
Synthesising Functional Invariants in Separation

Logic

Ewen Maclean1, Andrew Ireland1 and Gudmund Grov2

1 Heriot-Watt University
Edinburgh
Scotland

2 University of Edinburgh
Edinburgh
Scotland

The CORE system

In [2] we introduced a system which used term synthesis to generate correct loop invariants. The
CORE system extends this and is capable of automatically proving fully functional properties
of programs involving pointers, by utilising existing systems to eliminate shape parts, and
extracting function from the structural statements. The system is capable of synthesising correct
functional invariants which allow proofs to succeed. We describe below how we define these
terms.

Shape, structure and function

Consider the loop invariant expression for in-place list reversal:

data lseg(α, i, nil) ∗ data lseg(β, j, nil) ∧ α0 = rev(β) <> α,

where <> represents concatenation. We define the following three properties:

Shape This describes purely the shape of the heap, and hence can be described purely as
in Smallfoot as list(i) ∗ list(j). as the list segments are null-terminated. There is no
information about any data that is contained in the list, purely an indication of the
inductive data structures that exist in this part of the heap, in this case linked lists.

Structural This describes the inductive structures on the heap, and gives names for the data
contained within them. In this case the structural content is written data list(α, i) ∗
data list(β, j) in our system, as the list segments are null-terminated. When reasoning
about functional properties, it is important that shape information is augmented with
logical variables so that this can be extracted.

Functional This describes the pure fragment of the statement in separation logic. In this
case α0 = rev(β) <> α describes the functional content, which importantly relies on the
logical variables introduced between the shape and structural content.

Invariant Synthesis

We are able to take invariants such as data lseg(α, i, nil) ∗ data lseg(β, j, nil)∧F(α0, α, β) and
synthesise correct instantiations for F , and then automatically prove the verification conditions
using IsaPlanner [1].

A. Voronkov, L. Kovacs, N. Bjorner (eds.), WING 2010 (EPiC Series, vol. 1), pp. 183–184 183



Synthesising Functional Invariants in Separation Logic Maclean, Ireland, Grov

References

[1] L. Dixon and J. D. Fleuriot. IsaPlanner: A prototype proof planner in Isabelle. In Proceedings of
CADE’03, volume 2741 of LNCS, pages 279–283, 2003.

[2] Ewen Maclean, Andrew Ireland, Lucas Dixon, and Robert Atkey. Refinement and Term Synthesis
in Loop Invariant Generation. In Andrew Ireland and Laura Kovacs, editors, 2nd International
Workshop on Invariant Generation (WING’09), pages 72–86, 2009.

184


