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Abstract

Although being quite inexpressive, the description logic (DL) FL0, which provides
only conjunction, value restriction and the top concept as concept constructors, has an
intractable subsumption problem in the presence of terminologies (TBoxes): subsump-
tion reasoning w.r.t. acyclic FL0 TBoxes is coNP-complete, and becomes even ExpTime-
complete in case general TBoxes are used. In the present paper, we use automata working
on infinite trees to solve both standard and non-standard inferences in FL0 w.r.t. general
TBoxes. First, we give an alternative proof of the ExpTime upper bound for subsumption
in FL0 w.r.t. general TBoxes based on the use of looping tree automata. Second, we em-
ploy parity tree automata to tackle non-standard inference problems such as computing
the least common subsumer and the difference of FL0 concepts w.r.t. general TBoxes.

1 Introduction

In the early days of DL research, the inexpressive DL FL0, which has only conjunction, value
restriction and the top concept as concept constructors, was considered to be the smallest
possible DL. In fact, when providing a formal semantics for so-called property edges of semantic
networks in the first DL system KL-ONE [12], value restrictions were used. For this reason, the
language for constructing concepts in KL-ONE and all of the other early DL systems [11, 21,
19, 27] contained FL0. It came as a surprise when it was shown that subsumption reasoning
w.r.t. acyclic FL0 terminologies (TBoxes) is coNP-hard [20]. The complexity increases when
more expressive forms of TBoxes are used: for cyclic TBoxes to PSpace [1, 15] and for general
TBoxes consisting of general concept inclusions (GCIs) even to ExpTime [2]. Thus, w.r.t.
general TBoxes, subsumption reasoning in FL0 is as hard as in ALC, its closure under negation.
These negative complexity results for FL0 were one of the reasons why the attention in DL
research shifted from FL0 to EL, which is obtained from FL0 by replacing value restriction with
existential restriction as a constructor. In fact, subsumption reasoning in EL stays polynomial
even in the presence of general TBoxes [13, 2]. In addition to standard inferences such as
the subsumption and the instance problem, also various non-standard inferences have been
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investigated in detail for EL [28, 16, 18]. For FL0, there are very few results that consider
general TBoxes. For the ExpTime-completeness result for subsumption in [2], the ExpTime
upper bound is actually inherited from the more expressive DL ALC. Dedicated subsumption
algorithms and nonstandard inferences have been considered mostly for the case without TBoxes
or w.r.t. a restricted form of TBoxes in FL0 and its extension by number restrictions [1, 7, 5,
6, 9].

In the present paper, we use automata working on infinite trees to solve both standard
and non-standard inferences in FL0 w.r.t. general TBoxes. First, we introduce the so-called
least functional model of an FL0 concept w.r.t. an FL0 TBox, and prove that subsumption
corresponds to inclusion of least functional models. Then we show that such least functional
models can be represented using so-called looping tree automata (LTAs), and use this result
to reduce the subsumption problem to the emptiness problem for LTAs. Since the constructed
automata are of exponential size and the emptiness problem for LTAs can be decided in linear
time, this yields an alternative proof of the ExpTime upper bound for subsumption in FL0

w.r.t. general TBoxes. Note that, in contrast to the case of acyclic or cyclic TBoxes, where
automata on finite or infinite words can be employed to decide subsumption [1], GCIs require
the use of automata working on trees.

In order to deal also with non-standard inferences such as computing the least common
subsumer (lcs) [8, 17, 28] or the difference [24, 14] of two FL0 concepts w.r.t. a general FL0

TBox, the automata constructions need to be extended considerably. Instead of constructing
an automaton that represents the least functional model of a fixed FL0 concept C, we are now
interested in building an automaton accepting all trees representing least functional models of
FL0 concepts. For this task, simple LTAs (which do not have an acceptance condition) are not
sufficient; instead we use so-called parity tree automata (PTAs). We show that the constructed
automaton can be used to decide whether the lcs or the difference of two given FL0 concepts
w.r.t. a general FL0 TBox exists, and to actually compute the lcs or difference concept in case
the answer is affirmative. For the DL EL, the problem of deciding the existence of the lcs w.r.t.
a general TBox was investigated in [28].

Due to the space constraints, we cannot provide all technical details and proofs in this paper.
They can be found in the technical report [4].

2 Least functional models for FL0 TBoxes

In Description Logics, concept constructors are used to build complex concepts out of concept
names (unary predicates) and role names (binary predicates). A particular DL is determined
by the available constructors. Starting with fixed finite sets NC and NR of concept and role
names, respectively, the set of FL0 concepts is inductively defined as follows:

• > (top concept) and every concept name A ∈ NC is an FL0 concept,

• if C,D are FL0 concepts and r ∈ NR is a role name, then C uD (conjunction)
and ∀r.C (value restriction) are FL0 concepts.

The semantics of FL0 is defined using first-order interpretations I = (∆I , ·I) consisting of a
non-empty domain ∆I and an interpretation function ·I that assigns a set AI ⊆ ∆I to each
concept name A and a binary relation rI ⊆ ∆I × ∆I to each role name r. This function is
extended to FL0 concepts as follows:

>I = ∆I and (C uD)I = CI ∩DI ,
(∀r.C)I = {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ rI ⇒ y ∈ CI}.
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An FL0 TBox T is a finite set of general concept inclusions (GCIs), which are expressions of
the form C v D for FL0 concepts C,D. The interpretation I is a model of T if it satisfies all
the GCIs in T , i.e., CI ⊆ DI holds for all GCIs C v D in T .

Given an FL0 TBox T and two FL0 concepts C,D, we say that C is subsumed by D (denoted
as C vT D) if CI ⊆ DI for all models I of T . These two concepts are equivalent (denoted
as C ≡T D) if C vT D and D vT C. If the TBox is empty, we write C v D and C ≡ D
instead of C v∅ D and C ≡∅ D. For FL0, the subsumption problem is ExpTime-complete:
the complexity upper bound is inherited from the more expressive DL ALC [23], and the lower
bound was shown in [2]. In the next section, we will actually describe an alternative way for
showing the upper bound. It is based on the characterization of subsumption introduced in the
remainder of this section.

In FL0, subsumption and equivalence can be nicely characterized using language inclusion.
This characterization relies on transforming FL0 concepts into an appropriate normal form as
follows. First, the semantics given to concept constructors in FL0 implies that value restrictions
distribute over conjunction, i.e., for all FL0 concepts C,D and roles r it holds that ∀r.(CuD) ≡
∀r.C u ∀r.D. Using this equivalence as a rewrite rule from left to right, each FL0 concept can
be translated into an equivalent one that is either > or a conjunction of concepts of the form
∀r1 . . . ∀rn.A, where {r1, . . . , rn} ⊆ NR and A ∈ NC. Such concepts can be abbreviated as ∀w.A,
where w represents the word r1 . . . rn. Note that n = 0 means that w is the empty word ε, and
thus ∀ε.A corresponds to A. Furthermore, a conjunction of the form ∀w1.A u . . . u ∀wm.A can
be written as ∀L.A where L ⊆ N∗R is the finite language {w1, . . . , wm}. We use the convention
that ∀∅.A corresponds to the top concept >. Thus, if NC = {A1, . . . , A`}, then any two FL0

concepts C,D can be represented as

C ≡ ∀K1.A1 u . . . u ∀K`.A`,

D ≡ ∀L1.A1 u . . . u ∀L`.A`,
(1)

where K1, L1, . . . ,K`, L` are finite languages over the alphabet of role names NR, i.e., finite
subsets of N∗R. We call this representation the language normal form (LNF) of C,D. Using the
LNF, it was shown in [9] that C v D iff Li ⊆ Ki for all i, 1 ≤ i ≤ `.

In the presence of a non-empty TBox T , a similar characterization of subsumption and
equivalence can be obtained [22], but now the definition of the languages needs to take the
GCIs in T into account. Given an FL0 concept C and a TBox T , we define

LT (C) := {(w,A) ∈ N∗R × NC | C vT ∀w.A},

and call this set the value restriction set of C with respect to T .

Proposition 1 ([22]). Let T be an FL0 TBox and C,D FL0 concepts. Then C vT D iff
LT (D) ⊆ LT (C).

Characterizing an FL0 concept C whose LNF is C ≡ ∀K1.A1 u . . . u ∀K`.A` by its
value restriction set LT (C) generalizes determining the finite languages Ki (1 ≤ i ≤ `)
in the normalization step. Indeed, it is easy to see that, for the empty TBox, we have
L∅(C) = {(w,Ai) | w ∈ Ki, 1 ≤ i ≤ `}. For a general TBox T , LT (C) may be infinite,
as illustrated by the TBox T = {A v ∀r.A}, where e.g. LT (A) = {(ε,A), (r,A), (rr,A), . . .}.
Therefore, to determine subsumption of two concepts by comparing the respective value re-
striction sets, inclusion between infinite sets must be considered. In the next section, we will
show how such infinite sets can be represented using infinite trees, and how tree automata can
be used to test inclusion. But first, we introduce a semantic equivalent of the value restriction
set, called least functional model.
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Definition 2. An interpretation I = (∆I , ·I) is called a functional interpretation if ∆I = N∗R
and rI = {(u, ur) | u ∈ N∗R} for all r ∈ NR. We call such a functional interpretation a functional
model of the FL0 concept C w.r.t. the FL0 TBox T if it is a model of T such that ε ∈ CI .

Calling such interpretations and models I functional is justified by the fact that roles are
indeed interpreted as (total) functions: for every u ∈ N∗R and every r ∈ NR, the word ur is the
unique r-successor of u. As an immediate consequence of this functional interpretation of roles
we have

w ∈ (∀u.A)I iff wu ∈ AI . (2)

We define inclusion and intersection of functional interpretations as follows:

• I ⊆ J if AI ⊆ AJ for all A ∈ NC;

• I∩J is the unique functional interpretation that satisfies AI∩J = AI∩AJ for all A ∈ NC.

It is easy to see that functional models are closed under intersection, i.e., if I and J are both
functional models of C w.r.t. T , then so is their intersection I ∩ J . This actually not only
holds for binary intersection, but also for arbitrary intersection of functional models [22], which
implies that there must exist a least functional model, i.e., a functional model J of C w.r.t. T
such that J ⊆ I holds for all functional models I of C w.r.t. T . Here we describe a different
and more constructive way of showing the existence of a least functional model, which is based
on the use of the value restriction set.

Definition 3. Given an FL0 concept C and an FL0 TBox T , we define IC,T = (N∗R, ·IC,T ) to
be the functional interpretation satisfying

AIC,T = {w ∈ N∗R | (w,A) ∈ LT (C)} for all A ∈ NC.

In [4] we show that IC,T is indeed the least functional model of C w.r.t. T .

Theorem 4. Let C be an FL0 concept and T an FL0 TBox. Then the functional interpretation
IC,T is the least functional model of C w.r.t. T .

As an immediate consequence of Definition 3 we obtain that

LT (D) ⊆ LT (C) iff ID,T ⊆ IC,T .

Thus, the characterization of subsumption formulated in Proposition 1 can be reformulated in
terms of least functional models as follows.

Corollary 5. Let T be an FL0 TBox and C,D FL0 concepts. Then C vT D iff ID,T ⊆ IC,T .

In the next section we show how least functional models can be represented using tree
automata. In particular, this will allow us to reduce the subsumption problem in FL0 to a
well-know decision problem for tree automata.

3 Least functional models as trees

Given a non-empty, finite set of symbols Σ = {σ1, . . . , σk} and a finite set of labels L, an
L-labeled Σ-tree is a mapping t : Σ∗ → L that assigns a label t(w) ∈ L to every node w ∈
Σ∗. Intuitively, the nodes of a Σ-tree t correspond to finite words in Σ∗, where the empty
word ε represents the root of t and every node w has k children corresponding to the words
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wσ1, . . . , wσk. Since for a non-empty alphabet Σ the set Σ∗ of all words over Σ is infinite,
Σ-trees are by definition infinite. The set of all L-labeled Σ-trees is denoted by Tω

Σ,L.

Functional interpretations can be represented as 2NC -labeled NR-trees and vice versa. In
fact, let I = (N∗R, ·I) be a functional interpretation. Then we define tI : N∗R → 2NC as tI(w) :=
{A ∈ NC | w ∈ AI} for all w ∈ N∗R. Conversely, let t be a 2NC -labeled NR-tree. Then we define
the functional interpretation It = (N∗R, ·It) as AIt := {w ∈ N∗R | A ∈ t(w)} for all A ∈ NC.
Obviously, these two transformations are bijections that are inverse to each other. If I = IC,T
is the least functional model of the FL0 concept C w.r.t. the FL0 TBox T , then we use TC,T
to denote the corresponding tree tI .

In case the set of role names is non-empty (which we will always assume in the following),
the tree TC,T is infinite. Our goal is now to give a finite representation of such trees using tree
automata [26].

Definition 6 (Looping tree automaton (LTA)). A looping tree automaton is a tuple A =
(Σ, Q, L,Θ, I) where Σ = {σ1, . . . , σk} is a finite set of symbols, Q is a finite set of states, L
is a finite set of labels, Θ ⊆ Q × L ×Qk is the transition relation and I ⊆ Q is a set of initial
states. A run of this automaton on an L-labeled Σ-tree t is a Q-labeled Σ-tree ρ : Σ∗ → Q such
that ρ(ε) ∈ I and (ρ(w), t(w), ρ(wσ1), . . . , ρ(wσk)) ∈ Θ for all w ∈ Σ∗. The tree language L(A)
recognized by A is the set of all L-labeled Σ-trees t such that A accepts t, i.e., such that A has
a run on t.

In general, LTAs recognize sets of trees. In order to uniquely represent the tree TC,T , we
consider LTAs recognizing singleton sets.

Definition 7. Let A = (Σ, Q, L,Θ, I) be a looping tree automaton. We say that A represents
the L-labeled Σ-tree t if L(A) = {t}.

As shown in [3], the trees that can be represented in this way are exactly the regular trees,
where an infinite tree is regular if (up to isomorphism) it contains only finitely many distinct
subtrees [25].

To construct an automaton that represents the tree TC,T , we first construct an LTA that
accepts exactly the tree representations of functional models of C w.r.t. T . We assume without
loss of generality that C and all concepts occurring in T are in word normal form (WNF), i.e.,
they are conjunctions of value restrictions ∀w.A where w ∈ N∗R and A ∈ NC. Given an FL0

concept E = ∀w1.A1 u . . . u ∀wn.An in WNF, we define Ê := {∀w1.A1, . . . ,∀wn.An} and

val(E) := {∀ui.Ai | 1 ≤ i ≤ n and ui is a suffix of wi}.

The latter definition is extended to TBoxes by setting

val(T ) :=
⋃

EvF∈T

val(E) ∪ val(F ).

Definition 8. Let C be an FL0 concept and T an FL0 TBox such that C and all concepts
occurring in T are in WNF. We set VC,T := val(C) ∪ val(T ) and define the LTA AC,T =
(Σ, Q, L,Θ, I) as follows:

• Σ := NR = {r1, . . . , rk}, Q := 2VC,T , and L := 2NC ;

• I := {X ∈ Q | Ĉ ⊆ X};

• Θ := {(q, σ, q1, . . . , qk) | the properties (1),. . . ,(4) hold}, where

5



Standard and Non-Standard Inferences in FL0 Using Tree Automata Baader, Fernández Gil, and Pensel

1. Ê ⊆ q implies F̂ ⊆ q for all E v F ∈ T ,

2. ∀riu.A ∈ q implies ∀u.A ∈ qi for all i, 1 ≤ i ≤ k,

3. ∀u.A ∈ qi and ∀riu.A ∈ VC,T implies ∀riu.A ∈ q for all i, 1 ≤ i ≤ k,

4. A ∈ σ iff ∀ε.A ∈ q for all A ∈ NC.

Intuitively, the set Q consists of all possible sets of relevant value restrictions that may be
satisfied by a node of a functional model of C w.r.t. T . In particular, the definition of I ensures
that only trees of functional interpretations for which ε belongs to C are accepted. Property (1)
in the definition of Θ ensures that the GCIs of T are satisfied by the functional interpretation
corresponding to the tree. Properties (2) and (3) basically realize the fact that, in a functional
interpretation, an element w belongs to the value restriction ∀riu.A iff its unique ri successor
wri belongs to ∀u.A. Finally, property (4) expresses that A and ∀ε.A are equivalent. With this
intuition, it is not hard to show that AC,T is the automaton we are looking for (see [22] for
details).

Lemma 9. L(AC,T ) = {tI | I is a functional model of C w.r.t. T }.

In order to obtain an automaton that represents TC,T , we restrict the automaton AC,T to
the transitions with minimal states, where states are ordered using set inclusion. However,
before we can do this, we need to remove states that cannot occur in a run. Intuitively, this
is necessary to avoid using a minimal state that leads into a dead-end. We say that a state q
of an LTA A is inactive if there is no run of A that contains q. As shown in [10], the set of
inactive states of an LTA can be computed in linear time.

Definition 10. Let AC,T = (Σ, Q, L,Θ, I) be the LTA defined in Definition 8, Q+ ⊆ Q be the
states of AC,T that are not inactive, and Θ+ := Θ∩ (Q+ ×L× (Q+)k) the transitions of AC,T

that do not use inactive states. We define the automaton ÂC,T = (Σ, Q+, L, Θ̂, Î) as follows:

Î := {q ∈ I ∩Q+ | q ⊆ q′ for all q′ ∈ I ∩Q+};
Θ̂ := {(q, σ, q1, . . . , qk) ∈ Θ+ | q1 ⊆ q′1, . . . , qk ⊆ q′k

for all (q, σ, q′1, . . . , q
′
k) ∈ Θ+}.

The reason why the least states w.r.t. set inclusion required by the definitions of Î and Θ̂
exist is basically that runs are closed under intersection, i.e., if ρ1, ρ2 are runs of AC,T on some

trees, then ρ1∩ρ2 with (ρ1∩ρ2)(w) = ρ1(w)∩ρ2(w) is also a run of AC,T . The automaton ÂC,T
is in fact deterministic: it has exactly one initial state and for every pair (q, σ) ∈ Q+×L exactly
one transition with these two first components. Together with property (4) in Definition 8 this

implies that ÂC,T accepts exactly one tree, and it is not hard to show that this tree is TC,T
(see [22] for details).

Theorem 11. The automaton ÂC,T represents the tree TC,T that corresponds to the least
functional model of C w.r.t. T . In particular, this implies that TC,T is a regular tree.

By Corollary 5, subsumption corresponds to inclusion between least functional models. The
latter can be checked using a product construction on the corresponding automata. Assume
that ÂC,T = (Σ, QC , L,ΘC , IC) and ÂD,T = (Σ, QD, L,ΘD, ID) are the automata respectively
representing the trees TC,T and TD,T , as constructed in Definition 10. We define a new automa-
ton PC,D,T = (Σ, Q, {∅},Θ, I) that accepts the infinite {∅}-labeled Σ-tree t∅ iff ID,T ⊆ IC,T :

• Q := QC ×QD and I := IC × ID;
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• ((q(1), q(2)), ∅, (q(1)
1 , q

(2)
1 ), . . . , (q

(1)
k , q

(2)
k )) ∈ Θ iff there are σ(1), σ(2) ∈ Σ such that

– σ(1) ⊇ σ(2),

– (q(1), σ(1), q
(1)
1 , . . . , q

(1)
k ) ∈ ΘC and (q(2), σ(2), q

(2)
1 , . . . , q

(2)
k ) ∈ ΘD.

We have L(PC,D,T ) 6= ∅ iff L(PC,D,T ) = {t∅} iff ID,T ⊆ IC,T . Since the emptiness problem

for looping tree automata is decidable in linear time [10] and the automata ÂC,T and ÂD,T ,
and thus also PC,D,T , have a size that is exponential in the size of C,D, T , this yields an
exponential-time algorithm for checking subsumption.

Corollary 12. Subsumption in FL0 w.r.t. TBoxes is in ExpTime.

A product construction similar to the one employed above can also be used to obtain an
automaton representing the intersection of two least functional models. Given least functional
models IC,T and ID,T , their intersection is the functional interpretation I = (N∗R, ·I) that
satisfies AI = AIC,T ∩ AID,T for all A ∈ NC. For the corresponding trees this means that
tI(w) = TC,T (w) ∩ TD,T (w) for all w ∈ N∗R. It is easy to see that I is again a model of T .
However, it need not be the least functional model of some FL0-concept (see Section 5 for an
example). As a first step towards deciding whether it is or not, we show in [4] that tI can be
represented by a looping automaton.

Lemma 13. There is an LTA P∩C,D,T of size exponential in the size of T , C,D such that
L(P∩C,D,T ) = {tI} where I is the intersection of IC,T and ID,T .

The functional interpretation I obtained as the intersection of IC,T and ID,T may or may
not be the least functional model of some FL0 concept E w.r.t. T . In the next section, we show
how this can be decided by constructing an automaton that accepts exactly the least functional
models w.r.t. T , i.e., the tree language LF(T ) := {TC,T | C is an FL0 concept}.

In Section 5 we use this result to show that the existence of the least common subsumer of
two FL0 concepts w.r.t. an FL0 TBox is decidable.

4 An automaton accepting all least functional models

Given an FL0 TBox T , we want to construct a tree automaton ÂT recognizing the tree language
LF(T ) of all least functional models w.r.t. T . In the following, we assume that T is an arbitrary,
but fixed FL0 TBox.

The looping automata employed in the previous section are not sufficient to construct ÂT
since we need to express things like finiteness, which requires an appropriate acceptance con-
dition. It turns out that parity tree automata [26] are well-suited for our purpose since they
have the required closure properties (intersection, complement, projection) and there exists a
fine-grained analysis of the complexity of these operations.

Definition 14 (Parity tree automaton (PTA)). A parity tree automaton is a tuple A =
(Σ, Q, L,Θ, I, c), where (Σ, Q, L,Θ, I) is an LTA and c : Q → N is a mapping that assigns
to each state in Q a number, called its priority. A run ρ of A on a tree t is called accepting if
for all paths in the tree ρ the maximum of the priorities appearing infinitely often in the path
is an even number. The tree language L(A) recognized by A is the set of all L-labeled Σ-trees
t such that A has an accepting run on t.
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t(1) : (∅, {A})

({A}, {A})

4

r

r

t(2) : (∅, {A})

({A}, {A})

(∅, {A})

4

r

r

r

t(3) : (∅, {A})

(∅, {A})

({A}, {A})

4

r

r

r

Figure 1: Trees belonging to LT

In addition to the usual set operations complementation and intersection, we will need
projection. A projection is a mapping h from an alphabet Σ to an alphabet Σ′. It is applied to
a tree t by applying it to the label of each node in t. Given a set S ⊆ Tω

Σ,L, the application of
h to S yields the set h(S) = {h(t) | t ∈ S}, where h(t) stands for the composition h ◦ t of the
functions h and t. We say that h(S) is obtained from S by projection.

Proposition 15 ([26]). The class of languages recognized by parity tree automata is closed
under complement, intersection and projection.

Our first step towards constructing ÂT is to construct a PTA AT that recognizes FL0

concepts C together with (not necessarily least) functional models of C w.r.t. T . Here “together
with” means that we represent C and its functional model within a single tree, which has
tuples as labels. To be more precise, we consider infinite L′-labeled Σ-trees t where the label
set is L′ = 2NC × 2NC , i.e., the nodes of t are labeled with tuples of the form (σc, σi) where
each component is a set of concept names. By applying the projections hc(σc, σi) = σc and
hi(σc, σi) = σi to such a tree t, we obtain the L-labeled trees tc and ti, where L = 2NC . In
addition, if tc(w) 6= ∅ for only finitely many w ∈ N∗R, then tc induces an FL0 concept C(tc) as
follows:

C(tc) :=
l

w∈N∗R

l

A∈tc(w)

∀w.A. (3)

Let Tfin
NR,L′

denote the subset of Tω
NR,L′

consisting of the trees satisfying this finiteness

restriction. Our goal is to construct a PTA AT that recognizes LT := {t ∈ Tfin
NR,L′

|
ti represents a functional model of C(tc) w.r.t. T }.

Example 16. Let NC = {A} and NR = {r}, and consider the FL0 TBox T = {∀r.A v A}. In
addition, consider the three trees depicted in Fig. 1, where the symbol 4 stands for the infinite
NR-tree whose nodes are labeled with (∅, ∅). Obviously, these trees belong to Tfin

NR,L′
, and thus

the concepts induced by the first components of the labels are well-defined. Indeed, we have

C(t
(1)
c ) = ∀r.A = C(t

(2)
c ) and C(t

(3)
c ) = ∀rr.A. The functional interpretations represented by

t
(1)
i , t

(2)
i , and t

(3)
i satisfy A

I
t
(1)
i = {ε, r}, A

I
t
(2)
i = {ε, r, rr} = A

I
t
(3)
i . It is easy to see that I

t
(1)
i

is the least functional model of ∀r.A w.r.t. T . The functional interpretations I
t
(2)
i

and I
t
(3)
i

are identical. This interpretation is a functional model of ∀r.A w.r.t. T , but not the least one,
whereas it is the least functional model of ∀rr.A w.r.t. T .

Our construction of AT is similar to the one of AC,T , but now the concept C is not given,
but needs to be guessed. This is done in the first component of the states of AT . The second
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component together with the parity acceptance condition ensures that only finite concepts are
guessed. The third component of the states basically corresponds to a state of AC,T , and thus
ensures the functional model condition.

Definition 17. Let T be an FL0 TBox such that all concepts occurring in T are in WNF. We
set VNC,T := NC ∪ val(T ) and define the PTA AT := (Σ, QT , L

′,ΘT , IT , c) as follows:

• QT := {(qc, `, q) ∈ 2NC × {0, 1} × 2VNC,T | qc ⊆ q ∧ (` = 0 =⇒ qc = ∅)};

• Σ := NR = {r1, . . . , rk} and IT := QT ;

• ΘT := {((qc, `, q), (σc, σi), (qc1 , `1, q1), . . . , (qck , `k, qk)) | the properties (1), (2), (3) hold},
where

1. (q, σi, q1, . . . , qk) ∈ Θ (see Definition 8 with VC,T replaced by VNC,T ),

2. ` = 0 implies `1 = 0, . . . , `k = 0,

3. qc = σc;

• c(qc, `, q) = `, for all (qc, `, q) ∈ QT .

Assume that ρ is an accepting run of AT on a tree t. Then, by König’s lemma, (2) together
with the parity acceptance condition ensures that only finitely many nodes in the run are labeled
with a state whose middle component is 1. In combination with the condition ` = 0⇒ qc = ∅
in the definition of QT this ensures that only finitely many nodes in ρ are labeled with a state
whose first component is non-empty.1 Consequently, (3) implies that t ∈ Tfin

NR,L′
, and thus C(tc)

is a well-defined FL0 concept.
It remains to see why ti is a functional model of C(tc) w.r.t. T . Basically, this is a conse-

quence of Lemma 9 since, in the third component, AT behaves like AC,T for C = C(tc). Note

that the condition qc ⊆ q in the definition of QT together with (3) realizes the condition Ĉ ⊆ X
in the definition of the set of initial states of AC,T . Given this intuition, it is not hard to see
that AT recognizes the tree language LT (see [4] for a formal proof).

Proposition 18. Let T be an FL0 TBox. Then, L(AT ) = LT .

At first sight one might think that going from AT to ÂT can be achieved in a way similar
to our construction of ÂC,T out of AC,T in the previous section. However, the minimization
approach employed in Section 3 does not work if the concept C is not fixed from the outset, but
is guessed during the run of the automaton. In fact, assume that ρ is a run of AT . Whether a
concept name appearing in the third component of a state ρ(w) violates minimality or not also
depends on what is guessed in the first component of states ρ(wv) labeling successors wv of w.

Instead of trying to minimize AT , we follow a different approach that uses the closure
properties of PTAs. Basically, given AT , it is not hard to construct an automaton Anl that
accepts all FL0 concepts C together with their non-least functional models. By applying
complementation and the other closure properties, we can then use Anl and AT to construct
the desired automaton ÂT . To be more precise, our construction of ÂT proceeds as follows:

1Note that dispensing with the middle component of the states and defining c(q) = 0 iff the first component
of q is empty would not work. In fact, a state with empty first component may have a successor node where this
component is non-empty. Thus, though in every path there would be only finitely many states with non-empty
first component, one could still have infinitely many such states in the whole tree, e.g., at all nodes rns for
n ≥ 0.

9
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1. The automaton Anl needs to accept exactly those L′-labeled NR-trees t such that ti rep-
resents a non-least functional model of C(tc) w.r.t. T . To achieve this, we first construct
an automaton that accepts all FL0 concepts C together with two functional models of C
w.r.t. T , where one is a witness for the fact that the other is not the least one. From this,
we obtain Anl by projecting away the component corresponding to the witness. Details
of this construction can be found in [4].

2. Once we have Anl, we can obtain an automaton Anl recognizing the complement language
L(Anl). Notice that, although L(Anl) contains all trees t such that ti represents the least
functional model of C(ti), it also contains many other trees that do not encode a concept
together with a functional model (e.g., trees that violate the finiteness restriction for the
first component or where the second component does not encode a functional model of the
concept represented by the first component). However, to filter out such “rough” trees,
we can simply intersect the language accepted by Anl with the one accepted by AT .

3. Closure under intersection of the class of languages accepted by PTAs thus yields a PTA
for the language L(Anl) ∩ L(AT ), which consists exactly of those trees t ∈ Tfin

NR,L′
such

that ti represents the least functional model of C(tc). Thus, the desired automaton ÂT
is obtained by applying closure under the projection hi(σc, σi) = σi to the intersection
automaton.

Summing up, we thus have proved the following main result of this paper.

Theorem 19. Let T be an FL0 TBox. Then we can effectively construct a PTA ÂT such that
L(ÂT ) = {TC,T | C is an FL0 concept}.

The complexity of closure operations and decision procedures for parity tree automata is
determined not only by the number of states, but also by the number of different priorities
used. Using known results on the complexity of closure operations on PTAs, we can show that
ÂT has the following size.

Corollary 20. The number of states of ÂT is double exponential and the number of priorities
single exponential in the size of T .

Basically, this is due to the fact that the automaton AT has an exponential number of states
in the size of T and a constant number of priorities. The second exponential blowup for the
number of states comes from the complement operation as does the exponential blowup for the
number of priorities (see [4] for details).

5 Non-standard inferences

As an application of the automaton ÂT constructed above, we consider two non-standard
inferences for FL0 w.r.t. general TBoxes, the least common subsumer and the difference.

Least common subsumers

Let T be an FL0 TBox and C,D FL0 concepts. The FL0 concept E is a least common subsumer
(lcs) of C and D w.r.t. T if

• C vT E and D vT E, and

• for all FL0 concepts F such that C vT F and D vT F we have E vT F .

10
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As an immediate consequence of this definition we obtain that least common subsumers of C,D
w.r.t. T are unique up to equivalence ≡T , if they exist. This justifies talking about the lcs of
C,D w.r.t. T and to denote it (i.e., some element of the equivalence class) as E = lcsT (C,D).
We will see below that the lcs need not always exist. The following lemma, whose proof can be
found in [4], characterizes the cases where it does.

Lemma 21. Let C,D,E be FL0 concepts and T a general FL0 TBox. Then, E is the lcs of
C and D w.r.t. T iff IE,T = IC,T ∩ ID,T . In particular, the lcs of C and D w.r.t. T exists iff
there is an FL0 concept E such that IE,T = IC,T ∩ ID,T .

To see that in general the lcs w.r.t. general FL0 TBoxes need not exist, consider the TBox
T := {A v ∀r.(AuC), B v ∀r.(BuC)} where A,B,C ∈ NC, and assume that we are interested
in the lcs of A and B w.r.t. T . It is easy to see that I := IA,T ∩ IB,T satisfies AI = ∅ = BI

and CI = {rn | n ≥ 1}. To show that I is not the least functional model of some FL0 concept,
assume that E is an FL0 concept such that I is a functional model of E. Then there is a finite
subset W ⊆ {rn | n ≥ 1} such that E =

d
w∈W ∀w.C. But then the least functional model

IE,T of E w.r.t. T actually satisfies CIE,T = W , and thus I 6= IE,T . Thus, there is no FL0

concept E such that IE,T = IA,T ∩ IB,T , which shows that A,B do not have an lcs w.r.t. T .

Theorem 22. Let C,D be FL0 concepts and T a general FL0 TBox. Then we can effectively
decide whether C,D have an lcs w.r.t. T or not. In case the answer is yes, we can effectively
compute this lcs.

Proof. By Lemma 13 we can effectively construct an LTA P∩C,D,T that represents IC,T ∩ ID,T .

By applying the intersection construction to P∩C,D,T and ÂT and then testing emptiness of the
resulting automaton, we can check whether there is an FL0 concept E that has IC,T ∩ID,T as
its least functional model w.r.t. T .

In order to actually compute the lcs, we need to use a modified version Âc
T of ÂT where

the concept component is not projected away. Instead of applying the intersection construction
to Âc

T and P∩C,D,T , one then needs to use a similar product construction that checks whether

the second component of the tree accepted by Âc
T coincides with the tree accepted by P∩C,D,T .

When applying the emptiness test to the resulting automaton one then extracts a regular tree
that witnesses non-emptiness. From the first components in this tree, the lcs E can easily be
read off.

Regarding the complexity of the decision problem, note that the number of states of the
LTA P∩C,D,T is exponential in the size of C, D, and T , and that the number of states of ÂT is
double exponential in the size of T . The product construction thus again yields an automaton
of double exponential size. Since the emptiness problem for parity tree automata is in NP ∩ co-
NP, this shows that we can decide the existence of the lcs in 2NExpTime ∩ co-2NExpTime (see
[4] for details).

Concept difference

In DLs, the notion of difference has recently mostly been considered for TBoxes rather than
concepts [16]. Given two TBoxes T1, T2, the difference between T1 and T2 is a TBox T1 − T2

that has, as its consequences, exactly the consequences of T1 that are not consequences of T2.
In general, such a TBox need not exist, and thus it is interesting to decide whether it does.
Here, we modify this approach by considering a fixed TBox T and two concepts C,D. The
consequences of C and D w.r.t. T are then the value restrictions that respectively follow from
these two concepts.

11
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Definition 23. Let T be an FL0 TBox and C,D FL0 concepts. The concept difference of C
and D w.r.t. T is an FL0 concept E such that LT (E) = LT (C) \ LT (D).

By Proposition 1, the concept difference is unique up to equivalence w.r.t. T , if it exists. In
this case, we denote it as C−T D. Deciding whether the concept difference exists or not can be
done in the same way as for the lcs. The only change is that, instead of an LTA representing
the intersection of two functional models, we now need to construct an LTA representing their
difference. Given least functional models IC,T and ID,T , their difference is the functional
interpretation I = (N∗R, ·I) that satisfies AI = AIC,T \ AID,T for all A ∈ NC. Given automata
representing the trees TC,T and TD,T , an automaton representing the tree tI where I is the
difference of IC,T and ID,T can be constructed similarly to the automaton for the intersection.

Theorem 24. Let C,D be FL0 concepts and T a general FL0 TBox. Then we can effectively
decide whether the difference of C and D w.r.t. T exists or not. In case the answer is yes, we
can effectively compute C −T D.

The complexity of the decision procedure is obviously the same as for the lcs, i.e., in 2NEx-
pTime ∩ co-2NExpTime.

The difference of concepts has been considered before in the literature, but for DLs other
than FL0 and without a TBox [24, 14]. In [24] this is restricted to the case where C v D,
whereas in [14] no subsumption relationship between C and D is required. In the more general
setting in [14], the set of difference candidates C 	 D := {E ∈ CL | D u E ≡ C u D} is
considered, where CL is the set of concepts definable in the DL L under consideration. In [24]
it is argued that, semantically, the difference should be as large as possible, which motivates
considering the elements of C 	D that are maximal w.r.t. subsumption as difference concepts.
The following proposition (whose proof can be found in [4]) shows that, in case of an empty
TBox, our definition of the difference of FL0 concepts (Definition 23) coincides with these
earlier definitions.

Proposition 25. Let C,D be FL0 concepts. Then C −∅ D always exists, and it is the unique
subsumption maximal FL0 concept in C 	D.

6 Conclusion

We have shown that least functional models of FL0 concepts w.r.t. general FL0 TBoxes can be
used to characterize subsumption, and that automata ÂC,T and ÂT can be constructed that
respectively accept (i) exactly the least functional model of a fixed concept C w.r.t. a TBox
T ; (ii) all least functional models w.r.t. a TBox T . We have used these automata to show
that subsumption in FL0 w.r.t. general TBoxes is in ExpTime and that the existence of the
lcs and the difference of two FL0 concepts is decidable. The complexity of the latter decision
procedures is quite high, in part because of the use of complementation to construct ÂT . One
topic for future research will be to lower this complexity or to show matching lower bounds.
One might think that the use of alternating automata could avoid the complementation in
the construction of ÂT , and thus allow us to guess a concept C and verify minimality of the
interpretation using the same automaton. However, it is not clear how one could enforce that
the parts of the automaton that check minimality at different places in the tree are all based
on the same guessed concept C.

Another topic for future research is to investigate what other non-standard inferences for
FL0 can be tackled with the approach introduced in this paper. In particular, the unification
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problem for FL0 w.r.t. the empty TBox has been solved by using tree automata that basically
guess a unifier [9]. However, ensuring that different occurrences of the same variable are replaced
with the same concept is only possible with tree automata if the words occurring in the value
restrictions are reversed. Unfortunately, in this reversed representation of value restrictions,
checking the satisfaction of a GCI is no longer a local property, and thus cannot be done with
a tree automaton. Consequently, it is not clear how these two approaches could be combined.
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