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Abstract

This report presents the results of a friendly competition for formal verification and
policy synthesis of stochastic models. It also introduces new benchmarks within this
category, and recommends next steps for this category towards next year’s edition of
the competition. The friendly competition took place as part of the workshop Applied
Verification for Continuous and Hybrid Systems (ARCH) in Spring/Summer 2021.

1 Introduction

Disclaimer The presented report of the ARCH friendly competition for stochastic modelling
group aims at providing a unified point of reference on the current state of the art in the
area of stochastic models together with the currently available tools and framework for
performing formal verification and optimal policy synthesis to such models. We further
provide a set of benchmarks which we aim to push forward the development of current
and future tools. To establish further trustworthiness of the results, the code describing
the benchmarks together with the code used to compute the results is publicly available at
https://gitlab.com/goranf/ARCH-COMP.

This friendly competition is organized by Alessandro Abate (alessandro.abate@cs.ox.ac.uk), Stefan
Schupp (stefan.schupp@tuwien.ac.at), and Sadegh Soudjani (sadegh.soudjani@newcastle.ac.uk).
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This report presents the results obtained during the ARCH Friendly Competition 2021 in the
group stochastic models. A recent survey of many of the discussed techniques can be found at
[60], and provides the theoretical underpinnings for much of the computational results presented
here. The benchmark collection has been extended by 3 interesting benchmarks which exhibit
novel challenges for tools participating in this category.

In this year’s edition overall 11 tools and frameworks participated in the evaluation of earlier
and new benchmarks. This year the following tools and frameworks participate (in alphabet-
ical order): AMYTISS, FIGARO workbench, hpnmg, HYPEG, Mascot-SDS, the Modest Toolset,
ProbReach, PyCATSHOO, SDCPN & IPS, SReachTools, StocHy, and SysCore. Similar to last
year, all participants were encouraged to provide a repeatability package (e.g., a Docker con-
tainer) for centralized evaluation on the servers of the ARCH-group. Apart from providing
repeatable results, this allows for sharing of the tools themselves to both the ARCH and the
wider research community.

This report has the following structure. Section 2 provides a short overview of the partici-
pating tools and frameworks. Section 3 presents already established benchmarks and a set of
new benchmark descriptions, which include a discussion of the individual models syntax and
semantics, and a presentation of the specifications of interest is presented in Section 4. Next,
in Section 5 we present the results of the friendly competition with the participating tools or
algorithmic frameworks that are used to solve instances of the collection of benchmarks. We
identify key challenges and discuss future plans in Section 6.

2 Participating Tools & Frameworks

Here we present the tools which participated this year in alphabetical order.

AMYTISS AMYTISS is a software tool for designing correct-by-construction controllers
of stochastic discrete-time systems. The underlying idea of the implemented algorithms is
abstraction to finite Markov decision processes (MDPs) with error bounds formulated in a series
of previous works [79, 80, 81, 82]. AMYTISS is implemented as a kernel on top of the acceleration
ecosystem pFaces [49]. It implements parallel algorithms to (1) build finite MDPs as finite
abstractions of given original stochastic discrete-time systems, and (2) synthesize controllers
for the constructed finite MDPs satisfying bounded-time safety specifications and reach-avoid
specifications. The underlying computation parts are similar to the ones used in FAUST2 and
StocHy, and are used for compositional computations [83, 55, 56, 57, 58, 59].

AMYTISS significantly improves performances w.r.t. the computation time by parallel
execution in different heterogeneous computing platforms including CPUs, GPUs and hardware
accelerators (e.g., FPGA). In addition, AMYTISS proposes a technique to reduce the required
memory for computing finite MDPs as on-the-fly abstractions (OFA). In the OFA technique,
computing and storing the probability transition matrix are skipped. Instead the required entries
of the finite MDP are on-the-fly computed as they are needed for the synthesis part via the
standard dynamic programming. This technique impressively reduces the required memory but at
the cost of repeated computation of their entries in each time step from 1 to a finite-time horizon
Td. This gives the user an additional control over the trade-off between the computation time and
memory usage. The tool is available at https://github.com/mkhaled87/pFaces-AMYTISS.

FIGARO workbench The Figaro language, created in 1990, is a (free and public) domain
specific object oriented modeling language dedicated to dependability. It generalizes all the
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usual reliability models, and can easily be associated to various graphical representations. It
allows to cast generic models in knowledge bases (KB). A formal definition of its semantics
is available in [11] and [12]. The Figaro workbench, mostly developed by EDF (Electricité
de France) since the creation of the Figaro language, comprises a set of tools to create Figaro
models and to process them in order to perform dependability analyses; the main tools are:

• FigaroIDE is an integrated development environment for creating KBs;

• KB3 is a generic graphical user interface. Once a KB has been loaded in KB3, it becomes
a specialized GUI for building a certain kind of graphical models. KB3 comes with a few
“abstract KBs” corresponding to classical reliability models, including reliability block
diagrams, digraphs, Petri nets and BDMP (Boolean logic Driven Markov Processes). KB3
provides sophisticated functions to input and manage complex system models, perform
interactive simulations and can generate fault trees and display them graphically. KB3 is
intensively used at EDF to automatically generate fault trees and a few dynamic models
for Probabilistic Safety Assessment of its nuclear power plants;

• Figseq [9, 13] is a quantification tool for continuous time Markov chains that explores the
sequences leading to a target state, defined by a Boolean expression. Given the mission
time and truncation criteria, Figseq computes an estimated value and an upper bound of
the undesirable event probability. It can perform reliability and availability calculations;

• YAMS [10] is another solver: it uses Monte Carlo simulation on the system model to
compute various quantities, including reliability and availability. Any kind of probability
distribution can associated to transitions with this tool. YAMS is also able to output a
selection of simulated scenarios, but the obtained results are much more “noisy” than
those obtained with Figseq.

• All the above cited tools are “industry proof” tools, used in real studies of complex
systems such as nuclear power plants, telecommunication and electrical networks... KB3
is commercially available under the name RiskSpectrum ModelBuilder. A new tool, still a
prototype, is available to process FIGARO Markovian models: it is based on the STORM
probabilistic model checker, cf [51].

hpnmg The tool hpnmg [44] is a model checker for Hybrid Petri nets with an arbitrary but
finite number of general transition firings against specifications formulated in STL [46]. Each
general transition firing results in a random variable which follows a continuous probability
distribution. It efficiently implements and combines algorithms for a symbolic state-space
creation [45], transformation to a geometric representation as convex polytopes [47], model
checking a potentially nested STL formula and integrating over the resulting satisfaction set to
yield the probability that the specification holds at a specific time.

The tool is implemented in C++ and relies on the library HyPro [74] for efficient geometric
operations on convex polytopes, as well as on the GNU Scientific Library (GSL) for multi-
dimensional integration using Monte Carlo integration [61]. Different approaches to multi-
dimensional integration have been compared w.r.t. scalability in [43].

The tool is available at https://zivgitlab.uni-muenster.de/ag-sks/tools/hpnmg.

HYPEG The Java-based library HYPEG [71] is a dedicated statistical simulator for hybrid
Petri nets with general transitions (HPnGs) [35], which combine discrete and continuous
components with a possibly large number of random variables, whose stochastic behavior
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follows arbitrary probability distributions. HYPEG uses time-bounded discrete-event simulation
and well-known statistical model checking techniques to verify complex properties, including
time-bounded reachability [72]. These techniques comprise several hypothesis tests as well as
different approaches for the computation of confidence intervals. In the latest version of HYPEG,
continuous behavior that can be expressed by systems of ordinary differential equations can
be simulated using an approximative approach [70, 68], whereas piecewise-linear continuous
behavior is simulated without approximation.

The tool is available at https://zivgitlab.uni-muenster.de/ag-sks/tools/HYPEG.

Mascot-SDS Mascot-SDS [66, 65, 64] is an open-source tool for synthesizing formally verified
controllers for almost sure satisfaction (i.e. satisfaction with probability 1) of infinite-horizon
specifications for discrete-time dynamical systems in the presence of stochastic perturbations.
From version 1.1, Mascot-SDS accepts specifications expressed using either LTL formulas or
Rabin automata, defined over polytopic predicates over the state space. The tool can compute
both over- and under-approximations of the optimal controller domain for the almost sure
satisfaction of the specification. It is written in C++, and is an extension of Mascot [42]. The
suffix SDS stands for Stochastic Dynamical Systems.

Mascot-SDS is available at https://gitlab.mpi-sws.org/kmallik/mascot-sds.

The Modest Toolset The Modest Toolset [41] supports the modelling and analysis of hybrid,
real-time, distributed and stochastic systems. At its core is the model of networks of stochastic
hybrid automata (SHA) [40], which combine nondeterministic choices, continuous system
dynamics, stochastic decisions and timing, and real-time behaviour, including nondeterministic
delays. The Modest Toolset is a modular framework, supporting as input the high-level Modest
modelling language [8, 40] and the Jani specification [16], and providing a variety of analysis
backends for various special cases of SHA. In particular, the modes discrete-event simulator [15]
supports SHA without nondeterminism and linear dynamics. It includes a highly-automated rare
event simulation engine based on importance splitting [14], and provides statistical estimates
with configurable error and confidence levels. The prohver tool [40] model-checks SHA with
linear differential equations and inclusions, combining abstraction of continuous probability
distributions with a non-stochastic hybrid automata reachability analysis (using PHAVer [31] as
backend). It delivers guaranteed upper bounds on (time-bounded) reachability probabilities.

The Modest Toolset can can be obtained from https://www.modestchecker.net/.

ProbReach ProbReach [76] provides a set of algorithms for computing probabilistic bounded
reachability in parametric stochastic hybrid systems (PSHS) with nonlinear continuous dynamics
(i.e., defined by nonlinear ODEs). The parameters can be random (continuous and discrete)
and/or nondeterministic. ProbReach features a formal approach [78] for computing numerically
sound probability intervals that are formally guaranteed to contain the exact value of the
bounded reachability probability. For PSHSs containing random parameters only, the size of
such interval can be made arbitrarily small. Also, ProbReach implements Monte Carlo algorithms
[77] for computing confidence intervals for the bounded reachability probability with rigorous
(i.e., numerically sound) sampling. ProbReach uses the Probabilistic Delta-ReacHability (PDRH)
format for encoding PSHSs, and it is available at https://github.com/dreal/probreach.

SReachTools SReachTools [95] is an open-source, repeatability-evaluated, MATLAB toolbox
for tackling the problem of stochastic reachability of a target tube [99]. This problem subsumes
terminal hitting-time stochastic reach-avoid and stochastic viability problems (guaranteeing
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safety in stochastic systems) [85, 4]. SReachTools handles linear, discrete-time, continuous-
state dynamical systems with additive stochastic disturbance. The dynamics and the safety
constraints can be time-varying, and the disturbance may be Gaussian or non-Gaussian. It relies
on approaches drawn from convex optimization, Fourier transforms, scenario-based optimization,
and computational geometry for a grid-free and scalable computation of the stochastic reach sets
as well as controller (open-loop, affine feedback, and set-based) synthesis [34, 96, 97, 100, 73]. The
SReachTools Kernel Module [89] is the most recent addition to the toolbox, which implements a
collection of nonparametric data-driven algorithms for stochastic reachability based on kernel
methods. These algorithms leverage techniques from functional analysis and statistical learning
theory and can handle discrete-time linear and nonlinear dynamical systems with arbitrary
stochastic disturbances [86, 90].

SReachTools is available at https://sreachtools.github.io. The code for solving the
benchmarks presented in this report is available as a Code Ocean capsule at https://doi.org/
10.24433/CO.5339956.v1 and the Kernel Module code is available at https://doi.org/10.

24433/CO.3853882.v1.

PyCATSHOO The PyCATSHOO [23] tool has been developed in the R&D division of EDF.
This development was motivated by the need to address, in some safety studies, the continuous
deterministic phenomena that unfold in the studied systems. It provides modelling tools that
take into account the synchronization between, on the one hand, the discrete stochastic behavior,
classically taken into account in dependability-oriented modelling and, on the other hand, the
0D/1D physical modelling. PyCATSHOO is based on the theoretical framework of piecewise
deterministic Markov processes (PDMP). It implements this theoretical framework through
Distributed Stochastic Hybrid Automata (DSHA). PyCATSHOO leverages Hybrid Stochastic
Automata (HSA) to implement PDMPs and introduced the notion of distribution which allows
modular modelling and avoids the problem of the combinatorial explosion which SHAs suffer
from when it comes to an industrial-sized system modelling. In a nutshell, PyCATSHOO is
a dynamic library written in C++ that can be used via a C++ or a Python API. Thanks
to a mainly declarative approach, this library allows the modelling of the discrete stochastic
behavior of complex system actors. It also allows for an effective formulation of ordinary or
algebraic differential equations that govern the continuous state variables of these actors. These
equations are solved by PyCATSHOO and can be efficiently adapted to the different system’s
operating modes. Indeed, PyCATSHOO takes over boundary crossings and managing of a
system multimodal behavior. Reconfigurations can thus be easily modelled, whether they are
due to a deterministic behavior of the I&C or to stochastic events such as failures and repairs.
PyCATSHOO embeds a Monte Carlo simulation engine where the development of an Importance
Sampling algorithm is in process [22]. PyCATSHOO also provides a fault tree generator that
can be used when a static view of the modelled system is required. Its open software architecture
allows it to interoperate easily with other tools. PyCATSHOO can also be used to build generic
modelers. This functionality has been used to develop the PyCABIA modeler which implements
an extension of the reliability diagrams formalism. PyCABIA can be used in a static way and
automatically generate fault trees. It can also be used in dynamic modelling. It then provides
the notion of passive redundancies, shared resources, etc.

StocHy StocHy [19] is a software tool for the quantitative analysis of discrete-time stochastic
hybrid systems (SHS) accepts a high-level description of stochastic models and constructs an
equivalent SHS model. In comparison with the other tools in the stochastic modelling category,
StocHy is the only tool that provides exact (i.e. not via statistical means) errors/guarantees on
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the obtained solution [20, 36, 53]. The tool enables users to (i) simulate the SHS evolution over
a given time horizon; and to (ii) to automatically construct formal abstractions of the SHS using
either abstractions taking the form of Markov Decision Processes (MDP) or grounded on interval
MDPs (IMDP) [20, 53]. The abstractions are then employed for (ii) formal verification or (iii)
control (policy, strategy) synthesis. StocHy allows for modular modelling, and has separate
simulation, verification and synthesis engines, which are implemented as independent libraries.
The tool is implemented in C++ and employs manipulations based on vector calculus,sparse
matrices, symbolic construction of probabilistic kernels, and multi-threading. It computes the
transition probabilities for the states of the IMDP in parallel using a bag-of-tasks approach. In
order to compute the probabilities, StocHy has a set number of threads which take states and
compute the transitions repeatedly, without waiting for other threads to be done.

The tool can be obtained from https://github.com/natchi92/stochy.

SysCore SysCore is developed for formal verification and synthesis of discrete-time stochastic
dynamical systems with outputs. It allows both model order reduction and space discretization
while quantifying the error induced in the probability of satisfying the given property. The
development of SysCore is based on the papers [38, 37, 75, 39] and encode directly the coupling
between stochastic processes into the simulation relation that assess the similarity between the
associated dynamical systems. The developed algorithms compute two precision parameters
(ε, δ), which allow bounding the deviations between models in both the output trajectories (ε)
and the transition probabilities (δ). The obtained abstract models, either with deterministic
continuous states or with stochastic finite states, are then employed in probabilistic model
checking. The current version of SysCore is capable of handling co-safe LTL properties with
infinite horizon. The main advantage of SysCore compare to alternative tools is the fact that
the computed error does not grow linearly in time, which makes the tool applicable for infinite
horizon properties.

2.1 Frameworks

In contrast to complete tools, frameworks usually provide a collection of algorithms and data
structures or collect several tools for different sub-problems into one library.

SDCPN & IPS is a reach probability modelling and estimation framework that has been
developed for the evaluation of multi-actor air traffic designs on mid-air collision risk. Because
this air traffic application domain is very demanding, the selected mathematical setting is General
Stochastic Hybrid System (GSHS) [17]. GSHS incorporates Brownian motion in continuous-time
Piecewise Deterministic Markov Processes [25]. Because a direct specification of a large GSHS
model does not work, the framework of Stochastically and Dynamically Coloured Petri Nets
(SDCPN) [27, 28, 29, 30] has been developed for the compositional specification of a GSHS
model. For the acceleration of MC simulation of rare events, the Interacting Particle Systems
(IPS) approach for GSHS is used [21, 6, 7, 63]. The SDCPN & IPS framework is applied to the
Heated Tank benchmark.

3 Established benchmarks, revisited

Benchmarks already established allow to visualise the development progress that a tool makes
during its life-cycle. Therefore, the collection of benchmarks used for evaluation does not
only consider new benchmarks but also re-uses existing benchmarks to allow tool developers
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to improve their results from previous years. In this section we give a short description of
established benchmarks that have been used in the evaluation with references to their original
sources (and previous reports in ARCH) for further details.

3.1 Automated Anesthesia

The automated anesthesia delivery system benchmark is a stochastic hybrid model which models
inputs from an anaesthesiologist within a safe and automated delivery system. The model
description and specifications are described in ARCH 2018 [3].

3.2 Building Automation Systems

The building automation benchmark is split into a 4 and 7-dimensional models with the aim of
generating a control policy which maximises a safety problem. An in-depth description of the
benchmark can be found in ARCH 2018 [3] and [18].

3.3 Heated Tank

The Heated Tank benchmark stems from the safety literature; there it is a well-known example of
a Piecewise Deterministic Markov Process (PDMP) [25]. This made the Heated Tank benchmark
a logical candidate for inclusion in the set of ARCH stochastic models [3, 1, 2].

The heated tank system consists of a tank containing liquid whose level is influenced by
two pumps and one valve managed by a controller. The purpose of the liquid in the tank is
to absorb and transport energy from a heat source; this means that under nominal conditions
one of the pumps produces a constant inflow of cool liquid while a similar flow of heated liquid
leaves the tank through the valve. The Euclidean valued state components are height xH,t and
temperature xT,t of the liquid in the tank at moment t. Pumps and Valve may fail, and a
Controller switches Pumps or Valve if the height of the liquid becomes too high or too low. The
reach probabilities to be estimated on a given time interval are: Dryout probability, Overflow
probability, and Overheating probability.

In literature, e.g. [24, 94], the heated tank benchmark has five versions. In version 1, Pumps
and Valve have constant failure rates. In version 2, Pumps and Valve have mode dependent
failure rates. In version 3, the Controller in version 1 may forget to implement its switching
decision. In version 4, the Pumps and Valve in version 1 are repaired. In version 5, the failure
rates in version 1 depend on the liquid temperature. Because version 4 involves repairs of failed
pumps and valve, its Dryout probability is much lower than for the other versions. Therefore
in [3], version 4 has been selected as most suitable rare event estimation benchmark. In [1]
relevant rare event extensions of this version have been identified. Table 1 gives an overview of
these combinations, including the version number used within ARCH, and the relation to the
version numbers in literature.

Heated Tank version 4.0 has been evaluated by the tools modes [3, 2] and HYPEG and
by the method SDCPN&IPS [1]. In [1] version 4.0 has formally been described in the model
specification language SDCPN, and in the languages Modest and HPnGs that are used by modes
and HYPEG respectively.

3.4 Water Sewage Facility

The water sewage benchmark models a water sewage treatment plant situated in Enschede
as a hybrid Petri net with general transitions (HPnG). It has been proposed and thoroughly
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Table 1: Heated Tank benchmarks defined in [1].

ARCH version 4.0 4.I 4.II 4.III 4.IV 4.V
Based on version(s) in literature 4 2+4 3+4 5+4 4 4

Pumps and Valve failure Y Y Y Y Y Y
Pumps and Valve repair Y Y Y Y Y Y

Mode dependent failure rate - Y - - - -
Communication failure - - Y - - -

Temperature dependent failure rate - - - Y - -
Non-exponential failure / repair rate - - - - Y -

Brownian motion in Heat source - - - - - Y

analyzed in [32] and was already included in ARCH2019 [1] and results have been computed
during ARCH2020 [2].

The report from 2019 features two different failure scenarios for the water sewage facility [33].
While in 2020 results have been computed for both failure scenarios, we will focus on extension A
in this year and adapt the previously evaluated survivability property into a rare-event property.
This means that instead of estimating the probability that the system recovers in time, we
now compute the probability that the buffer in front of the water sewage facility overflows:
ϕArare = (mPn = 0) U[0,30] (xP0 ≥ 0.1). Furthermore, the initial parameter setting for place P1

has been changed to zero to further reduce the probability of overflow.
To make the benchmark accessible for tools that operate on stochastic hybrid automata, the

hybrid Petri net model has been transformed into a hybrid automaton with stochastic resets,
in [2]. This year, the stochastic hybrid automaton has also been modeled from scratch in the
Modest language; for ProbReach, the model required the introduction of another mode (courtesy
of Arnd Hartmanns) with respect to the 2020 model [2].

3.5 Stochastic Van der Pol Oscillator

The discrete-time state evolution of the oscillator is given by:

x1(k + 1) = x1(k) + x2(k)τ + w1(k)

x2(k + 1) = x2(k) + (−x1(k) + (1− x1(k)2)x2(k))τ + w2(k), (1)

where the sampling time τ is set to 0.1s and (w1(k), w2(k)) is a pair of stochastic noise signals
at time k drawn from a uniform density function with a compact support D = [−0.02, 0.02]×
[−0.02, 0.02].

Consider a safety specification for staying within the working area A := [−5, 5] × [−5, 5].
This property is denoted by �A, where � should be read as ‘always’. Consider also the Büchi
specification �♦B, which means repeatedly reaching the target set B := [−1.2,−0.9]× [−2.9,−2].
The notation �♦ should be read as ‘always eventually’. This property means the set B should
be always visited in the future of the trajectory, and equivalently requires visiting B infinite
number of times along a trajectory.

Problem 1 (Qualitative Verification). Compute the set of initial states from which the probability
of satisfying the specification �A ∧�♦B under dynamics (1) is equal to 1.

Problem 2 (Quantitative Verification). Compute the probability of satisfying the specification
�A ∧�♦B under dynamics (1) as a function of initial state.
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Since some of the tools are not able to handle �♦B, the following modified dynamical system
can be used together with a reachability specification that gives an upper-bound for probability
of satisfying �A ∧�♦B. Let us denote the right-hand side of (1) by f(x(k)) + w(k). Define a
new dynamical system with state space A ∪ {φ1, φ2} such that φ1 and φ2 are sink states and

x(k + 1) =



f(x(k)) + w(k) if w(k) ∈ A\f(x(k)) and x(k) 6∈ B
φ1 if w(k) 6∈ A\f(x(k)) and x(k) 6∈ B
f(x(k)) + w(k) if w(k) ∈ A\f(x(k)) and x(k) ∈ B and ν(k) = 0

φ1 if w(k) 6∈ A\f(x(k)) and x(k) ∈ B and ν(k) = 0

φ2 if w(k) ∈ A\f(x(k)) and x(k) ∈ B and ν(k) = 1

φ2 if w(k) 6∈ A\f(x(k)) and x(k) ∈ B and ν(k) = 1,

(2)

where ν(k) are independent and identically distributed Bernoulli random variables with success
probability (1− ζ).

Problem 3 (Quantitative Reachability). Compute the probability ♦φ2 under dynamics (2).

The solution of Problem 3 is an upper bound for Problem 2. Moreover, it converges to the
solution of Problem 2 when ζ → 1−.

The dynamics in (1) can be extended to include inputs for shaping the limiting behaviour of
the system. Consider the non-autonomous version of the oscillator dynamics given by:

x1(k + 1) = x1(k) + x2(k)τ + w1(k)

x2(k + 1) = x2(k) + (−x1(k) + (1− x1(k)2)x2(k))τ + u(k)w2(k). (3)

Problem 4 (Quantitative Synthesis). Compute a policy for dynamical system (3) that maximises
the probability of satisfying �A ∧�♦B.

Next, we define a specification on this system that is suitable for rare event estimation. We
consider three polytopes

Pi = {X ∈ R2 |AX ≤ Bi}, i ∈ {1, 2, 3},

in the two-dimensional space. The first two polytopes P1 and P2 specify a region around the
limit cycle of the system. The dynamics of the system in continuous time is as follows

dx1 = x2dt+ dW1

dx2 = (−x1 + (1− x2
1)x2)dt+ dW2, (4)

with W1 and W2 being standard Brownian motion.

Problem 5 (Rare event computation). Compute the probability that the trajectory goes outside
of P1 and P2 around the limit cycle in the time internal [0, T ] after entering the polytope P3:

Prob (∃t1, t2 ∈ [0, T ], t2 ≥ t1 ∧ X(t1) ∈ P3 ∧ (X(t2) /∈ P1 ∨X(t2) /∈ P2)) . (5)

The following numerical values can be used: time horizon T = 13, initial state X0 = [4, 2]T ,

A =


+α1 −1
−α2 +1
−α1 +1
+α2 −1

 , B1 =


−β1

+β2

−β1

+β2

 , B2 =


−γ1

+γ2

−γ1

+γ2

 , B3 = (B1 +B2)/2,
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Figure 1: Sample trajectories of the stochastic Van der Pol Oscillator starting from initial state
X0 = [4, 2]T . Most of the trajectories remain between the black polytope P1 and the green
polytope P2.

where α1 = 6/7, α2 = −8/3, β1 = −2.9, β2 = 7.2, γ1 = −1, γ2 = 4.5. Sample trajectories of
the system is plotted in Figure 1 together with polytopes P1 (in black) and P2 (in green)
and the limit cycle for the deterministic version of the system (in blue). Applying a standard
Monte Carlo approach to this problem with 10, 000 trajectories gives the estimate 0.0011 for the
probability in (5). To reduce this probability further, we can change the values of βi and γi,
which are intercepts of the lines in the polytopes, to enlarge the region around the limit cycle
(the region between the two polytopes).

3.6 Integrator-Chain (for scalability comparison)

This benchmark is used as a measure of tool scalability and is described in ARCH 2020 [2].

3.7 7-Dimensional BMW 320i

This benchmark corresponds to that presented in [2].

4 New Benchmarks

Tool development strongly profits from large sets of benchmarks for evaluation of the implemented
approach. Additionally to the already existing benchmarks which have been proposed in the
last years [2, 1, 3], in this section we present a new benchmark which has been proposed this
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year for evaluation and introduce new challenges that are not currently handled by the existing
benchmarks.

4.1 Patrol Robot

Consider the controller synthesis problem for a robotic vehicle that is required to fulfill an
assume-guarantee style specification. Suppose the vehicle is placed in a work-space with two
rooms which are separated by a door, and needs to infinitely often visit both rooms if the door
opens infinitely often (and remains open for “long enough” for the vehicle to be able to pass,
where “long enough” will be formalized later). The dynamics of the vehicle is modeled using
the perturbed sampled-time model of the 3-d Dubins vehicle having the state variables x1, x2,
and x3, representing respectively its position along the X-axis in m, position along the Y-axis
in m, and the angle of steering wheel in rad, and the control input variable u representing the
change in steering angle in rad/s. We also additionally include a boolean state variable x4

that represents whether the door is open or not (1 for open and 0 for closed). For u 6= 0, the
dynamics is given as:

x1(k + 1) = x1(k) +
V

u
sin(x3(k) + uτ)− V

u
sin(x3(k)) + w1(k)

x2(k + 1) = x2(k)− V

u
cos(x3(k) + uτ) +

V

u
cos(x3(k)) + w2(k)

x3(k + 1) = x3(k) + uτ + w3(k)

x4(k + 1) ∈ {0, 1}, (6)

and when u = 0, the dynamics can be obtained as the limit of the above. The velocity V is
fixed to 1 m/s, and the sampling time τ is chosen to be 0.1 s. Let the stochastic noise samples
(ς1(k), ς2(k), ς3(k)) be drawn from a distribution with support D = [−0.06, 0.06]× [−0.06, 0.06]×
[−0.06, 0.06], and the range of the state and the input variables be as follows: x1 ∈ [−0.6, 0.96],
x2 ∈ [−1.2, 1.98], x3 ∈ [−π, π], and u ∈ [−20, 20].

The state space of the system is decorated with the predicates locA, locB , and door , which are
given as the inverse projections of the following respective rectangles in the two-dimensional space
spanned by x1 and x2: [0.2, 0.8]× [1.2, 1.8], [−0.4, 0.2]× [−0.9,−0.3], and [−0.6, 0.96]× [0.65, 0.7].

The specification is given as:

�♦(x4 = 1) ∧� ((x4 = 1)→ (x4 = 1) U locB )→
(�♦locA ∧�♦locB ∧�¬(door ∧ (x4 = 0)) . (7)

Intuitively, the left side of the above implication is an assumption on the environment which
states that the door opens (x4 = 1) infinitely often and whenever it opens, it remains open
until the vehicle visits locB the next time (giving the vehicle long enough time to pass through
the door). The right side of the implication is the guarantee required from the vehicle which
states that the vehicle needs to visit both locA and locB infinitely often, and should always avoid
collision with the closed door.

Problem 6. Compute the set of initial states and the witness controller for the system (6), for
which the probability of satisfying the specification (7) equals to 1.

4.2 Control synthesis version of Heated Tank

Consider an unheated tank inspired by the heated tank already included in the benchmarks
where the units are repaired by a repairman who can be scheduled. We model the tank with
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one outflow valve and two pumps adding water to the tank. At any time, each pump is in state
“on”, “off”, “silently failed”, or “failed”, where the rates of the pump in the failed states equal
the rates in the “off” state. The valve is in state “on”, “off”, “silently stuck on”, “stuck on”,
“silently stuck off”, or “stuck off”. We propose two versions, (a) one with piecewise linear and
(b) one with nonlinear continuous behaviour inspired by Toricelli’s law. Hence, the water level h
in the tank is modelled by one of the following two differential equations:

(a) ḣ = p1 + p2 − v

(b) ḣ = p1 + p2 − av
at
·
√

2 ·G · h

The flow rate of pump 1 is p1 which equals constant PUMP1 if the pump is “on” and 0 otherwise.
Pump 2 behaves similarly with constant PUMP2. In version (a), the flow rate of the valve is
v = VALVE if the valve is “open” or “silently stuck open” and v = 0 otherwise. In contrast, in
version (b), the flow rate of the valve is given by Toricelli’s law with the following constants:

av the diameter of the valve,

at the diameter of the tank, and

G the gravitational acceleration on Earth which we approximate with 9.81.

The tank has three constants as thresholds: HHIGH , HMID , and HLOW with HHIGH > HMID >
HLOW . Initially the tank height equals HMID .

Fixed controller. The controller is in one of four modes: “Normal”, “Degraded”, “Increase”,
or “Decrease”, at any time. Initially, it enters “Normal” mode. Upon entering a new mode, the
following switching actions are performed:

• Into mode “Normal”: turn on pump 1, turn off pump 2, open the valve.

• Into mode “Degraded”: turn off pump 1, turn on pump 2, open the valve.

• Into mode “Increase”: turn on pump 1, turn on pump 2, close the valve.

• Into mode “Decrease”: turn off pump 1, turn off pump 2, open the valve.

If a pump is in state “silently failed” or “failed”, or the valve is in state “silently stuck on”,
“stuck on”, “silently stuck off”, or “stuck off”, then a switching action does not change its state
as it would normally (see below).

Immediately when h reaches HHIGH and the current mode is “Normal” or “Degraded”, the
controller enters mode “Decrease”. Immediately when h reaches HLOW and the current mode
is “Normal” or “Degraded”, the controller enters mode “Increase”. Immediately when h reaches
HMID and the current mode is “Increase” or “Decrease”, the controller enters mode “Degraded”
if pump 1 is “silently failed” or “failed”, and mode “Normal” otherwise.

An attempt to switch on a pump that is in state “silently failed” changes its state to “failed”.
An attempt to open or close the valve when it is “silently stuck open” or “silently stuck closed”
changes its state: from “silently stuck open” to “stuck open” and from “silently stuck closed” to
“stuck closed”, respectively. That is, an attempt to switch a silently defective pump or valve
reveals the defect. The rule for HMID above already accounts for this.
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Failures. The pumps can fail in two ways: When a pump is not used, it slowly decays until it
silently fails; the deterioration process is completely reset when it is turned on before failure. All
the usage time of a pump counts towards its wear; after some time of use, it will (non-silently)
fail. Thus we have the following random processes:

• Pump decay: When a pump changes its state to “off”, the time until it silently fails
follows an exponential distribution with rate PUMPDECAY .

• Pump wear: From the initial state, and following a repair, the accumulated time in state
“on” until the pump fails follows a Weibull distribution with shape k = PUMPWEARk and
λ = PUMPWEARλ . (To obtain a Markovian variant of the model, use the exponential
distribution with the same mean.)

• Valve decay: When the valve changes its state to “on” or “off”, the time until it silently
fails (from “on” to “silently stuck on” and from “off” to “silently stuck off”) follows an
exponential distribution with rate VALVEDECAY .

When the controller is in mode “Normal” and pump 1 changes its state to “failed”, then the
controller immediately enters “Degraded” mode.

Repairs (to be synthesized). A repairman repairs at most one pump or valve at the same
time. We consider two classes of repair policies:

• non-preemptive: once a repair has started, it will be completed without interruption;

• preemptive: if, during a repair, another pump or valve fails, the repairman may decide
to repair that one instead.

The valve is easier to repair than a pump. As specified above, repairing a valve or pump
completely resets its decay and wear. The effect of a repair on the repaired component’s state
depends on the mode of the controller:

• In mode “Normal”:

– pump 1 cannot be failed (then we are in mode “Degraded”);

– if pump 2 is repaired, turn off pump 2;

– if the valve is repaired, open the valve.

• In mode “Degraded”:

– if pump 1 is repaired, switch to mode “Normal”;

– if pump 2 is repaired, turn on pump 2;

– if the valve is repaired, open the valve.

• In mode “Increase”:

– if pump 1 is repaired, turn on pump 1;

– if pump 2 is repaired, turn on pump 2;

– if the valve is repaired, close the valve.

• In mode “Decrease”:
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– if pump 1 is repaired, turn off pump 1;

– if pump 2 is repaired, turn off pump 2;

– if the valve is repaired, open the valve.

The times to repair are as follows:

• For a pump in state “failed”: PUMPPREP time units to prepare the repair, followed
by an amount of time following a continuous uniform distribution over the interval
[PUMPREPl ,PUMPREPu ] for the actual repair. (To obtain a Markovian model, use the
exponential distribution with the same mean.)

• For a valve in state “stuck open” or “stuck closed”: VALVEPREP time units to prepare
the repair, followed by an amount of time following a continuous uniform distribution over
the interval [VALVEREPl ,VALVEREPu ] for the actual repair. (For a Markovian model,
use the exponential distribution with the same mean.)

In case of preemption, the time to prepare the repair is incurred again every time the repairman
switches back to an already-started repair; after that, the remaining time for the actual repair is
needed. In the non-preemptive case, if two more components fail while one is being repaired,
the subsequent choice of which to repair next is not specified and subject to control synthesis.
Additionally, in the preemptive case, if one more component fails while another one is being
repaired, then the immediate decision of whether to switch to that one is not specified and
subject to control synthesis. As a baseline for the synthesis performance, we can consider
a uniformly random policy: Whenever there is a decision between repairing n > 1 different
components, use a discrete uniform distribution to select one.

Synthesis considerations. Realistically, the repair policy should not be aware of silent
defects. Thus we have a partially observable discrete state. If the model is implemented
with a sample-and-wait semantics, then it is important to distinguish between prophetic and
non-prophetic policies. The former know the remaining times to failures and repairs; the latter
do not.

Optimisation goal. Minimize the probability for the tank to become empty (because then it
would surely overheat) within T time units: Pmin(♦time≤Th = 0)

Summary of variants. Within the description several variants were introduced which are
summarized in the following:

• linear or Toricelli;

• general continuous random distributions or Markovian;

• preemptive or non-preemptive repairs;

• complete information or partial observability;

• prophetic or non-prophetic policies.
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4.3 Geometric Brownian motion

The Geometric Brownian motion benchmark is taken from [52]. The SDE of Geometric
Brownian motion satisfies:

dXt = (µ+
σ2

2
)Xtdt+ σXtdWt (8)

whereX0 ≥ 1, µ > 0 and σ > 0. We want to estimate the probability P{τ < T} with
τ , inf{t > 0 : Xt ≥ L}. The proposed Geometric Brownian motion benchmark has parameter
values: X0 = 1, µ = 1, σ = 1, level L = 1717.25 and T=1s. Following [93, 48], we can use the
following equation to evaluate reach probabilities:

γ = P(τ < T ) =

T∫
0

ln(L/X0)√
2πσ2t3

exp

{
−[ln(L/X0)− µt]2

2σ2t

}
dt (9)

We have used this equation to determine the value for the final level L = L10 = 1717.25,
and also use this equation to determine values for 9 intermediate levels Lk, k = 1, ..., 9,, such
that the conditional hit probabilities between successive levels are equal to 1/10. Table 2 shows
the resulting Lk level values for k=1,2,. . . , as well as the analytical γ results for these levels.

The right hand column in Table 2 also show estimated γ̄MC results that have been obtained
through conducting a straightforward Monte Carlo (MC) simulation using 10000 runs and
numerical integration time step ∆ = 2× 10−3s. These γ̄MC results show that straightforward
MC simulation based estimation of γ fails to work beyond k = 4.

Table 2: Analytical γ for geometric Brownian motion benchmark, with X0 = 1, µ = 1, σ = 1, at
level L = L10 = 1717.25 and T = 1s and 9 intermediate levels.

k Lk γ
1 12.27 0.09998
2 33.038 1.000× 10−2

3 69.09 1.000× 10−3

4 127.45 1.001× 10−4

5 217.5 1.000× 10−5

6 351.445 1.000× 10−6

7 545.14 1.000× 10−7

8 818.935 1.000× 10−8

9 1198.75 1.000× 10−9

10 1717.25 1.000× 10−10

5 Friendly Competition – Setup and Outcomes

The results observed from the execution of the previously described benchmarks with the
participating tools are presented in this section, we present an overview in Table 3.

Our efforts in providing a more detailed classification of benchmarks used in the competition
which were started last year have been continued this year. All novel benchmarks which were
presented this year have been classified according to the criteria specified last year (see Table 4).
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Figure 2: Visualization of the state space predicates of the service robot benchmark.

Table 3: Tool-benchmark matrix: We indicate the year a tool was first applied to a given
benchmark. Shortkeys: automated anesthesia (AS), building automation (BA), heated tank
(HT), water sewage (WS), stochastic Van der Pol (VP), integrator chain (IC), autonomous
vehicle (AV), patrol robot (PR), Geometric Brownian Motion (GB).

Tool
Benchmarks

AS BA HT WS VP IC AV PR GB

FAUST2 2018 2018 2020
StocHy 2019 2019 2020
SReachTools 2018 2018 2020
AMYTISS 2020 2020 2020 2020 2020 2021
hpnmg 2020
HYPEG 2019 2020
Mascot-SDS 2020 2021
modes 2018 2020
ProbReach 2020
prohver 2020 2020
SDCPN&IPS 2019 2021
SysCore 2021 2021
Figaro 2021
PyCATSHOO 2021

An overview on the evaluation results obtained this year on old and new benchmarks is given in
Table 3.

5.1 Centralized execution

Following the goal of a centralized execution which is aimed for in all categories of the ARCH-
Competition, we encouraged tool developers to hand in Docker containers for a repeatabil-
ity evaluation to the repeatability committee at ARCH See https://gitlab.com/goranf/

ARCH-COMP/tree/master/2021/SM for more details on the repeatability evaluation and the
provided repeatability evaluation packages by the tool developers.

Nonetheless, the running times presented here are resulting from the execution of the tools
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Table 4: Overview of benchmark properties. Shortkeys: Time horizon: Finite (F) or Infinite
(I); Type of control: Switching (S), Drift (Dr), or Multiple (M); Time line: Discrete (D) or
Continuous (C); State space: Continuous (C) or Hybrid (H); Drift in ODE/SDE: Linear (L),
Piecewise Linear (pL), or Nonlinear (NL); Noise : Brownian motion (BM) or independently and
identically distributed (iid)

Aspect
Benchmarks

AS BA HT WS VP IC AV PR GB

Liveness/deadlock X X
Prob. reachability X X X X X X X
Control synthesis X X X X X
Min-max X X
Time horizon F F F F I F F I F
Type of control S M Dr Dr M M
Time line D D C C D D D D C
State space C H H H C C C H C
Drift in ODE/SDE pL NL NL pL NL L NL NL L
Noise in SDE Fixed Fixed Fixed Fixed Fixed Fixed State
Noise: BM or i.i.d. iid iid iid iid iid iid BM
Guards X X X X
Rate spontaneous jumps Fixed State Fixed Fixed
Size spontaneous jumps Fixed Fixed Fixed Fixed
Environment X X X X
Subsystems X X X
Concurrency X X
Synchronization X X
Shared variables X X
# discrete states 5 576 35 2
# continuous variables 3 7 2 11 2 50 7 4 1
# model parameters 24 19 15 36 3 8 11 2 5

on the tool-maintainers’ own machines.

5.2 Anesthesia benchmark results

Table 5 compares the performance of the tools based on their run time and the highest maximum
stochastic reach probability starting from any state in the initial safe set for the Anesthesia
benchmark. This benchmark defines a stochastic viability problem for a three-dimensional
Gaussian-perturbed LTI system model.

Table 5: Run times and maximum reach probability on the Anesthesia benchmark.

Property StocHy AMYTISS

Run time on common CPU (sec) 0.402 0.288
Maximum reach probability ≥ 0.99± 0.02 ≈ 0.99

AMYTISS has the fastest run time, while producing among the highest stochastic reach prob-
ability along with StocHy and SReachTools. StocHy has gained a 13.39 speed-up improvement
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with parellelisation of this case study, making it’s overall run time comparable to AMYTISS.
StocHy computes the optimal control policy which maximises the probability of satisfaction

given any initial condition within the input set and provides exact guarantees on the resulting
solution. For this case study, we see that StocHy can keep the system safe with 0.99 probability
with a maximum abstraction error of 0.02.

5.3 Building automation benchmark results

Table 6 compares the performance of the tools based on their run time and the highest stochastic
reach probability starting from any state in the initial safe set for the building automation
benchmark. The benchmark defines a stochastic viability problem for a four-dimensional and
seven-dimensional Gaussian-perturbed LTI system model (see Section 3.2).

Table 6

Property StocHy AMYTISS

Case 1, 4-dimensional system
Run time on common CPU(sec) 7.17 0.92

Maximum reach probability ≥ 0.99± 0.05 ≈ 0.99

Case 2, 7-dimensional system
Run time on common CPU (sec) 335.876 12.5

Maximum reach probability ≥ 0.8± 0.23 ≈ 0.8

AMYTISS has the fastest run time for both cases with comparable maximum reach probabil-
ities. StocHy has been run with the new parallelisation method enabled and when comparing
with the results from [2], we note a significant improvement. Note, StocHy was not able to
solve case 2 in [2] and not can run it in 335s without reducing it’s computed maximum reach
probabilities. This further highlights the new improvements.

Since SysCore is currently going under a substantial development of the techniques, we have
applied the tool only to the 7-dimensional version of this benchmark. SysCore uses both model
reduction and space discretization to compute a bound for the reach probability. The dimension
of the system is reduced from 7 to 2. The Maximum reach probability is equal to 0.9035 with the
total run time 159.6 seconds. These values are obtained by setting (ε, δ) = (0.2, 0.0161). These
values are not reported in the above table as they are obtained with a different computation
platform. The code is also not optimized for parallel computations. it is expected that an
optimized version of the code would provide a much better result.

5.4 Heated Tank benchmark results

Both in ARCH2018, ARCH2019 and ARCH2020 the focus has been on the estimation of the
dryout probability for Heated Tank version 4.0 [3, 1]. Within ARCH2021 the objectives is to
evaluate Heated Tank version 4.III.

The extension of the formal model specification of HT version 4.0 to HT version 4.III consists
of the following three extensions: i) Change in differential equation for the temperature xT,t; ii)
Temperature dependent failure rates of Valve and Pumps; and iii) Change in model parameter
values. None of these extensions impact the graphical Petri Net model of version 4.0 [1].

The differential equation for the temperature xT,t of the liquid satisfies:

dxT,t = [q(χP1,t + χP2,t)(Tin − xT,t) + Ein]/(xH,t +Href ).dt (10)
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Table 7: Parameter values of Heated Tank versions 4.0 and 4.III

Parameter Version 4.0 value Version 4.III value

λ̂P1 2.2831× 10−3 h−1 2.2831× 10−3 h−1

λ̂P2 2.8571× 10−3 h−1 2.8571× 10−3 h−1

λ̂V 1.5625× 10−3 h−1 1.5625× 10−3 h−1

b1 3.0295 3.0295
b2 0.7578 0.7578
bc 0 0.05756
bd 0 0.2301

λrepair = 2µ 0.2 h−1 1 h−1

q 0.6 m/h 1.5 m/h
Ein 1◦Cm/h 23.88915◦Cm/h
Tin 15◦C 15◦C
Tinit 15.667◦C 30.9261◦C
HOverflow 5 m 10 m
HHigh 1 m 8 m
HInit 0 m 7 m
HLow −1 m 6 m
HDryout −5 m 4 m
Href 9 m 0 m
t0 0 h 0 h
tend 500 h 1000 h
TBoil 100◦C 100◦C

with xH,t the height of the liquid in the tank, χP1,t and χP2,t are (0, 1) -indicators if pump 1
and pump 2 deliver input flow q or not, Tin is the temperature of inflowing liquid, Ein the heat
energy produced by the source, and Href a reference level in the tank. All parameter values are
given in Table 7.

Pump1, Pump2 and Valve undergo independent failure transitions: On → Stuck-on, On →
Stuck-off, Off → Stuck-on, Off → Stuck-off at a temperature xT,t dependent rate λ̂U · α (xT,t)
U ∈ {P1, P2, V }, with temperature dependent factor α (xT,t), e.g. [101]:

α (xT,t) = [b1 exp {bc (xT,t − 20)}+ b2 exp {−bd (xT,t − 20)}] / (b1 + b2) (11)

Heated Tank version 4.III has been evaluated by FIGARO, PyCATSHOO, SDCPN&MC
and SDCPN&IPS. The results for Dry-out probability are given in Table 8. It should be noted
that in case of reaching Boiling prior to reaching the Dryout level, the simulations are continued;
this is indicated as P-Dryout non-stop.

The FIGARO tools used for HT 4.III are: FigaroIDE to build a small knowledge base, KB3
to input the system graphically, the Figaro0 language for a self-contained model, and YAMS
for running Monte Carlo simulations. For the numerical solution of the differential equations a
forward Euler method is used with a fixed time step. Conducting 1 million runs asked 3 h53 min
on an Intel Core i5-6200U, 2.3Ghz Processor with a time step of 0.5h, and 18h40mn with a
time step of 0.1h. The reduction of the time step increases precision, this is why Table 6 only
contains the result obtained with the time step of 0.1h. But it is interesting to note that taking
a larger time step leads to an overestimation of the probability (9.4× 10−5 with time step 0.5h).
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Table 8: P-Dryout for Heated Tank version 4.III: estimated by FIGARO, PyCATSHOO, SDCPN
& MC and SDCPN & IPS

Method
FIGARO PyCATSHOO SDCPN&MC SDCPN&IPS

Measure

Variance
reduction

No No IS No IPS

Estimated
P-Dryout
non-stop

5.6× 10−5 2.40× 10−5 2.86× 10−5 1.98× 10−5 1.99× 10−5

Confidence
interval

±1.46× 10−5

(95%)
±0.96× 10−5

(95%)
±0.28× 10−5

(95%)
±0.041× 10−5

(95%)
Simulation

effort
106 runs 106 runs 15000 runs 107 runs

100 x IPS à
100,000 part.

The PyCATSHOO model for the HT 4.III is based on four concrete python classes: Tank,
Pump, Valve and ThermalSource. Each one of these classes is modelled by automata, by a set
of state variables, and by equations that govern these variables. These classes provide message
boxes where incoming and outgoing channels are used as a means of communication between
the interconnected objects in the system. As the PyCASTHOO acceleration mechanism [22] is
still under development, we first used straightforward Monte Carlo simulations. This gave us a
comparison benchmark to confirm the result of our importance sampling (IS) algorithm. By
using an EDF high-performance computer, it was feasible to conduct 1 million straightforward
MC runs in 19 seconds. On a laptop with i7-8750H CPU @ 2.2 GHz, this required about 50mn.

The SDCPN model for HT 4.III has been realized by extending the SDCPN model for
HT 4.0 that has been used in [1]. For the numerical evaluation of the differential equations
in between stopping times, a forward Euler method is used with a time step of 0.1 hour (or
less). The number of MC runs is 10 million. The number of IPS runs is 100, and the number
of particles per IPS run is 100 thousand. The MC and IPS runs have been conducted on an
ASUS RS700A-E9-RS4 with an AMD Epyc 7551 processor having 32 cores and 64 threads and
256 GB of RAM. The 10 million MC runs asked 1.37 hour; the 100 IPS runs asked 2.52 hour.
Comparison of the estimation results of SDCPN & MC versus SDCPN&IPS shows that their
estimated P-Dryout probabilities are almost the same, though the 95% uncertainty interval of
IPS is about a factor 7 smaller than it is for MC.

The estimated P-Dryout probabilities by PyCATSHOO, SDCPN&MC and SDCPN&IPS
fall outside the 95% confidence interval of FIGARO. The likely explanation is that the former
three used a discrete event simulation method, i.e. to apply a numerical integration method in
between two successive stopping times of the process to be simulated, whereas FIGARO used
fixed time steps of 0.1 hour, which means that a stopping time of the process to be simulated
may be somewhere halfway an integration time step instead of being at the begin or end. This
difference, and also the difference between the two results obtained with the same FIGARO
model with different time steps shows that the apparently simple Heated tank benchmark is
sensitive to numerical approximation.
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5.5 Water sewage facility benchmark results

Within this year’s competition, the water sewage facility benchmark has been evaluated by the
analytical model checkers hpnmg and ProbReach and the statistical model checkers HYPEG and
modes. Property ϕArare

has been model checked for the water sewage facility with extension A.
The model has been parametrized for the evaluation taking into account the new initial value
for P1 (it is now 0). From the results, a selection of parameter sets are presented in this report.

Setup. For extension A, the mean of the random variable modeling the duration of heavy
rain is set to 1.5h and the capacity of the community buffer Pc ranges between 30 and 42 (in
106 liters). These parameter combinations have been chosen in order to yield increasingly lower
probabilities.

For hpnmg, statistical errors are caused by numerical methods used for multi-dimensional
integration. Using Monte Carlo integration, specifically the VEGAS method [61], with default
settings and a predefined number of samples leads to estimated errors smaller than 10−6. We
configured the Monte Carlo simulation-based tools—HYPEG and modes—to sample a number
of runs sufficient to obtain a confidence level of 95 % with a confidence interval half-width of
10 % of the estimate.

Results. Table 9 presents the results and computation times for ϕArare . A large community
buffer and a small mean for the duration of rain result in a very low probability of overflowing.

All tools except ProbReach are able to compute the probability that ϕArare
holds for varying

values of Pc. For ProbReach, due to a bug in the software it was not possible to compute rigorous
enclosures. Nevertheless, the bounds reported in Table 9 are numerically sound, in the sense
that they are guaranteed to bound from above the true probability value.

For Pc = 30 all computed probabilities coincide such that at least the confidence interval
overlap; modes’ results appear to be lower than the others. For all larger values of Pc, hpnmg
computes slightly larger probabilities than ProbReach, while the results of ProbReach and the
different simulation tools match w.r.t. the computed confidence intervals. The statistical error for
the results computed by hpnmg becomes smaller with the computed probability. We expect that
this is due to the adaptive integration VEGAS, which uses importance sampling to concentrate
evaluations of the integrand to regions where it is largest in magnitude [61]. Furthermore, for
Pc = 42 the probabilities computed by modes MC and Restart exceed the result by ProbReach.
Note that for larger values of Pc the confidence intervals computed for HYPEG were not able to
match the accuracy achieved by modes due to performance issues.

Computation times. Comparing the simulative approaches, HYPEG requires significantly
more time. This follows partly from the fact that HYPEG takes the original Petri net model as
input and has to compute new rates for continuous places whenever a place in the model gets
empty or full, c.f. rate adaptation in [2]. Furthermore, modes stops a simulation run as soon as
the property is decided. In this case study, this corresponds to modes stopping a run as soon as
the rain stops. The mean duration of rain is 1.5h and the maximum simulation time 30h, hence
this optimization by modes should be quite influential on the computation times as well.

When using the Restart rare event simulation method, modes performs only slightly better
than when using standard Monte Carlo simulation (“modes MC”) for large community buffers
as the estimated probability becomes smaller. As importance function, modes Restart uses a
discretisation of the water level in the community buffer; this is evidently not good enough to
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provide a significant benefit. In general, we found that simulation runs are rather short, leaving
little room for an importance splitting method like Restart to gain from splitting the runs.

The analytical tools are in general faster than the simulations, which is to be expected since
the model has only one random variable (the duration of heavy rain). Note that hpnmg has
nearly constant computation times whereas ProbReach becomes faster with an increasing Pc
(which in turn decreases the probability of satisfying ϕArare

). The latter is due to the fact that
it is computationally harder to evaluate rigorously the portions of the (random) parameter
space over which ϕArare

is true with respect to those where it is false [78]. Since the probability
becomes smaller precisely because a smaller portion of the parameter space satisfies the property,
this speeds up ProbReach.

Table 9: Probabilities for ϕArare
= (mPn

= 0) U[0,30] (xP0
≥ 0.1), estimated error (for hpnmg)

resp. confidence interval (for the other tools but ProbReach) and run time for the mean duration
of raining µ = 1.5 h and the capacity of the community buffer Pc for the water sewage facility
benchmark with extension A. ProbReach’s results are upper bounds of the probability of satisfying
ϕArare . Note that the capacity of the community buffer Pc is given in 106 liters. Simulation
parameters: Confidence level 95%, aim is to obtain an interval width of ±10% (not possible
with HYPEG for 38, 42 since run time is too long).

Param. Tools
Pc hpnmg HYPEG modes MC modes

Restart
ProbReach

30
1.21 · 10−3

2.3 · 10−7

0.142 s

1.19 · 10−3

±1.0 · 10−4

309.5 s

1.14 · 10−3

±10 %

1 s

1.15 · 10−3

±10 %

1 s

6 1.21·10−3

51 s

34
1.54 · 10−4

3.1 · 10−8

0.133 s

1.40 · 10−4

±1.0 · 10−5

3314.5 s

1.49 · 10−4

±10 %

6 s

1.50 · 10−4

±10 %

6 s

6 1.48·10−4

44 s

38
1.44 · 10−5

2.8 · 10−9

0.134 s

1.55 · 10−5

±5.0 · 10−6

1452.8 s

1.29 · 10−5

±10 %

67 s

1.34 · 10−5

±10 %

59 s

6 1.49·10−5

37 s

42
9.73 · 10−7

1.1 · 10−12

0.106 s

9.20 · 10−7

±5.0 · 10−7

9426.2 s

9.45 · 10−7

±10 %

865 s

1.05 · 10−6

±10 %

705 s

6 9.15·10−7

33 s

Outlook. After performing the computations for property ϕArare
, we have observed that a

significant part of the model, specifically the cleaning street, does not influence the computed
probability. Hence, it would be of interest to formulate a property which relates e.g. to the
digestion tank, to ensure that the complete state space of the model is constructed.

Platforms. HYPEG has been executed on a machine with an Intel Core i5-8250U (4×1.6–
3.4 GHz) system and 16 GB memory. hpnmg was executed on an Intel i5-7200U processor
with 2 CPU cores running on a frequency of 2.712 GHz and 16 GB memory. modes ran on a
machine with an Intel i5-6600T processor with 4 physical CPU cores running at a frequency of
2.7–3.5 GHz, and 16 GB of memory. ProbReach was executed on a machine with 2x Intel Xeon
3.5 GHz E5-2637v3 processors (8 cores) and 32 GB of RAM (the timings reported in Table 9 are
single-core).
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5.6 Van der Pol Oscillator benchmark results

Figure 3: The Van der Pol oscillator example: The set B (green box) is the target that should
be visited infinitely often. The under-approximation of the winning region is in grey. The
over-approximation of the winning region is the union of blue and grey areas. I is the initial state
for simulation. The trajectory with stochastic perturbation is shown in red, and the trajectory
with a fixed deterministic perturbation that always misses the target is shown in black.

We have applied Mascot-SDS on this benchmark for solving Problem 1. An over- and
under-approximation of the winning region is computed and plotted in Figure 3. Note that
when the noise is treated as worst case, then there exists a deterministic value of the noise
for which the oscillator trajectory never reaches the target B from all the initial states inside
the domain, thus violating the specification. So the winning region is empty if the noise is
treated as worst case. A trajectory with a fixed deterministic perturbation that misses the
target all the time is shown in black in Figure 3. On the other hand, when the noise is treated
as stochastic, then there are initial states from where the perturbed trajectory visits the target
set B repeatedly. A trajectory with stochastic perturbation and the initial state I is also shown
in the figure. The computation times are 417 sec for the over-approximation and 15 415 sec for
the under-approximation.

Tool AMYTISS was also applied to Problem 3. It solves the problem in around 416 sec using
CPU 1, 58 sec using CPU 1 and 4.7 sec using GPU 1.

5.7 Integrator-chain benchmark results

This year we have applied the integrator-chain benchmark on StocHy, AMYTISS, and SReachTools
Kernel Module for the 2-D and 3-D versions.

Table 10: Comparison of tools on Integrator-chain benchmark in terms of computational time

N -dimensions StocHy AMYTISS SReachTools Kernel
Module

2 4.783 8.655 0.738
3 3225.80 66.71 0.754
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Table 10 describes the results of the scalability comparison of StocHy, AMYTISS, and
SReachTools Kernel Module. We can note an improvement of ×13.89 for StocHy.

In addition, we have applied the SReachTools Kernel Module to solving the n-dimensional
integrator chain problem for higher values of n. The SReachTools Kernel Module is more scalable
than the pre-existing algorithms in SReachTools, and has the ability to analyze high-dimensional
systems with up to 10,000-dimensions in less than 1 minute. The SReachTools Kernel Module
successfully identified a safe initial state with reach probability ≈ 1 for n ≤ 10,000. Because
the algorithms in the SReachTools Kernel Module are sample-based, they do not rely upon a
gridding-based approach, meaning the computational complexity scales exponentially with the
sample size rather than the system dimension. The tool also has the ability to perform analysis
of systems up to one million dimensions using a kernel speedup technique at the cost of higher
approximation error.

5.8 7-Dimensional BMW 320i benchmark results

In this benchmark, we are interested in an autonomous operation of the vehicle to satisfy a
reach-avoid property. In particular, the vehicle should park itself automatically in a parking lot
located in the projected set [−1.5, 0.0]× [0.0, 1.5] within 32 time steps, while avoids hitting a
barrier represented by the set [−1.5, 0.0]× [−0.5, 0.0]. AMYTISS is the only tool presented in
this report capable of handling this benchmark, and solved the problem in 825 sec. Since the
dimension of the system is seven and relatively large for discretization-based techniques (the
number of transitions in MDPs |X̂ × Û | is 3,937,500), the required memory for constructing the
finite MDP would be very huge (and it is impossible in practice to construct such an abstraction
due to the memory limitation). In order to handle this benchmark, we employ the on-the-fly
abstraction technique as described in Section 2 to significantly reduce the required memory for
constructing our finite MDP. We refer the interested reader to [54] for more details on the OFA
technique.

5.9 Patrol robot benchmark results

In this benchmark, a robotic vehicle, modeled in Eq. (6), needs to autonomously patrol between
two locations infinitely often, if the door between the two locations opens infinitely often (detailed
specification is given in Eq. (7)). Mascot-SDS is the only tool presented in this report is able to
perform a controller synthesis for this example. Mascot-SDS performs synthesis by computing a
uniform finite-state abstraction of the continuous state systems, for which we fixed the dimension
of the abstract states as (0.1 × 0.1 × 0.1) and we sampled finitely many input points from
the continuous input space with a discretization parameter 2.0. For this benchmark, we ran
Mascot-SDS on a Macbook Pro (2015) with a 2,7 GHz Dual-Core Intel Core i5 processor and 16
GB RAM, and the total time for abstraction and synthesis was around 35 min.

5.10 Geometric Brownian motion benchmark results

Within ARCH2021 the geometric Brownian motion benchmark has been evaluated by SD-
CPN&MC, SDCPN&IPS and AMYTISS. These results are given in Table 11 for the 10 levels
for which Table 2 has given the analytical reach probabilities.

The second column in Table 11 shows the γMC results obtained through straightforward
Monte Carlo (MC) simulation using 10000 runs with numerical integration time step ∆ =
2× 10−3s . The results in Table 11 show that straightforward MC simulation based estimation
of γ fails to work beyond k = 4.
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Table 11: Results obtained for the geometric Brownian motion benchmark

MC IPS AMYTISS
k γMC γ̂ ρs ĉγ̂,NRMSE upper bound

1 0.0957 9.78× 10−2 100% 10% 0.1401
2 0.0085 9.70× 10−3 100% 17% 0.0180
3 6.000× 10−4 9.58× 10−4 100% 28% 0.0080
4 1.000× 10−4 9.43×10-5 100% 44% 0.0148
5 0 9.18× 10−6 100% 66% 0.0253
6 0 8.98× 10−7 100% 94% 0.0409
7 0 8.65× 10−8 100% 131% 0.0635
8 0 8.23× 10−9 96% 179% 0.0954
9 0 7.68× 10−10 89% 235% 0.1396
10 0 7.17× 10−11 75% 301% 0.2010

The columns 3-5 in Table 11 show the results obtained through IPS, with Np = 1000 particles.
The applied IPS approach makes use of fixed assignment splitting (FAS) [63]. For the numerical
integration of the SDE, use is made of a fixed numerical integration time step. This means that
a stopping time of the process in hitting the k-th level may be somewhere halfway an integration
time step. To keep the error low, a small time step of ∆ = 4 × 10−4s is used. By repeating
IPS NIPS = 1000 times, we get estimates of the rate ρs of surviving IPS, and of a normalized
root-mean-square error, ĉγ̂,NRMSE . The measures γ̂, ρs and ĉγ̂,NRMSE are defined as follows:

γ̂ =

∑NIPS
i=1 γ̄i

NIPS
(12)

ρS =

∑NIPS
i=1 1γ̄i>0

NIPS
(13)

ĉγ̂,NRMSE =
RMSE

γ
× 100% (14)

with 1γ̄i>0 =

{
1, if γ̄i > 0

0, if γ̄i = 0
and

RMSE =

√∑NIPS
i=1 (γ̄i − γ)

2

NIPS
(15)

where γ̄i denotes the estimated reach probability for the i-th IPS run.

Application of AMYTISS to this case study. Since AMYTISS is developed for discrete-time
models, we discretize the model in (8) with a sampling time τ̂ as

X(k + 1) = X(k) + (µ+
σ2

2
)τ̂X(k) + σ

√
τ̂X(k)w(k), k ∈ N, (16)

where w(·) ∼ N (0, In) is a sequence of independent random vectors with multivariate standard
normal distributions (i.e., mean zero and covariance matrix identity). This discrete-time model
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can be used by any tool that computes the value of γ using analytical abstraction based methods,
e.g., AMYTISS and StocHy.

We use to discretized model in (16) and try to approximate γ via two analytical approaches:
(i) barrier certificate and (ii) reachability analysis via abstraction-based techniques and standard
dynamic programming. We first use SOSTOOLS [69] together with a semi-definite programming
(SDP) solver such as SeDuMi [84] to search for a polynomial barrier certificate [5, 67] with an
initial set [0.9, 1.1] and unsafe regions [Lk, 1.1Lk]. The probability of reaching the unsafe region
in T=1s via a potential barrier certificate can give us the rare event probability γ. However,
we were not able to construct any polynomial barrier certificate. The main reason could be
the shape of dynamics which is diverging exponentially, and as a result, polynomial barrier
certificates cannot be found. In addition, it is not clear how one can implement an exponential
barrier certificate in SOSTOOLS [69].

We now aim to do a change of variables to obtain a linear model for (16) and solve the
reachability problem via standard dynamic programming using AMYTISS [54]. By taking
operator log from both sides of (16), one has

logX(k + 1) = logX(k) + log
[
1 +

3

2
τ̂ +
√
τ̂w(k)

]
.

By defining

Y = logX → Y (k) = logX(k), and log
[
1 +

3

2
τ̂ +
√
τ̂w(k)

]
= ξ(k),

one has

Y (k + 1) = Y (k) + ξ(k), with Y (0) = 0.

Now we can directly compute the conditional probability density function of the system as

T(ȳ | y) = P
{
Ȳ ≤ ȳ | y

}
= P

{
y + ξ ≤ ȳ | y

}
= P

{
ξ ≤ ȳ − y | y

}
= P

{
log
[
1 +

3

2
τ̂ +
√
τ̂w
]
≤ ȳ − y | y

}
= P

{
1 +

3

2
τ̂ +
√
τ̂w ≤ 10ȳ−y | y

}
= P

{
w ≤

10ȳ−y − 1− 3
2 τ̂√

τ̂
| y
}

= CDF
(10ȳ−y − 1− 3

2 τ̂√
τ̂

)
.

where the cumulative distribution function (CDF) of the standard normal distribution is used
in the last line. Then the transition probabilities of the abstract system in AMYTISS can be
computed as

P
{
a ≤ Ȳ ≤ b | y

}
= CDF

(10b−y − 1− 3
2 τ̂√

τ̂

)
− CDF

(10a−y − 1− 3
2 τ̂√

τ̂

)
, (17)

By evaluating the CDF of normal distribution at two points (17) via AMYTISS and discretizing
the state space, we can get an upper bound on the reach probability. This upper bound is
reported in the right column of Table 11. Note that the provided bound is relatively good for the
initial levels but become very pessimistic for other levels due to the increase in the size of the space
that needs to be discretized. These upper bounds can be improved by increasing the precision
of the abstraction (i.e., smaller partition sets of the state space), which requires extremely large
memory and computational power. This experiment shows that current analytical methods
based on abstractions are not able to handle rare event computations efficiently.
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6 Conclusions

The achieved results this year are manifold. Three novel benchmarks with interesting properties
and challenges were added to the collection of benchmarks for stochastic hybrid models. Thirteen
tools were successfully evaluated on subsets of those collected benchmarks.

A recent survey of many of the discussed techniques can be found at [60], and provides the
theoretical underpinnings for much of the computational results presented here.

6.1 Further tool development

6.1.1 Further development of AMYTISS

AMYTISS provides parallel algorithms that scale with respect to available compute resources,
which enables handling more practical stochastic control problems. We will then use AMYTISS
to design reach-avoid controllers for a real-world application. We plan to target the problem
of real-time path-planning for a robot described by a simplified 4-dimensional version of the
7-dimensional BMW model. The robot should reach a predefined target while avoiding obstacles
that might dynamically change. At the beginning of each control cycle (i.e., the sampling period)
the robot should sense its state and the environment, solve the control problem using AMYTISS,
generate a controller and deploys it. As the robot might be limited in compute capability, we
may off-load the computation of the controller to HPC machines on the Cloud or ones that are
available locally. In any of the cases, the network delay should be considered when planning for
the real-time control. The implementation will be deployed on an actual robot. More specifically,
the Amazon AWS DeepRacer car will be used as a target robot.

6.1.2 Further development of FAUST2

FAUST2 did not participate this year due to lack of resources. It will join the competition
next year with further development on verification and synthesis for infinite horizon properties
[91, 92] and stochastic systems with multiple players in a game theoretical setting [26, 62].

6.1.3 Further development of FIGARO

All the FIGARO workbench tools briefly described in section 2 are “industry proof” tools,
used in real studies of complex systems such as nuclear power plants, telecommunication and
electrical networks. KB3 is commercially available under the name RiskSpectrum ModelBuilder.
A new tool, still a prototype, is available to process FIGARO Markovian models: it is based on
the STORM probabilistic model checker, cf. [51]. This tool is used to experiment heuristics for
choosing the states to keep in the partial construction of a large Markov chain [50].

6.1.4 Further development of HYPEG and hpnmg

For specific properties, as in the water sewage example, HYPEG can potentially speed-up the
simulation significantly by stopping a simulation run when the property is already decided
in contrast to simulating always until the maximum time. Furthermore, we are extending
HYPEG to synthesize schedulers as in the new control synthesis version of the heated tank.
The tool hpnmg will be extended towards more general stochastic hybrid systems, such that
also discrete nondeterminism and nondeterminism through time delays can be resolved to
optimize reachability probabilities. Furthermore, we will investigate the use of different state-set
representations.
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6.1.5 Further development of Mascot-SDS

Despite being powerful in approximating the solution of the rich class of ω-regular (infinite-
horizon) specifications, the latest release (version 1.1) of Mascot-SDS can only approximate the
initial states from which the specification can be satisfied with probability 1. Future extension of
this tool will include the quantitative aspect of the problem as well (i.e. computing the optimal
probability of satisfying the specification for any initial state). Moreover, the current version is
not scalable to very large dimensional systems due to the curse of dimensionality introduced by
the discrete abstraction. Future release will use intensive parallelization of the abstraction and
the synthesis procedure to mitigate the scalability issue.

6.1.6 Further development of modes and prohver in the Modest Toolset

modes is currently being extended with learning-based methods to tackle the new control
synthesis version of the heated tank. We would also like to more thoroughly support limited-
information control policies (such as distributed and non-prophetic schedulers), and export
them in useful formats (e.g. as decision trees). For prohver, which was not applied this year, the
main challenge remains to replace the current usage of PHAVer as a backend by a maintained,
up-to-date tool.

6.1.7 Further development of ProbReach

The main aim for next year is to fix the computation of rigorous enclosures, i.e., upper and lower
bounds for probabilities. Currently, the lower bound computation is affected by a problem with
the generation of the logical formulae that are passed to the SMT solver (these are non-trivial,
exists-forall quantified formulae). We also plan to introduce a “upper bounding” modality for
ProbReach to compute only upper bounds for probabilities. This would avoid the more complex
computations needed for calculating lower bounds, thereby speeding up ProbReach. This option
could be especially useful when calculating rare-event probabilities.

6.1.8 Further development of PYCATSHOO

PyCATSHOO is used at EDF by several safety assessment tools for hydraulic and nuclear power
plants and electric networks. However, its improvement and extension of its functionalities are
still in progress. Our current main project is carried out in the framework of thesis work. It aims
at developing robust acceleration algorithms for Monte Carlo simulation and efficient sensitivity
indices for rare event assessment in PDMP. On the other hand, we are currently integrating
into PyCATSHOO efficient capabilities for modelling and solving Markov decision processes.
Finally, we are developing a hosting platform for the tools developed with PyCATSHOO. This
platform will provide to these tools the functionalities of a graphical interface for modelling,
post-processing, and other productivity features.

6.1.9 Further development of SReachTools

We will continue to develop SReachTools to provide abstraction-free, convex-optimization-based
methods for verification and stochastic reachability analysis of discrete-time stochastic switched
systems and Markov jump affine systems. Notably, the addition of the SReachTools kernel
module opens the door for data-driven stochastic reachability analysis of a wider variety of
systems than those previously considered, such as systems with nonlinear dynamics and arbitrary
stochastic disturbances. We plan to extend recent results for efficient, abstraction-free forward
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stochastic reachability analysis using Fourier transforms [98] and interpolation of stochastic
reach sets [99]. In addition, we will continue to develop the SReachTools Kernel Module to
provide statistical-learning-based algorithms for stochastic reachability analysis of discrete-time
stochastic systems and will incorporate recent results based in functional analysis to enable
controller synthesis and computation of stochastic reach sets [87, 88].

6.1.10 Further development of StocHy

In this year’s edition, StocHy’s means of computation of the underlying transition probabilities
and hence the abstraction process has been parallelised. This has resulted in a significant speed
up in the abstraction generation with an average speed up of ×13. Further work is however
required to reduce the number of states generated for the underlying abstraction and to simplify
the construction of the models with non-linear dynamics.

6.1.11 Further development of SysCore

SysCore can be used to compute finite and reduced order abstractions. Within SysCore, the
accuracy of these abstractions can be quantified with epsilon, delta simulation relations. Further-
more, these abstractions can be used for control synthesis with robust guarantees that can be
leveraged over the original model. Thereby, SysCore enables control refinement with guarantees
based on both reduced order and finite state stochastic models.

SysCore will be extended to inter alia nonlinear stochastic model classes with different
stochastic distributions. Additionally, moving beyond the current abstraction to finite and
reduced order models, abstractions to deterministic models will also be added together with
more advanced multi-layered computations.

6.1.12 Benchmarks that pose novel challenges

In this edition of the competition, we also introduced two novel benchmarks for future evaluation
of tools. One is an adaptation of the stochastic Van der Pol oscillator to a benchmark version
that challenges rare-event estimation tools. The other is an adaptation of the Heated Tank to
a benchmark version that challenges tools that not only estimates reach probability but also
enable the synthesis of control actions or parameters for optimizing such probabilities. These
two novel benchmarks have been prepared for future tools evaluations. We expect that they
will motivate further development of the tools and improve the capabilities of the techniques
currently available. We also welcome any new tool or novel approach that implement data-driven
methods for verification and controller synthesis of stochastic systems against complex temporal
properties.
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