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Abstract

Deep learning has achieved great success for detecting COVID-19 from CT scan images.
However, there is lack of generalization ability for the existing models. For example, one
model with a higher prediction accuracy developed on one dataset cannot be used to pre-
dict on another dataset. Thus, developing a robust deep learning model that has a great
generalization ability is a significant need. In this paper, we first apply three deep learning
models, namely convolutional neural network (CNN), capsule neural network (CapsNet)
and vision transformer (ViT) and test their generalization abilities. Then, we develop
and hypertune the models based on transfer learning to generalize the model performance
on new datasets. However, the transfer learning technique always has the catastrophic
forgetting issue which lead to lower prediction accuracy on its original training dataset.
Lastly, we will apply continual learning based on modified elastic weight consolidation
(EWC) regularization technique to address the catastrophic forgetting issue and improve
the models’ prediction accuracy on both new and original training datasets. Our results
on cross-data validation show that our proposed models not only achieve better prediction
accuracy of up to 97.85% compared with the existing state-of-the-art models, but also
the proposed models with EWC show great generalization ability and retain the higher
prediction accuracy on both new dataset and the training dataset. Extensive experiments
show that our proposed COVID-CNN model with EWC outperforms ViT and CapsNet
with an impressive 82.26% knowledge retention rate on the original training dataset. Our
developed code can be found from https://github.com/astonish24/-QinggeLab BICOB24.
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1 Introduction

The COVID-19 pandemic has significantly impact global health with over 469.9 million cases
and 6.1 million deaths reported by the WHO as of March 20, 2022 [14]. It has strained health-
care systems, resulting in overburdening medical resources and increasing mortality rates. This
situation highlights the urgent need for effective treatments and vaccines. The Reverse Tran-
scription Polymerase Chain Reaction (RT-PCR) test, widely used for COVID-19 detection, has
faced criticism for its inconsistent sensitivity, leading to concerns about its reliability as a diag-
nostic tool for COVID-19 [10]. False-negative results, influenced by various factors, would bring
negative impacts for public health and healthcare delivery. This underscores the necessity for
alternative diagnostic methods to improve the accuracy of COVID-19 detection. Also, due to
the limitations of RT-PCR testing for COVID-19 detection, the chest Computed Tomography
(CT) scans have emerged as a viable option. CT scan images play a crucial role in identifying
distinctive COVID-19 pneumonia patterns [14].

Deep learning models including Convolutional Neural Networks (CNNs), Capsule Neural
Networks (CapsNet) and Vision Transformers (ViT) provide effective solutions for improving
the accuracy of COVID 19 detection from CT scans by distinguishing it from diverse respiratory
diseases. These models utilize feature extraction, attention mechanism and transfer learning
to enhance precision and monitor disease progression across healthcare data [10, 21]. However,
most of the existing deep learning models are lack of generalization ability. These models become
excessively specialized on particular datasets, leading to challenges in performing effectively on
new unseen data. This challenge is further complicated by the sources of COVID-19 datasets
and the limited availability of labeled training data for rare disease like COVID-19. Therefore,
it is essential to develop robust deep learning models that adapt to variations of the virus to
ensure accurate and reliable COVID-19 detection across different virus strains and data sources.

In this paper, we focus on developing robust deep learning models with a great generalization
ability by utilizing transfer and continual learning techniques on diverse CT scan datasets
derived from various healthcare settings. The approach includes using CNN, CapsNet and ViT
models for COVID-19 detection from CT scan images and then employing transfer learning to
generalize the model prediction ability on new dataset. One major challenge in this process is
catastrophic forgetting, where the model performance decline on the original training dataset.
To address this issue, a continual learning strategy is implemented based on modified elastic
weight consolidation (EWC) technique. This allows the models to retain knowledge from old
dataset and effectively adapt to the new dataset. This paper is organized as follows. In
section 2, we introduce the relevant works, offering a foundational understanding and gaps in
the existing works regarding the utilization of deep learning for COVID-19 detection from CT
scan images. In section 3, we explain our main contributions with the design of the models,
the formulation of catastrophic forgetting problem, and the application of transfer learning
combined with continual learning to tackle the catastrophic forgetting issue. Section 4 lays out
our research outcomes and analysis results on different COVID-19 datasets. We conclude the
paper in the last section.

2 Related Works

Computed tomography (CT) scans have emerged as an important tool in the assessment of
individuals affected by COVID-19. Artificial Intelligence (AI) and deep learning models ex-
hibit remarkable proficiency in the analysis of medical images including CT scans to uncover
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latent patterns and attributes. In this section, we introduce AI and deep learning applications
for COVID-19 detection using CT scan images. Identifying the strengths and limitations of
the existing works will lead us to address the need of building robust models with a great
generalization ability for COVID-19 detection from CT scan images.

Numerous machine learning models have been developed for detecting COVID-19 using CT
scan images, such as support vector machine, Bayesian models, and decision tree [9]. These
methods with the manual feature extraction and dimension reduction techniques like principal
component analysis (PCA) achieved better results [24]. Deep learning models, particularly
CNNs, have shown promising results in analyzing medical images. Since medical images are
vulnerable to noises, which are random variations in pixel intensity or voxel values that distort
the true information present in the image, anisotropic diffusion was shown effective in reducing
noises in medical images when it was applied before feeding them in CNN models [4, 23].
However, high levels of contamination still can affect CNN model performance. A novel filter
called layer discrimination with max/min intensities elimination was proposed for detecting and
removing Impulse/Poisson noises in CT images [11], which improves image clarity and reduces
blurriness, therefore improving the performance of assessment fusion based CNN models. Thus,
the preprocessing of CT scan images is crucial in enhancing the performance of CNN models.

However, CNN models also have limitations in analyzing CT scans, particularly in detecting
sub-visual lesions, which impacts their effectiveness in medical decision support. To address
this, researchers designed Deep-LungParenchyma-Enhancing (DLPE) [27], a novel deep learning
workflow to identify subtle abnormalities in CT scans of COVID-19 patients to improve model
performance and minimize false discoveries. Xiao et al. [24] introduced PAM-DenseNet, a
convolutional neural network (CNN) specifically designed to handle coarse labels without the
need for manual delineation of infection regions by incorporating a parallel attention module
that effectively emphasizes crucial features, leading to improved focus on infection regions. Miao
et al. [16] analyzed receptive fields at the individual layer in CNN model and revealed certain
layers’ contributions to overall model accuracy. This observation highlights a fundamental
challenge inherent in CNNs. Their study confirmed the correlation between the size of the image
and the size of the receptive field significantly impacts the model performance. Richter et al.
[18] showed the fixed receptive fields may insufficiently capture the complex interrelationships
and broader context within medical images. This limitation has the potential to result in
suboptimal predictive performance, particularly in the analysis of COVID-19 CT scan images.

Furthermore, emerging deep learning paradigms, namely Capsule Networks (CapsNets) and
Vision Transformers (ViTs), provided promising alternatives for COVID-19 CT scan images
analysis. CapsNets pioneered by Geoffrey Hinton, play a significant advancement in neural
network architecture [19]. Unlike traditional CNNs, CapsNets employ dynamic routing to ef-
ficiently route lower-level features to corresponding higher-level capsules. A capsule is defined
as a mathematical vector detecting hierarchical relationships between parts of objects in an
image, including its existence, spatial location, dimensions, and orientation. In CapsNets, this
architectural innovation replaces conventional neurons with a unique arrangement of capsules,
offering a novel approach to feature extraction and routing. Notably, CapsNets have demon-
strated effectiveness in the analysis of medical images, particularly for COVID-19 CT scan
images [1]. In a similar vein, Vision Transformer (ViT) was also successfully designed for com-
puter vision tasks, such as image classification and object detection. Different from traditional
CNNs, ViTs rely on transformer architectures that were originally developed for natural lan-
guage processing tasks [7]. Transformers use self-attention mechanisms to capture relationships
between different elements in a sequence. CapsNet and ViT show potential in addressing the
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limitations of CNNs, improving the accuracy and interpretability of predictions in the analysis
of COVID-19 CT scan images. However, deep learning models often encounter challenges in
effectively generalizing to data that not included in their training process. Such challenges
result in a decline in terms of model performance when evaluated on distinct datasets, which is
not part of the initial training data [5], especially for COVID-19 CT scans images. Thus, it is
crucial to develop robust models with a great generalization ability beyond the specific datasets
used for training. Next, we will discuss our proposed deep learning models and techniques to
build robust model with generalization ability for COVID-19 detection.

3 Methodology

Our main goal in this paper is to build robust deep learning models with great generalization
ability for COVID-19 detection. In this section, we employ CNN, CapsNet and ViT models for
COVID-19 CT scan images analysis. To ensure our proposed models have better generalization
ability, we use transfer learning technique to test model performance on the new dataset. How-
ever, we observe that transfer learning always suffer from catastrophic forgetting issues, which
is a substantial decline of model performance on its previous training dataset. To solve this,
we use continual learning based on modified elastic weight consolidation (EWC) regularization
technique to improve model prediction accuracy. To the best of our knowledge, our paper is the
first one using transfer learning with EWC technique to explore model generalization ability
for COVID-19 detection from CT scan images.

3.1 Datasets and Preprocessing

The training dataset we will use in this paper is collected from the radiologist centers of teaching
hospitals in Sao Palo (Brazil) [22] and Tehran (Iran) [8]. We combine these two datasets to
obtain a balanced dataset and name it as dataset mod dev for model development. The other
dataset, namely dataset mod gen is collected from countries including Russia, China, Italy,
Turkey, and Iran [15] to test model generalization ability. The dataset mod dev is comprised of
4649 images, of which 2476 are from patients with COVID-19 and 2173 are from patients without
COVID-19. The dataset mod gen is a more diverse dataset used in [15], comprising of 14486
images with 7593 COVID-19 cases and 6893 Non COVID-19 cases. Figure 1 illustrates COVID-
19 CT scan images as examples, showing patients with and without COVID-19 infection.

In a preprocessing stage, we apply data augmentation techniques, including rotation, flip-
ping, and zoom adjustments to increase the size of datasets. Images are uniformly resized to
dimensions of 300×300×1 pixels, and pixel values are standardized to the interval number of (0,
1), ensuring consistent input data for our proposed models. Additionally, all images within the
dataset are shuffled to ensure that the models have a balanced representation of both COVID-
19 and non–COVID-19 cases during training. This approach will prevent bias towards any
specific class and contribute to model robustness. The dataset mod dev is divided into training,
validation, and test sets, following a ratio of 64:16:20. The dataset mod gen is split into the
ratio of 50:50 for training and testing. We use the validation set for effective model training
and hyperparameter tuning, and use the test sets for model evaluation.

3.2 Proposed Models

In this section, we present three models with the modified elastic weight consolidation (EWC)
regularization technique to build robust models for COVID-19 detection, aiming to effectively
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Figure 1: Example Images of Patients with the COVID-19 in the Top Row and Non COVID-19
Cases in the Bottom Row.

balance the acquisition of new knowledge and the preservation of existing information. We build
CNN model, referred to as COVID-CNN and apply ViT [19] and CapsNet [3, 20] for COVID-
19 detection on CT scan images. The individual model performance is evaluated on both
dataset mod dev and dataset mod gen datasets. As shown in the Table 1, all proposed models
demonstrate higher prediction accuracy on dataset mod dev, while provide lower prediction
accuracy on dataset mod gen. Next, we will discuss how each model is built for COVID-19 CT
scan image analysis.

3.2.1 COVID-CNN Model

The proposed COVID-CNN model is specifically tailored for grayscale images with a dimension
of 300×300×1. The initial processing begins with 116 feature maps (filters) used in the first
convolutional layer with a kernel size and a stride of 8×8 and 2×2 respectively. Then the output
dimension from the first convolutional operation is in the shape of 97×97×116.

After the convolution operation, a stride of 2×2 pooling layer is applied to downsample the
feature maps, reducing the spatial dimensions while keeping important information from the
previous layer. These operations are crucial for capturing localized and hierarchical patterns of
images. Additionally, batch normalization is used for the first convolutional layer to stabilize
the training process. The second convolutional layer with batch normalization and max-pooling,
also has the same parameters (i.e., 116 filters, a size of 8×8 kernel, and a size of 2×2) as the
first one, yielding 116 feature maps with the convolution operation of 10×10×116 shape filters.
The next layer output has dimensions of 10×10×116, which serves as the input to the fully
connected layer. The fully connected layer comprises of four layers with 362, 184, 78, and 12
neurons, respectively. The ReLU activation function is utilized in these layers, and dropout
regularization techniques are applied to address overfitting. The final layer in COVID-CNN
is the output layer with a softmax activation function with a size of 2, which ultimately used
to classify the output image. The optimal hyperparameter tuning includes a learning rate of
0.001, the ADAM optimizer, and categorical cross-entropy as the loss function. Figure 2 shows
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our designed COVID-CNN architecture.

Figure 2: COVID-CNN Architecture

3.2.2 Capsule Network (CapsNet)

The architecture of CapsNet for COVID-19 detection is illustrated in the Figure 3. The input
image with dimensions of 300×300×1 is fed through the Conv1 layer with ReLu activation
function, which functions as a standard convolutional layer. Within this layer, 106 kernels of
size 6×6 and a stride of 2 and no padding are applied, resulting in an output with 106 feature
maps. The spatial dimensions are reduced to 148×148, calculated as ⌊(300 − 6)/2⌋ + 1 =
148. Then, the output is passed into the PrimaryCapsules layer, which serves as a modified
convolutional layer that supports capsules. Unlike conventional layers that produce scalar
outputs, PrimaryCapsules generates 8-dimensional vectors. To achieve this, it employs 8×32
kernels to create 32 of 8-dimensional capsules, where 8 output neurons are grouped together
to form a capsule. PrimaryCapsules utilizes 6×6 kernels with a stride of 2 and no padding to
effectively reduce the spatial dimension from 148×148 to 72×72, calculated as ⌊(148−6)/2⌋+1 =
72. As a result, within the PrimaryCapsules, we have a total of 32×72×72, 8-dimensional
capsules. The output from the PrimaryCapsules layer is fed into the DigiCaps layer, where it
undergoes a transformation using a matrix Wij with dimensions of 16×8. This transformation
converts the initial 8-dimensional capsule into a 16-dimensional capsule for each class 1 and 2
respectively.

Each PrimaryCapsules tries to predict the output of every digit capsule by multiplying its
own output vector (uj) by a weight matrix (Wij). This gives us the prediction vectors ûj |i
denoted as V0 or V1 in Figure 3. The total input sj to a DigiCaps (e.g., V0 or V1) is formed
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Figure 3: CapsNet Architecture

by the weighted sum of all prediction vectors from the PrimaryCapsules. More specifically, the
total input sj (equation 2) to each digit capsule is the sum of these prediction vectors, each
scaled by a coupling coefficient cij , which are learned through the dynamic routing process.
The iterative dynamic routing process adjusts these cij so that if a prediction vector from a
PrimaryCapsules agrees well with the actual output of a DigiCaps capsule, its corresponding
cij is increased, meaning that it will contribute more to the total input of that higher-level
capsule in the future [19].

sj =
∑
i

cij ûj|i, ûj|i = Wijui (2)

To ensure the length of the capsule’s output vector reflects the likelihood of the entity, a non-
linear squashing function is employed [19]:

vj =
||sj ||2

1 + ||sj ||2
· sj
||sj ||

(3)

where vj represents the vector output of capsule j, and sj represents its total input. The
CapsNet’s squashing function plays a crucial role in transforming the input vector sj into an
output vector vj . This is to ensure the length of the output vector of a capsule is between 0 and
1 (but never reaching 1), where the length is meant to represent a probability, and probabilities
range between 0 and 1. The function takes the total input to a capsule sj and shrinks it to a
small vector if it’s short and to a vector of length just below 1 if it’s long.

This transformation comprises several essential steps. To begin, the numerator ||sj ||2 cal-
culates the square of the input vector’s length, capturing the squared norm of sj . In the
denominator, (1 + ||sj ||2), the squared norm is adjusted by adding 1, ensuring that the out-
put value remains within the range of 0 to 1. This adjustment serves as a vital normalization
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factor, effectively compressing the input vector’s length. In the final step, (sj/||sj ||) scales the
input vector by its original length, preserving its direction and orientation. This preservation of
orientation is a crucial aspect of the squashing function, indicating the presence and character-
istics of specific features or entities within the input. It plays a fundamental role in CapsNet’s
hierarchical feature representation. Since there are two classes, COVID and Non-COVID, the
shape of DigiCaps is 2×16 (two 16-dimensional vectors). Each vector vj functions as the capsule
for class j. The probability of classification of an image is determined by ||vj ||. Subsequently,
two hidden fully connected layers with 628 and 1448 neurons are utilized to reconstruct the
300×300×1 image from ||vj ||.

3.2.3 Vision Transformer (ViT)

Alexey Dosovitskiy et al. [3] first presented the Vision Transformer (ViT) model. For the
purpose of classifying COVID-19 CT scan images, we follow the implementation of ViT as in
[20]. The ViT model draws inspiration from the self-attention mechanism mostly applied in
natural language processing (NLP) [6]. The ViT model uses a transformer architecture that
uses attention to handle patch embeddings for image classification tasks.

Input images for ViT are decomposed into fixed number of non-overlapping square of patches.
To apply ViT, we resize CT scan image of size 300×300 to 72×72 pixels and partition into 6×6
pixels to have 144 patches. Each partch is arranged into 1-dimensional vector similar to the
flattening operation in CNN and linearly project into higher-dimentional embedding space to
increase the feature learning capabilities of the model. These embeddings are augmented with
positional encodings to maintain the patches’ spatial relationships, forming a sequence similar
to text in language models. This sequence is processed by the transformer’s self-attention
mechanism, allowing the integration of both local and global information across patches [3].

In the ViT model, there is a special part known as the ’class token’ that is included along
with the encoded sequences (image data). These tokens can be considered as placeholder or
a tag that holds the final result after the model has analyzed the image. As the image data
passes through the transformer’s layers, which are a series of processing steps, this class token
gathers important information that helps to determine what the image represents. After the
data has moved through all the layers of the transformer, the class token has collected enough
information to help decide the category of the image, such as whether it is an image of a
Covid-19 positive or negative. ViT’s innovative use of self-attention make the model to capture
complex patterns for accurate image classification [2]. The configured hyperparameters for the
ViT model comprises a learning rate of 0.001, 8 transformer layers, 4 multi-head attention
heads, and a regularization strength of 2.0 to facilitate continual learning.

3.3 Exploring Transfer Learning to Generalize Models

Transfer learning involves reusing a model developed for one task as the starting point for
another, particularly in neural networks where a pre-trained model on a general dataset is
fine-tuned for specific tasks [25]. This approach leverages learned features to reduce training
time and data needs. In the context of continual learning, transfer learning starts with a model
pre-trained on a task T0 with optimized parameters θ∗T0

. When a new task T1 arises, the
model adapts from θ∗T0

to θ∗T1
, using knowledge from T0 for better performance on T1 efficiency.

However, unlike pure transfer learning where the focus is solely on the current task, continual
learning requires maintaining performance across all previous tasks. This necessitates strategies
like regularization, weight freezing, or selective retraining to balance retaining knowledge from
previous tasks while adapting to new ones, particularly to mitigate catastrophic forgetting
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[17, 12]. As the model encounters more tasks T2, T3, . . . , Tn, it incrementally learns and adapts,
aiming to preserve performance on all prior tasks. Transfer learning, thus, is a vital strategy
within the broader scope of continual learning, emphasizing efficient adaptation and knowledge
retention, especially valuable in dynamic environments requiring models to continually adjust
to new data and tasks.

We apply transfer learning technique to extend our model performance on the new dataset,
particularly for the context of COVID-19 CT scan image classification. The ability of models
to extend their learned knowledge to unseen tasks and datasets beyond their original training
sets is extremely important, as outlined in [5] and [26]. Transfer learning is a technique using
pre-trained weights from existing models to leverage shared features between prior and new
tasks. Hence, we initially train our models using the dataset mod dev dataset and then apply
the pre-trained weights to train models on the dataset mod gen dataset. As shown in the
Figure 4 and Table 1, our models show effective generalization on the dataset mod gen through
transfer learning. However, the models’ performance significantly decrease on the original
dataset (dataset mod dev) they were trained on. This issue, known as catastrophic learning,
which is a crucial obstacle to develop robust deep learning models that produce better prediction
accuracy on both original training COVID-19 CT dataset and new unseen COVID-19 CT
dataset. Thus, we employ modified EWC regularization technique to address this issue.

Figure 4: Confusion Matrix for Generalization Results Using Transfer Learning Technique
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CNN(COVID-CNN) Vision Transformer Capsule Network

Tests Strategies
Accu
racy%

Prec
ision%

F1
Score%

Re
call%

Accu
racy%

Prec
ision%

F1
Score%

Re
call%

Accu
racy%

Prec
ision%

F1
Score%

Re
call%

Training and
Testing
model using
dataset mod dev

97.85 97.86 97.85 97.85 96.41 96.41 96.41 96.41 97.17 97.18 97.17 97.17

Testing model
(trained using
dataset mod dev)
with dataset mod gen

47.96 48.3 36.87 47.96 51.38 40.66 0.362 51.38 49.75 72.26 36.2 49.76

Fine-tuning
model and
train and test with
dataset mod gen

93.75 93.81 93.76 93.75 77.64 77.66 77.65 77.64 96.59 96.61 96.6 96.6

Testing Fine-tuned
model on dataset mod dev

50.43 68.88 34.69 50.43 46.11 45.96 46.02 46.12 64.45 68.85 60.32 64.46

Table 1: Generalization Results Using Transfer Learning Technique

3.3.1 Learning Without Forgetting

In the field of continual learning, a significant challenge is mitigating catastrophic forgetting,
which occurs when a neural network trained on a new task forgets the knowledge it has acquired
from previous tasks. As shown in Table 1, even we use the transfer learning technique to achieve
better prediction accuracy on the new dataset mod gen dataset, the performance of models
decline on its original training dataset mod dev dataset. An effective approach to this challenge
involves adjusting the learning objective for each new task so that retain information learned
from previous tasks. We apply the similar idea proposed in [12] by adding a regularization term
to the loss function that penalizes changes to those parameters that are crucial for previous
tasks.

We select the categorical cross-entropy loss function for the objective function to train each
model proposed in this paper: CNN, ViT, and CapsNet. The loss function is as follows:

θ∗n+1 = argmin
θ

CE(y, ŷ(θ)) + λi

∑
j

(
θj − θ∗i,j

)2 (6)

Categorical Cross-entropy Loss (CE):

• CE(y, ŷ(θ)) represents the categorical cross-entropy loss.

– y represents the true labels in the dataset.

– ŷ(θ) represents the predicted probabilities by the three proposed models, parame-
terized by θ.

This loss function measures the discrepancy between the true labels and the model’s
predictions, guiding the model to adjust its parameters to improve accuracy.

• The term
∑

j

(
θj − θ∗i,j

)2
is the regularization term (a simplified version of the Elastic

Weight Consolidation (EWC) in [12]) for each previous task Ti, where θj are the current
weights of the model, and θ∗i,j are the weights optimized for the task Ti. Thus, it measures
the deviation of θj from θ∗i,j , the optimal parameters for task Ti which is the sum of squared
differences between these sets of weights.

• λi is a weighting factor that balances the importance of the new task against the risk of
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CNN(COVID-CNN) Vision Transformer Capsule Network

Tests Strategy
Accu
racy%

Prec
ision%

F1
Score%

Re
call%

Accu
racy%

Prec
ision%

F1
Score%

Re
call%

Accu
racy%

Prec
ision%

F1
Score%

Re
call%

Training with
Continual Learning
using dataset mod gen and
Testing the
Generalized Model
on dataset mod gen

79.33 79.83 79.28 79.33 77.05 77.09 77.06 77.05 80.35 80.40 80.29 80.35

Testing the
Generalized Model
(Transfer and Continual
Learning) on
dataset mod dev

82.26 83.12 82.00 82.26 81.96 81.95 81.96 81.86 79.35 83.52 79.35 79.08

Table 2: Generalization Results Using Transfer Learning With EWC

forgetting the previous tasks. The various values for the hyperparameter λi is tested based
on the trial and error method. A value of 2.0 is found to optimally balance the acquisition
of new knowledge from dataset mod gen dataset with the retention of previously learned
information from dataset mod dev dataset.

We implement the proposed CNN model and ViT and CapsNet in a continual learning frame-
work. The loss function’ objective is to facilitate the acquisition of new knowledge related to
the current task, as depicted by the categorical cross-entropy term, while also preserving the
knowledge gained from previous tasks. It fine-tunes the model’s parameters θ to decrease pre-
diction errors for the current task. This loss function acts as a navigator, directing the model
to achieve more accurate predictions and increased performance on new tasks. At the same
time, the regularization term is crucial in protecting the knowledge of models that has already
acquired. This component counteracts significant changes to the model’s parameters θ∗i,j , which
were previously optimized for earlier tasks. The severity of the penalty for deviating from these
past parameters is governed by the λi values, allowing for the control of how closely the model
adheres to its prior learning. This balancing act, achieved by minimizing the combined objec-
tive function, enables the models to excel in current tasks while retaining its expertise in past
tasks. This approach addresses a key challenge in continual learning: finding the equilibrium
between assimilating new information and retaining existing knowledge.

4 Experimental Results

4.1 Proposed Models Results

Leveraging transfer learning with continual learning, we apply pre-trained weights from the
model trained on dataset mod dev to develop generalized models for dataset mod gen with
EWC regularization technique. This method aims to balance the acquisition of new knowledge
with the retention of previously learned information showing the unique performance attributes
exhibited by models COVID-CNN, ViT, and CapsNet. The model performance for COVID-
CNN, ViT and CapsNet are summarized in the Table 2 and Figure 5.

To evaluate model performance of the generalized models with EWC, we show the generalized
model prediction accuracy on dataset mod gen dataset, and knowledge retention performance of
the generalized models with EWC on dataset mod dev dataset. Our COVID-CNN demonstrates
excellent performance across all metrics with 82.26% accuracy on dataset mod dev dataset and
79.33% prediction accuracy on dataset mod gen. ViT shows slightly lower 81.96% accuracy

68



Generalized Deep Learning Models for COVID-19 Detection Annan, Qin and Qingge

Figure 5: Confusion Matrix for Generalization Results Using Transfer Learning with Continual
Learning

on dataset mod dev dataset and 77.05% prediction accuracy on dataset mod gen compared
with COVID-CNN model. In contrast, CapsNet achieves 79.35% accuracy on dataset mod dev
dataset and 80.35% prediction accuracy on dataset mod gen dataset. As a result, CapsNet
performs best using transfer learning with continual learning in terms of accuracy, precision,
F1 score, and recall. The COVID-CNN remains a reliable second choice due to its outstanding
consistency and balance. Comparing the proposed models with EWC, COVID-CNN shows the
best performance with balanced improvements across all metrics, ensuring reliable and accurate
predictions on dataset mod dev dataset. ViT model shows lower prediction accuracy compared
with COVID-CNN in overall consistency. The CapsNet shows least knowledge retention com-
pared with the other models. Ultimately, COVID-CNN’s consistent and balanced knowledge
retention makes the model most effective on both datasets.

4.2 Comparison Results

To the best of our knowledge, our work is the first one using transfer learning with EWC
technique for COVID-19 CT scan images analysis. We compare our results with the sate-
of-the-art transfer learning models for the COVID-19 detection on CT scan images, such as
Deep COVID DeteCT [13] and Deep-COVID [8]. These models utilized famous InceptionV3
[13] and NASNetLarge [8] pre-trained weights techniques and demonstrated substantial testing
accuracy when trained on the dataset mod dev dataset. However, they show a significant decline
in performance when evaluate on a novel dataset mod gen dataset. When comparing the Table 1
and Table 3, we find that our proposed COVID-CNN model, ViT and CapsNet outperforms the
both Deep COVID DeteCT [13] and Deep-COVID [8] on dataset mod dev and dataset mod gen
datasets. Furthermore, our models with EWC show more generalization ability compared with
both Deep COVID DeteCT [13] and Deep-COVID [8] on dataset mod gen dataset.
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Deep-COVID[8] Deep COVID DeteCT (DCD)[13]
Test Strategy Accuracy% Precision% F1 Score% Recall% Accuracy% Precision% F1 Score% Recall%
Model training and testing using
dataset mod dev dataset

95.59 95.61 95.59 95.59 87.63 87.77 87.65 87.63

Testing model on
dataset mod gen dataset

28.19 28.29 28.15 28.19 41.1 41.06 41.07 41.1

Table 3: Generalization Results Using Existing Transfer Learning Models

5 Conclusion

In this paper, we develop three robust deep learning models with transfer learning and continual
learning for the detection of COVID-19 in CT scan images. We find that the model generaliza-
tion through transfer learning incurs catastrophic forgetting in our proposed CNN, and other
ViT and CapsNet models. To address this, we implement a modified version of elastic weight
consolidation (EWC) within our continual learning strategy, thereby alleviating the catastrophic
forgetting associated with transfer learning. The original EWC technique is computationally
intensive. With our simplified version of EWC, it takes less time and produces more accuracy
during model training. Utilizing this approach, our developed COVID-CNN model, and the
ViT and CapsNet show a great generalization on new dataset mod gen dataset, which were pre-
trained on dataset mod dev dataset. For our proposed models with EWC, COVID-CNN model
shows superior performance over the ViT and comparable results to the CapsNet in adapting to
new dataset mod gen dataset. Moreover, our COVID-CNN model achieves the highest knowl-
edge retention rate of 82.26% for dataset mod dev dataset. The proficiency of COVID-CNN
can be attributed to its compatibility with effective regularization, parameter efficiency, and a
less complex architecture, fostering a balance between acquiring new knowledge and retaining
existing information.
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