a population of perfectly circular and smooth shorelines) 
and 𝐷 = 2 (a population of shorelines so irregular they are space filling). However, especially in steep 
slope conditions, slicing the landscape using a horizontal plane may underestimate the number and the 
size of the wetlands. For this reason, we applied the topographic depression identification (TDI) 
model (Le & Kumar, 2014), to delimitate depressions in the landscape; this procedure identifies all 
depressions that might be wetlands (i.e. potential wetlands) only they meet various criteria for being 
so classified. The TDI model was run for several levels of wetland filling to simulate the slicing of the 
landscape at different threshold levels. Then we characterized the exceedance cumulative density 
functions, cdfs, of wetland attributes such as maximum stage, surface area and storage volume and, 
the wetland shoreline fractal dimension to scrutinize the complexity and variability of their shapes. 
Finally, to validate our approach, we compare the size distribution of all wetlands identified by the 
model with the wetlands listed in the U.S. National Wetland Inventory (NWI) for the four regions we 
investigated. 

2 Material and Methods 
2.1 Identification of wetlands from DEMs 

In this study, we follow the recent framework developed by Chu et al (2010), Shaw et al (2012), 
Chu et al (2013), and improved by Le and Kumar (2014). Firstly, the center of each wetland is 
determined by applying the D8 algorithm proposed by O’Callaghan and Mark (1984). This method 
calculates flow direction for the processed cell by examining the elevation of its eight neighbors and 
determining drainage direction as the neighboring cell with the steepest elevation descent. If the cell 
has no neighbors with lower elevation, it is identified as the lowest elevation points (local minima in 
the landscape) of the wetland. Starting from the center of each potential wetland, local search 
algorithm is then implemented to identify the depression cells (Chu, Chi, Zhang, & Yang, 2010). Such 
algorithm ends once that a threshold is identified. This threshold represents the highest elevation for 
water ponding, beyond which water spills. At the threshold level, a wetland reaches its maximum 
value for stage, area and storage volume. The elevation of the wetland threshold (local maxima in the 
landscape) controls the shift from wetland-filling to wetland-spilling and/or merging. Hydro-climatic 
forcing, such as rainfall and evapotranspiration, may alter the water level inside wetlands, represented 
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as the changing threshold limit. An intense rainfall event, or a prolonged flooding period, results in 
wetland-merging once the water level reaches their common threshold. To simulate the filling of each 
wetland, the DEM is then edited by raising the depression cell to its threshold level. Then, the flow 
direction and the local searching algorithm are implemented again to derive the maximum values for 
stage, area and volume under this new condition. 

Following Chu et al (2010) and Le and Kumar (2014), the geometric attributes of the wetlands in 
terms of stage, area and volume are estimated from the output of the previously defined model. The 
surface area of any wetland represents the maximum flooded surface area that can be observed in the 
wetland at the threshold elevation. Therefore, the surface area, 𝐴&

(() [L2], of the k-th depression at that 
level, 𝑙, is the sum of the areas of all individual cells within that depression. The perimeter is derived 
by calculating the distance between each adjoining pair of pixel around the border of the region. The 
stage value inside each wetland can be determined by evaluating the difference in elevation between 
the threshold and the lowest grid cell that compose the wetland. This difference represents the 
maximum depth of the wetland for that specific level:  

 
ℎ&,-./
(() = max

3454-6
7𝑧&,9

(() − 𝑧&,5
(();                                                (1) 

 
where 𝑚& is the number of cells 𝑧&,9

((), [L] is the elevation of the threshold level and 𝑧&,5
(() [L] is the 

elevation of the ith cell, respectively in the kth wetland at level l. The storage volume, V, of any 
wetland can be calculated by summing the contribution of each grid cell. The storage volume of the 
kth wetland at level l, denoted as 𝑉&

(() [L3], is given by: 
 
𝑉&
(() = ∑ 7𝑧&,9

(() − 𝑧&,5
(();-6

5?3 ∆𝑥∆𝑦        (2) 
 
where, ∆𝑥 [L] and ∆𝑦 [L] are the uniform horizontal resolution of the DEM data. 
 

2.2 Fractal dimension of the identified wetlands 
 

Fractal dimension has been used to describe the geometry of irregular objects for decades 
(Mandelbrot, 1983; Krummel, Gardner, Sugihara, O'Neill, & Coleman, 1987; Lovejoy, 1982; 
Sugihara & May, 1990)[13]. Lovejoy (1982) used the perimeter-area method proposed by Mandelbrot 
(1983) to calculate the fractal dimension of natural planar objects. The perimeter-area method 
quantifies the degree of complexity of planar shapes. The degree of complexity of a polygon is 
characterized by the fractal dimension, 𝐷, such that the perimeter, 𝑃, of a patch (wetland) is related to 
its area, 𝐴, by 𝑃 ≈ 𝐴E/G. For circles, 𝑃 ≈ √𝐴 and 𝐷 = 1. As the polygons become more complex, the 
perimeter becomes increasingly dissected (plane filling) or elongated (e.g., riverine wetlands) and 𝑃 ≈
𝐴 with 𝐷 = 2. In particular, fractal dimension, 𝐷, of the shorelines of wetlands can be derived from 
the slope of the regression line of a log-log plot of P vs A. This slope is equal to half of the boundary 
fractal dimension (Russ, 1994). 

 

2.3 Geospatial data 
 

This framework has been applied to four wetlandscapes across the United States. Despite the 
topographic and hydro-climatic differences that characterized these landscape, the massive presence 
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of wetlands directed us to choose these regions where apply our framework. The DEM data were 
downloaded from the United States Geological Survey (USGS) platform National Map Viewer 
(https://viewer.nationalmap.gov). The DEM data for the six locations are characterized by the same 
dimension (10 km x 10 km) and the same resolution (1/3 arc-second). We compared the results 
obtained using our framework with data downloaded wetland maps for the same four regions from the 
U.S. National Wetlands Inventory (https://www.fws.gov/wetlands/). In particular, these wetland 
landscapes include: California vernal pools, North Dakota prairie potholes, Florida cypress domes and 
Texas playa lakes. 

3 Results and Discussion 
3.1 Cumulative density functions of wetland stage, area and volume 

 
The outputs of the TDI model were used to evaluate the exceedance cumulative density functions 

(cdfs) of wetland attributes in terms of maximum stage, surface area and storage volume for different 
filling levels (Figure 1). With increasing filling level, the water level rises and covers larger portion of 
wetlands in the wetlandscape. In addition, the presence of larger wetlands can be induced by the 
merging of small wetlands that coalesced as the filling level increases. As the filling level is 
increased, the tails of wetland attribute cdfs extend because the larger wetlands are now filled. 
However, the cdfs retain the same shape. Analytical solutions for wetland size distribution have been 
the focus of several recent studies (Zhang, Schwartz, & Liu, 2009; Shook, Pomeroy, Spence, & 
Boychuk, 2013; Van Meter & Basu, 2015). Generally, Pareto distribution (𝑃(𝑋 > 𝑥) ∝ 	𝑥MN) is found 
to be appropriate for lake size distribution (Hamilton, Melack, Goodchild, & Lewis, 1992) (Downing, 
et al., 2006), but many datasets show a tempering in the upper tail of such cdfs. Several reasons 
contribute to this tempering. For example, datasets over a limited area will not contain wetland large 
enough to extend the power law behavior that characterize the distribution of the smaller wetlands. 
Furthermore, some of the large waterbodies may be lost due to human alterations of the landscape that 
dried portions of the landscape. For this reason, we fitted the cdfs of surface area with an 
exponentially tempered Pareto distribution (𝑃(𝑋 > 𝑥) ∝ 	𝑥MN𝑒MP/). In addition, the same analytical 
distribution is used for the fitting of the maximum stage and storage volume cdfs. The fitted cdfs are 
represented by the solid lines in Figure 1, while the parameters of the distribution are reported in 
Table 1.  
 

  Maximum Depth Surface Area Storage Volume 
  b c b c b c 

Califor
nia 0.76 ± 0.06 

4.28 ∙ 10M3 
471 ∙ 10M3 0.50 ± 0.08 

9.23 ∙ 10M\ 
5.73 ∙ 10M] 0.45 ± 0.06 

9.06 ∙ 10M\ 
2.79 ∙ 10M] 

Florida 1.85 ± 0.08 
0.38 ∙ 103 
0.50 ∙ 103 0.26 ± 0.12 

2.72 ∙ 10M] 
2.01 ∙ 10M^ 0.95 ± 0.12 

2.20 ∙ 10M] 
5.75 ∙ 10M] 

N. 
Dakota 0.45 ± 0.17 

4.01 ∙ 103 
4.10 ∙ 103 0.88 ± 0.16 

2.00 ∙ 10M_ 
7.62 ∙ 10M_ 0.49 ± 0.07 

1.51 ∙ 10M\ 
1.23 ∙ 10M^ 

Texas 0.25 ± 0.23 
2.56 ∙ 10M3 
3.58 ∙ 10M3 0.01 ± 0.03 

7.39 ∙ 10M_ 
1.13 ∙ 10M\ 0.11 ± 0.05 

2.42 ∙ 10M_ 
1.56 ∙ 10M\ 
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Table 1: Parameters of the Tempered Pareto distribution for the modeled wetland maximum depth, 
surface area and storage volume in the four wetlandscapes. The mean of the scaling exponent, 𝑏, for 
the four level of filling is reported along with its standard deviation. The tempering parameter, 𝑐, is 
reported in terms of minimum and maximum value. 

 
Tempered Pareto distribution fits well to the DEM-modelled data (𝑅G > 0.95) for all three 

attributes, with small tempering constant, c, for maximum depth and storage volume distributions. 
The scaling coefficient, 𝑏, tends to be constrained around the mean value (𝜎 < 0.1), while the 
tempering parameter, 𝑐, shows a decrease from level 1 to level 4 (Figure 1). This confirms that for 
higher level of filling, the probability of finding steeper and larger wetland increases. For wetland size 
distribution, the tempered Pareto reproduces the lower tail of the cdfs that describes the distribution of 
smaller wetlands; however, overall it underestimates the upper tail of the cdfs. The complexity of 
finding a proper analytical distribution that well reproduce the data is encountered in several studies 
(Shook, Pomeroy, Spence, & Boychuk, 2013; Seekell & Pace, Does the Pareto distribution adequately 
describe the size-distribution of lakes?, 2011). More heavy-tailed or hybrid distributions might be a 
solution for a proper fitting of the right side of such cdfs. If the goal is to well describe the more 
abundant smaller wetlands (ecologically important) the emphasis is on functions (e.g., log-normal) 
that best fit the smaller areas, while heavier tailed distributions (e., Pareto) might be preferred if the 
emphasis is on larger wetlands. Use of hybrid functions might also be another strategy. In spite of 
such limitations, tempered Pareto distributions fitted to our results suggest that wetlandscapes may 
exhibit self-similarity because the scaling properties (b) are maintained throughout the different levels 
of filling that are used to threshold the landscapes (Russ, 1994); the only difference among these 
distributions is expressed by the tempering parameter (c), which decreases for progressive filling 
levels. 

The emergent self-similarity of wetlandscapes is also investigated though the analysis of wetland 
fractal dimension.  Fractal dimension of wetlands shorelines is evaluated for the four landscapes using 
the perimeter and area obtained from TDI model. The left panels of Figure 2 compare the values of 
fractal dimension at different filling levels with the prescribed limit for circular wetland (black dashed 
line, D = 1). Except for Texas (Figure 2 D1), which is mainly characterized by circular wetlands, in 
the other landscapes D tends to diverge from this boundary. However, the deviation from this lower 
limit appears to be constrained by an upper limit around D = 1.33 (Figures 2 A2-D2). This outcome is 
consistent with the analysis on Swedish lakes’ fractal dimension by Cael & Seekell (2016). This upper 
limit is theoretically prescribed by percolation theory, where the fractal dimension of the boundaries, 
which envelop a percolation cluster (e.g., wetland or lake), is predicted to be D = 4/3. 

Another key finding showed in Figure 2 is that, despite the increase in the threshold level, and 
therefore the degree of filling inside wetlands, their shape, and, therefore, their fractal dimension, 𝐷, 
is maintained. This represents a further hint that wetlandscapes are characterized by self-similarity. A 
self-similar fractal means that each piece of the object is geometrically like the whole, and the object 
can be enlarged or reduced without the scale being apparent (Rodriguez-Iturbe & Rinaldo, 2001). In 
this case, wetlands can be enlarged or reduced by varying the filling level in the landscape. The shape 
of wetland shorelines and the concept of fractal dimension is a good tool from an eco-hydrological 
point of view. Variation in wetland attributes (e.g., perimeter-area ratio) is of key importance from an 
ecological perspective since species are strongly associated with wetland edges during breeding and 
non-breeding seasons (Werner, Skelly, Relyea, & Yurewicz, 2007). Foraging habits of some marsh 
species indicate that edges between vegetation and open water are preferred for finding prey (Tozer, 
Abraham, & Nol, 2006). 
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3.2 Comparison between wetlands identified by the TDI model and 
NWI dataset 

The local search algorithm that we applied in the current analysis was used mainly to derive small 
puddles (Chu, Yang, Chi, & Zhang, 2013) and microtopographic depressions (Le & Kumar, 2014) so 
far. To validate this approach also in larger depression such as wetlands, we compare the results 
obtained from this algorithm with actual wetland data downloaded from the NWI dataset (Figure 3).  

The TDI algorithm was run for several times to reach convergence with the NWI dataset. In some 
cases, such as North Dakota and Texas it quickly reaches the convergence, while in the other 
landscapes (Florida and California) the algorithm was implemented for several levels. The main 
reason for this discrepancy is related to the type of wetlands that characterizes the landscapes. These 
landscapes are mainly composed by geographically isolated wetlands that are well dispersed; 
therefore, the local search is faster. Florida landscape is also mainly characterized by GIWs, but in 
this case Florida cypress domes are close to each other, leading to merging that quickly alters number 
and size of wetlands. For these reasons, it is necessary to fill the landscape by enough amount of 
water to resemble the data provided by the NWI. On the other hand, when wetlands are integrated in 
the river network or the landscape is influenced by human-induced activities, such as in California, 
the model algorithm is not performing well. The NWI database we use to evaluate TDI approach has 
well documented limitations (Tiner, 1997), with omission errors seriously underrepresenting small 
wetland prevalence and extent. 

This is evident in Figure 3 where TDI algorithm finds several small potential wetlands that are not 
considered by the NWI dataset. The correct delineation of wetlands requires the knowledge of several 
criteria such as hydrophitic vegetation, hydric soil and wetland hydrology. The method that we used 
only considers topographic properties of the landscape since wetlands usually occupy areas at lowest 
elevation. The local search model we adopted in the current research is useful to estimate the small 
wetlands that are difficult to delimit and also could confirm the data provided by the NWI replacing 
some field measurement that are always difficult and require considerable effort. In addition, the TDI 
model could be applied in all the regions where wetland geometric data are not present in order to 
have a quick estimate about the presence of wetlands, since only DEM map are necessary. 

4 Conclusions 
The application of topographic search algorithm and fractal analysis represents a powerful tool to 

investigate the distribution and the geometrical properties of wetlandscapes. One of the main insight 
of the current analysis is represented by the emergent self-similarity that characterizes wetlandscapes. 
In particular, as the landscapes is progressively filled by water the scaling (b) of wetlands attributes 
(maximum stage, surface area and storage volume) distribution is maintained. This result is also 
suggested by the analysis of wetlands shorelines fractal dimension that appears to be constrained in a 
narrow range (1 < 𝐷 < 1.33), and whose pdfs is the same over different filling levels. Wetland 
attributes in terms of maximum stage, surface area and storage volume are fundamental both from a 
hydrological and ecological perspective, but real measurements of these quantities are often limited to 
few wetlands in a landscape. For this reason, DEM-based approaches are useful in order to give a first 
assessment about the distribution and location of wetlands, especially in those regions where wetland 
geometric data are not available. The TDI model provides data for stage, area and volume that 
characterize wetlands in landscapes. However, main limitation is in definition of wetland, considered 
simply as a portion of the landscape where water can accumulate. Therefore, integrations with 
hydrological analysis, vegetation distribution and LULC (land use land cover) changes are necessary 
to better delineate wetland attributes. 
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Figure 1: Comparison between the empirical exceedance cumulative density functions (circles) for 
wetland maximum depth (left column), surface area (center column) and storage volume (right 
column) obtained from modelled data and the tempered Pareto analytical distribution (solid lines) in 
the four wetlandscapes. The different colors used in the pictures stand for different level of filling.  
A1, A2, A3 report the cdfs in California, B1, B2, B3 in Florida, C1, C2, C3 in North Dakota and D1, 
D2, D3 in Texas. 

A1 A2 A3

B1 B3B2

C1 C3C2

D1 D3D2

Lev 1 Lev 2 Lev 3 Lev 4
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Figure 2: A1, B1, C1, D1 report the shoreline fractal dimension D for the four wetlandscapes data 
obtained from the TDI model. The black dashed line represents the lower limit for circular wetlands 
(D = 1). A2, B2, C2, D2 show the probability density function of the fractal dimension obtained from 
the perimeter to area ratio for the four filling level. A1, A2 report the data for California, B1, B2 for 
Florida, C1, C2 for North Dakota and D1, D2 for Texas. 

A1 A2

B1 B2

C1 C2

D1 D2
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Figure 3: Comparison between the wetlands identified by the local search algorithm (grey regions) 
and the actual wetlands provided by the NWI database (red contours) for each wetlandscape. 

 
 

A - California

C - North Dakota D - Texas

B - Florida
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