
On the Termination of Higher-Order Positive

Supercompilation

G.W. Hamilton

School of Computing and Lero
Dublin City University

Ireland
hamilton@computing.dcu.ie

Abstract

The verification of program transformation systems requires that we prove their ter-
mination. For positive supercompilation, ensuring termination requires the memoisation
of expressions which are subsequently used to determine when to perform generalization
and folding. For a first-order language, it is sufficient to memoise only those expressions
immediately prior to a function unfolding step. However, for a higher-order language, this
is not sufficient to ensure termination, so more expressions need to be memoised. Deter-
mining which additional expressions to memoise can greatly affect the results obtained.
Memoising too many expressions requires a lot more expensive checking for the possibility
of generalization or folding; more new functions will also be created and generalization
will be performed more often, resulting in less improved residual programs. We would
therefore like to memoise as few expressions as possible while still ensuring termination. In
this paper, we describe a simple pre-processing step which can be applied to higher-order
programs prior to transformation by positive supercompilation to ensure that in any po-
tentially infinite sequence of transformation steps there must be function unfolding. We
prove, for programs that have been pre-processed in this way, that it is only necessary to
memoise expressions immediately before function unfolding to ensure termination, and we
demonstrate this on a number of tricky examples.

1 Introduction

Supercompilation is a program transformation technique for functional languages which can be
used for program specialization and for the removal of intermediate data structures. Super-
compilation was originally devised by Turchin in what was then the USSR in the early 1970s,
but did not become widely known to the outside world until over a decade later. One reason
for this delay was that the work was originally published in Russian in journals which were not
accessible to the outside world; it was eventually published in mainstream journals much later
[23, 24]. Another possible reason why supercompilation did not become more widely known
much earlier is that it was originally formulated in the language Refal, which is rather uncon-
ventional in its use of a complex pattern matching algorithm. This meant that Refal programs
were hard to understand, and describing transformations making use of this complex pattern
matching algorithm made the descriptions quite inaccessible. This problem was overcome by
the development of positive supercompilation [19, 22], which is defined over a more familiar
functional language.

Ensuring the termination of positive supercompilation requires the memoisation of expres-
sions, and then using these memoised expressions to determine when to perform generalization
and folding. Positive supercompilation was originally formulated for a first-order language, so
it was sufficient to memoise only the expressions immediately prior to function unfolding to
ensure termination since in any potentially infinite sequence of transformation steps there must

42 A. Lisitsa, A. Nemytykh (eds.), VPT 2013 (EPiC Series, vol. 16), pp. 42–56

On the Termination of Higher-Order Positive Supercompilation G.W. Hamilton

be an unfolding. However, this is not sufficient to ensure termination when transforming a
higher-order language. For example, consider the following program:

Example 1. (λx→ x x) (λx→ x x)

When this program is transformed there will be a potentially infinite sequence of transfor-
mation steps without any unfolding. Although this expression would not be accepted by most
type checkers, there are also many examples of expressions which would be accepted by a type
checker and which will have a potentially infinite sequence of transformation steps without any
unfolding. For example, consider the following program:

Example 2. data D = F (D → D)

(λf → f (F (λx→ f x x)) (F (λx→ f x x))) (λy → case y of F g → g)

This program will also produce a potentially infinite sequence of transformation steps with-
out any unfolding when transformed.

To avoid this potential non-termination, some formulations of positive supercompilation
for a higher-order language memoise all expressions [17, 2], or at least a substantial subset
of them [9, 10, 11]. Memoising too many expressions requires a lot more expensive checking
for the possibility of generalization or folding. Also, more new functions will be created and
generalization will be performed more often, resulting in less improved residual programs.

In this paper, we describe a simple pre-processing step which can be applied to higher-order
programs prior to transformation by positive supercompilation to ensure that in any potentially
infinite sequence of transformation steps there must be an unfolding. This involves introducing
names for some anonymous functions (and possibly also performing λ-lifting [7]) to ensure
that only memoising expressions immediately preceding an unfold step is sufficient to ensure
termination of the transformation. This pre-processing step would transform the program in
Example 1 to the following:

f f where f = λx→ x x

Thus, any potentially infinite sequence of transformation steps would have to include the un-
folding of f . Applying the pre-processing transformation to the program in Example 2 would
give the following:

f1 f2
where
f1 = λf → f (F (f3 f)) (F (f3 f))
f2 = λy → case y of F g → g
f3 = λf → λx→ f x x

Thus, any potentially infinite sequence of transformation steps would have to include the un-
folding of f2 and f3. The new functions are introduced sparingly, so we argue that there will
not be a large overhead required for the additional memoisation and comparison of expressions
prior to the unfolding of these functions, and that better residual programs will be produced
as a result.

The remainder of this paper is structured as follows. In Section 2, we describe the higher-
order language over which the transformations are defined. In Section 3, we give our own
formulation of the positive supercompilation algorithm on this language. In Section 4, we con-
sider the different situations in which this transformation may not terminate and give examples.
In Section 5, we present our pre-processing step to transform higher-order programs into a form
for which positive supercompilation will be guaranteed to terminate and prove that this is the
case. Section 6 concludes and considers related work.

43

On the Termination of Higher-Order Positive Supercompilation G.W. Hamilton

2 Language

In this section, we describe the higher-order functional language which will be used throughout
this paper. The syntax of this language is given in Fig. 1.

prog ::= e0 where f1 = e1 . . . fn = en Program

e ::= x Variable
| c e1 . . . en Constructor
| λx → e λ-Abstraction
| f Function Call
| e0 e1 Application
| case e0 of p1 → e1 | · · · | pn → en Case Expression
| let x = e0 in e1 Let Expression

p ::= c x1 . . . xn Pattern

Figure 1: Language Syntax

The intended operational semantics of the language is normal order reduction. Programs in
the language consist of an expression to evaluate and a set of function definitions. An expression
can be a variable, constructor application, λ-abstraction, function call, application, case or let.
Variables introduced by λ-abstraction, let or case patterns are bound; all other variables are
free. We use fv(e) and bv(e) to denote the free and bound variables respectively of expression
e. We write e1 ≡ e2 if e1 and e2 differ only in the names of bound variables.

It is assumed that the input program contains no let expressions; these are only introduced
during transformation. Each constructor has a fixed arity; for example Nil has arity 0 and Cons
has arity 2. In an expression c e1 . . . en , n must equal the arity of c. The patterns in case expres-
sions may not be nested. No variable may appear more than once within a pattern. We assume
that the patterns in a case expression are non-overlapping and exhaustive. It is assumed that
the language is typed using the Hindley-Milner polymorphic typing system [16, 3] so erroneous
terms such as (c e1 . . . en) e where c is of arity n and case (λx → e) of p1 → e1 | · · · | pn → en
cannot occur.

Definition 2.1 (Substitution). θ = {x1 7→ e1, . . . , xn 7→ en} denotes a substitution. If e is an
expression, then eθ = e{x1 7→ e1, . . . , xn 7→ en} is the result of simultaneously substituting the
expressions e1, . . . , en for the corresponding variables x1, . . . , xn, respectively, in the expression
e while ensuring that bound variables are renamed appropriately to avoid name capture.

Definition 2.2 (Renaming). σ = {x1 7→ x′1, . . . , xn 7→ x′n}, where σ is a bijective mapping,
denotes a renaming. If e is an expression, then eσ = e{x1 7→ x′1, . . . , xn 7→ x′n} is the result of
simultaneously replacing the variables x1, . . . , xn with the corresponding variables x′1, . . . , x

′
n,

respectively, in the expression e while ensuring that bound variables are renamed appropriately
to avoid name capture.

Definition 2.3 (Shallow Reduction Context). A shallow reduction context R is an expression
containing a single hole • in the place of the redex, which can have one of the two following
possible forms:

R ::= • e | (case • of p1 → e1 | . . . | pn → en)

44

On the Termination of Higher-Order Positive Supercompilation G.W. Hamilton

Definition 2.4 (Evaluation Context). An evaluation context E is represented as a sequence of
shallow reduction contexts (known as a zipper [6]), representing the nesting of these contexts
from innermost to outermost within which the expression redex is contained. An evaluation
context can therefore have one of the two following possible forms:

E ::= 〈〉 | 〈R : E〉

Definition 2.5 (Insertion into Redex). The insertion of an expression e into the redex of an
evaluation context κ, denoted by κ•e, is defined as follows:

〈〉•e = e
〈(• e′) : κ〉•e = κ•(e e′)
〈(case • of p1 → e1 | . . . | pn → en) : κ〉•e

= κ•(case e of p1 → e1 | . . . | pn → en)

Free variables within the expression e may become bound within κ•e; if κ•e is closed then we
call κ a closing context for e.

3 Positive Supercompilation

In this section, we give our own higher-order formulation of the positive supercompilation algo-
rithm [22]. At the heart of the positive supercompilation algorithm are a number of driving rules
which reduce a term (possibly containing free variables) using normal-order reduction. Func-
tion unfolding is performed as a part of this reduction process, and folding is performed upon
encountering a renaming of a memoised expression. To ensure the termination of the transfor-
mation, generalization is performed when an expression is encountered which is a homeomorphic
embedding of a memoised expression, denoted by ..

The homeomorphic embedding relation was derived from results by Higman [5] and Kruskal
[12] and was defined within term rewriting systems [4] for detecting the possible divergence
of the term rewriting process. Variants of this relation have been used to ensure termination
within positive supercompilation [21, 20], partial evaluation [14] and partial deduction [1, 13].

Definition 3.1 (Well-Quasi Order). A well-quasi order on a set S is a reflexive, transitive
relation . such that for any infinite sequence s1, s2, . . . of elements from S there are numbers
i, j with i < j and si . sj .

This ensures that in any infinite sequence of expressions e0, e1, . . . there definitely exists
some i < j where ei . ej , so an embedding must eventually be encountered and transformation
will not continue indefinitely.

Definition 3.2 (Embedding of Expressions). To define our homeomorphic embedding relation
on expressions ., we first define a relation E as shown in Figure 2, where e1 E e2 if e1 is
embedded in e2 and all of the free variables within e1 and e2 also match up.

An expression is embedded within another by this relation if either diving (denoted by Ed)
or coupling (denoted by Ec) can be performed. Diving occurs when an expression is embedded
in a sub-expression of another expression, and coupling occurs when two expressions have the
same top-level construct and all the corresponding sub-expressions of the two constructs are
embedded. Our version of this embedding relation extends previous versions to handle λ-
abstractions and case expressions that contain bound variables. In these instances, the bound
variables within the two expressions must also match up.

45

On the Termination of Higher-Order Positive Supercompilation G.W. Hamilton

e1 Ec e2
e1 E e2

e1 Ed e2
e1 E e2

x Ec x f Ec f

∀i ∈ {1 . . . n}.ei E e′i
(c e1 . . . en) Ec (c e′1 . . . e

′
n)

∃i ∈ {1 . . . n}.e E ei

e Ed (c e1 . . . en)

e E (e′{x′ 7→ x})
λx.e Ec λx

′.e′
e E e′

e Ed λx.e
′

e0 E e′0 e1 E e′1
(e0 e1) Ec (e′0 e

′
1)

∃i ∈ {0, 1}.e E ei

e Ed (e0 e1)

e0 E e′0 ∀i ∈ {1 . . . n}.∃σ.pi ≡ (p′i σ) ∧ ei E (e′i σ)

(case e0 of p1 → e1| . . . |pn → en) Ec (case e′0 of p′1 → e′1| . . . |p′n → e′n)

∃i ∈ {0 . . . n}.e E ei

e Ed (case e0 of p1 → e1| . . . |pn → en)

Figure 2: Homeomorphic Embedding Relation

The homeomorphic embedding relation . can now be defined as follows:

e1 . e2 iff ∃σ.e1σ Ec e2

Within this relation the two expressions must be coupled but, since σ is a renaming, there
is no longer a requirement that all of the free variables within the two expressions match up.
Generalizing only when two expressions are coupled ensures that the result is not a variable,
and there is no need for a split operation as used in [21].

Example 3. Some examples of homeomorphic embedding are as follows:

1. f (g x) . f (g y) 6. f (g x) ./ g (f y)
2. f (h x) . f (g (h y)) 7. g (h x) ./ f (g (h y))
3. f x y . f z z 8. f z z ./ f x y
4. f x x . f (g y) (h y) 9. f (g y) (h y) ./ f x x
5. λx.x . λy.y 10. λx.x ./ λy.x

Theorem 3.3. The homeomorphic embedding relation . is a well-quasi-order.

Proof. The proof is identical to that in [10]. It involves showing that there are a finite number
of functors (function names and constructors) in the language. Applications of different arities
are replaced with separate constructors; we prove that arities are bounded so there are a finite
number of these. We also replace case expressions with constructors. Since our homeomorphic
embedding relation requires that the bound variables in expressions match up, bound variables
are defined using de Bruijn indices, and each of these are replaced with separate constructors;
we also prove that de Bruijn indices are bounded. The overall number of functors is therefore
finite, so Kruskal’s tree theorem can then be applied to show that . is a well-quasi-order.

46

On the Termination of Higher-Order Positive Supercompilation G.W. Hamilton

Definition 3.4 (Generalization). The generalization of two expressions e1 and e2 is a triple
(eg, θ1, θ2) where θ1 and θ2 are substitutions such that egθ1 ≡ e1 and egθ2 ≡ e2.

The generalization we define for expressions e1 and e2 is the most specific generalization, denoted
by e1 u e2, as defined in term algebra [4]. When an expression is generalized, sub-expressions
within it are replaced with variables, which implies a loss of knowledge about the expression.
The most specific generalization therefore entails the least possible loss of knowledge.

Definition 3.5 (Most Specific Generalization). A most specific generalization of expressions
e1 and e2 is a generalization (eg, θ1, θ2) such that for every other generalization (e′g, θ

′
1, θ

′
2) of

e1 and e2, eg is an instance of e′g.

Definition 3.6 (The Generalization Operator u). The most specific generalization of two
expressions e1 and e2, denoted by e1 u e2, is defined as shown in Figure 3.

x u x = x

f u f = f

(c e1 . . . en) u (c e′1 . . . e
′
n) = (c eg1 . . . e

g
n,
⋃n

i=1 θi,
⋃n

i=1 θ
′
i)

where
∀i ∈ {1 . . . n}.(egi , θi, θ′i) = ei u e′i

(λx.e0) u (λx′.e′0) = (λx.eg0, θ0, θ
′
0)

where
(eg0, θ0, θ

′
0) = e0 u (e′0{x′ 7→ x})

(e0 e1) u (e′0 e
′
1) = (eg0 e

g
1, θ0 ∪ θ1, θ′0 ∪ θ′1)

where
(eg0, θ0, θ

′
0) = e0 u e′0

(eg1, θ1, θ
′
1) = e1 u e′1

(case e0 of p1 → e1| . . . |pn → en) u (case e′0 of p′1 → e′1| . . . |p′n → e′n) =
(case eg0 of p1 → eg1| . . . |pn → egn,

⋃n
i=0 θi,

⋃n
i=0 θ

′
i)

where
(eg0, θ0, θ

′
0) = e0 u e′0

∀i ∈ {1 . . . n}.∃σ.pi ≡ (p′i σ) ∧ (egi , θi, θ
′
i) = ei u (e′i σ)

e u e′ = (x, {x 7→ e}, {x 7→ e′}) in all other cases (x is fresh)

Figure 3: Generalization Rules

Within these rules, if both expressions have the same top-level construct, this is made the top-
level construct of the resulting generalized expression, and the corresponding sub-expressions
within the construct are then generalized. Otherwise, both expressions are replaced by the same
fresh variable. It is assumed that the new variables introduced are all different and distinct from
the original program variables. The following rewrite rule is exhaustively applied to the triple
resulting from generalization to minimize the substitutions by identifying common substitutions
that were previously given different names:

47

On the Termination of Higher-Order Positive Supercompilation G.W. Hamilton

(e, θ ∪ {x 7→ e′, x′ 7→ e′}, θ′ ∪ {x 7→ e′′, x′ 7→ e′′}) ⇒ (e{x 7→ x′}, θ ∪ {x′ 7→ e′}, θ ∪ {x′ 7→ e′′})

The results of applying this most specific generalization to items 1-5 in Example 3 are as follows:

1. (f g v, {v 7→ x}, {v 7→ y})

2. (f v, {v 7→ h x}, {v 7→ g (h y)})

3. (f v1 v2, {v1 7→ x, v2 7→ y}, {v1 7→ z, v2 7→ z})

4. (f v1 v2, {v1 7→ x, v2 7→ x}, {v1 7→ g y, v2 7→ h y})

5. (λx.x, {}, {})

During transformation, let expressions are introduced to represent the results of generalization;
note that there were no let expressions in the original program and these are only introduced
as a result of generalization. We define an abstraction operation on expressions that extracts
the sub-terms resulting from generalization.

Definition 3.7 (Abstraction Operation).

abstract(e, e′) = let x1 = e1, . . . , xn = en in e0
where e u e′ = (e0, {x1 7→ e1, . . . , xn 7→ en}, θ)

Positive supercompilation effectively performs a normal-order reduction of the input program.
Previously encountered terms are memoised and if the current term is a renaming of a mem-
oised one, then folding is performed, and the transformation is complete. If the current term
has a memoised term embedded, then generalization is performed, and the sub-terms of the
generalization are further transformed. Generalization ensures that a renaming of a memoised
term is always eventually encountered, and that the transformation therefore terminates. The
rules for our formulation of positive supercompilation are as shown in Figure 4.

The rules T are defined on an expression and its surrounding context, denoted by κ. Only
those expressions that have a function in the redex position (immediately prior to unfolding)
are memoised in rule (6). These expressions are replaced by a new function call, and this
new function call is associated with the expression it replaced in the set ρ. On encountering a
renaming of a memoised expression contained in ρ, it is also replaced by a corresponding call
of its associated new function. The parameter ∆ contains the set of function definitions in the
original program.

The rules T ′ are defined on an expression and its surrounding context, also denoted by
κ. These rules are applied when the normal-order reduction of the input program becomes
‘stuck’ as a result of encountering a variable in the redex position. The expression will already
have been transformed and so is not transformed any further, but the surrounding context is
further transformed. In rule (12), if the context surrounding a variable redex is a case, then
information is propagated to each branch of the case to indicate that this variable has the value
of the corresponding branch pattern.

We can see that there are no trivial loops in the rules T and T ′. In the rules T , a reduction
step is performed in rules (3), (5) and (6), and sub-expressions of the redex are transformed in
rules (2), (4), (7), (8) and (9). In rule (1), the rules T ′ are invoked, and in each of these rules,
sub-expressions of the context are further transformed using the rules T . Non-termination can
therefore only occur if the terms encountered in the transformation rules grow uncontrollably.

48

On the Termination of Higher-Order Positive Supercompilation G.W. Hamilton

(1) T [[x]] κ ρ ∆ = T ′[[x]] κ ρ ∆
(2) T [[c e1 . . . en]] 〈〉 ρ ∆ = c (T [[e1]] 〈〉 ρ ∆) . . . (T [[en]] 〈〉 ρ ∆)
(3) T [[c e1 . . . en]] 〈(case • of p1 → e ′

1 | · · · | pk → e ′
k) : κ〉 ρ ∆ =

T [[e ′
i{x1 7→ e1 , . . . , xn 7→ en}]] κ ρ ∆ (pi = c x1 . . . xn)

(4) T [[λx → e]] 〈〉 ρ ∆ = λx→ (T [[e]] 〈〉 ρ ∆)
(5) T [[λx → e]] 〈(• e ′) : κ〉 ρ ∆ = T [[e{x 7→ e ′}]] κ ρ ∆

(6) T [[f]] κ ρ ∆ =


eσ if ∃(e = e′) ∈ ρ, σ.e′σ ≡ κ•f
T [[abstract(κ•f , e′)]] 〈〉 ρ ∆ if ∃(e = e′) ∈ ρ.e′ . κ•f
f ′ x1 . . . xn
where
f ′ = λx1 . . . xn → (T [[∆(f)]] κ (ρ ∪ {f ′ x1 . . . xn = κ•f }) ∆)

otherwise
(f ′ is fresh, {x1 . . . xn} = fv(κ•f))

(7) T [[e e ′]] κ ρ ∆ = T [[e]] 〈(• e ′) : κ〉 ρ ∆
(8) T [[case e0 of p1 → e1 | · · · | pn → en]] κ ρ ∆ =

T [[e0]] 〈(case • of p1 → e1 | · · · | pn → en) : κ〉 ρ ∆
(9) T [[let x = e0 in e1]] κ ρ ∆ = let x = (T [[e0]] 〈〉 ρ ∆) in (T [[e1]] κ ρ ∆)

(10) T ′[[e]] 〈〉 ρ ∆ = e
(11) T ′[[e]] 〈(• e′) : κ〉 ρ ∆ = T ′[[e (T [[e′]] 〈〉 ρ ∆)]] κ ρ ∆
(12) T ′[[x]] 〈(case • of p1 → e1 | · · · | pn → en) : κ〉 ρ ∆ =

case x of p1 → (T [[(κ•e1){x 7→ p1}]] 〈〉 ρ ∆) | · · · | pn → (T [[(κ•en){x 7→ pn}]] 〈〉 ρ ∆)
(13) T ′[[e]] 〈(case • of p1 → e1 | · · · | pn → en) : κ〉 ρ ∆ =

case e of p1 → (T [[e1]] κ ρ ∆) | · · · | pn → (T [[en]] κ ρ ∆)

Figure 4: Positive Supercompilation Transformation Rules

4 Termination

In [19], three different possible causes of non-termination of positive supercompilation when
applied to a first-order functional language were identified: obstructing function calls, accumu-
lating parameters and accumulating narrowing1. A further possible cause of non-termination
has also been identified in [18] for the deforestation of higher-order functional languages, which
also applies to positive supercompilation: accumulating spines. We now give examples of each
of these causes of non-termination.

nrev xs
where
nrev = λxs → case xs of

Nil → Nil
| Cons x ′ xs ′ → app (nrev xs ′) (Cons x ′ Nil)

app = λxs → λys → case xs of
Nil → ys
| Cons x ′ xs ′ → Cons x ′ (app xs ′ ys)

Figure 5: Example Obstructing Function Call

1This was originally called accumulating side-effects, but since functional languages do not admit side-effects,
we prefer to call this possible cause of non-termination accumulating narrowing.

49

On the Termination of Higher-Order Positive Supercompilation G.W. Hamilton

Example 4 (Obstructing Function Call). Consider the program shown in Figure 5. During
the transformation of this program, we encounter the progressively larger terms: nrev xs,
case (nrev xs) of · · · , case (case (nrev xs) of · · ·) of · · · , etc. The call to nrev thus prevents
the surrounding context from being reduced, so this context continues to grow. This call to
nrev is therefore an obstructing function call.

Example 5 (Accumulating Parameter). Consider the program shown in Figure 6.

arev xs
where
arev = λxs → arev ′ xs Nil
arev ′ = λxs → λys → case xs of

Nil → ys
| Cons x ′ xs ′ → arev ′ xs ′ (Cons x ′ ys)

Figure 6: Example Accumulating Parameter

During transformation of this program, we encounter the progressively larger terms: arev′ xs Nil,
arev′ xs′ (Cons x′ Nil), arev′ xs′′ (Cons x′′ (Cons x′ Nil)), etc. The second parameter in
each recursive call to arev′ therefore accumulates a progressively larger term.

Example 6 (Accumulating Narrowing). Consider the program shown in Figure 7.

app xs xs
where
app = λxs → λys → case xs of

Nil → ys
| Cons x xs → Cons x (app xs ys)

Figure 7: Example Accumulating Narrowing

During transformation of this program, we encounter the progressively larger terms: app xs xs,
app xs′ (Cons x′ xs′), app xs′′ (Cons x′ (Cons x′′ xs′′)), etc. The second parameter in each
recursive call to app therefore also accumulates a progressively larger term, but in this case the
accumulation is caused by unification-based information propagation (narrowing).

Example 7 (Accumulating Spine). Consider the program shown in Figure 8.

f x
where
f = λx → f x x

Figure 8: Example Accumulating Spine

During transformation of this program, we encounter the progressively larger terms: f x, f x x,
f x x x, etc. Each recursive call to f therefore accumulates an additional parameter. We should
also note that this type of function definition is prohibited in most typing schemes.

50

On the Termination of Higher-Order Positive Supercompilation G.W. Hamilton

In all of the above examples, a previously encountered term becomes embedded within a
subsequent one. Since the sequence of transformation steps in each example must always include
function unfolding, this embedding will be detected by our positive supercompilation algorithm
and generalization will be performed, thus ensuring termination. However, not all recursion
has to take place through named functions; this will also occur if there is a λ-term which is
not strongly normalizing, as is the case for the programs given in examples 1 and 2. To ensure
termination, we therefore need to make sure that all recursive functions are named.

5 Ensuring Termination

In this section, we show how to ensure the termination of our formulation of positive super-
compilation. As shown in the previous section, non-termination can occur even in the absence
of named functions if we have a λ-term which is not strongly normalizing. The sequence of
terms obtained will require no function unfolding, and therefore will not be checked for possible
folding or generalization. To avoid this possibility, we require that programs are in λ-prefix
form, in which the only λ-abstractions occur in the prefix of the program expression or the
prefix of function bodies. This λ-prefix form is defined as shown in Figure 9.

prog ::= pf0 where f1 = pf1 . . . fn = pfn Program

pf ::= λx → pf λ-Abstraction
| pf ′ λ-Free Expression

pf ′ ::= x Variable
| c pf ′

1 . . . pf ′
n Constructor

| f Function Call
| pf ′

0 pf ′
1 Application

| let x = pf ′
0 in pf ′

1 Let Expression
| case pf ′

0 of p1 → pf ′
1 | · · · | pn → pf ′

n Case Expression

p ::= c x1 . . . xn Pattern

Figure 9: λ-Prefix Form

It is quite straightforward to convert any program into this form; simply replace any λ-
abstractions which are not in the prefix of the program expression or the prefix of a function
body with a freshly named function. λ-lifting [7] is also performed to abstract over any of
the free variables in the λ-abstraction, as named functions in our language cannot contain free
variables. If the λ-abstraction matches one which has already been replaced by a function call,
then it is replaced with a call to the same function as previously, thus minimizing the number
of new function definitions which are introduced.

Example 8. Consider the program given in Example 2. This contains four λ-abstractions
which are not in its prefix. The abstraction over f is made the body of the freshly named
function f1 and the abstraction over y is made the body of the freshly named function f2. The
other two abstractions over x are identical, so this abstraction is made the body of the freshly
named function f3; however, since the variable f appears free in this expression, λ-lifting is
performed to abstract over f , and this extra parameter is added to the two calls of f3.

51

On the Termination of Higher-Order Positive Supercompilation G.W. Hamilton

We now prove that our simple pre-processing step is sufficient to ensure the termination
of our formulation of the positive supercompilation algorithm. We do this by showing that
if the original input to our positive supercompilation algorithm is in λ-prefix form, then all
of the terms subsequently encountered must be in a particular form. We then show that any
potentially infinite sequence of transformation steps in which the expressions are in this form
must include function unfolding, so the transformation is guaranteed to terminate.

Lemma 5.1 (On The Form of Terms Encountered by Positive Supercompilation). If the input
to our positive supercompilation algorithm is in λ-prefix form, then all of the terms subsequently
encountered must have the following form in which the only λ-abstractions are in the prefix of
the redex:

sf ::= case sf of p1 → pf ′
1 | · · · | pn → pf ′

n

| sf pf ′

| pf

where pf and pf ′ are as defined in figure 9.

Proof. The interesting cases are where substitution is performed in rules (3) and (5), and where
generalisation is performed in rule (6). Since the only λ-abstractions can be in the redex, the
terms which are substituted in rules (3) and (5) cannot contain any λ-abstractions, so the
resulting term must also be in the above form. Generalization is performed in rule (6) when
the redex is a function name, so the generalized term cannot contain any λ-abstractions and
neither can the extracted sub-expressions. Details of the proof are given in Appendix A.

Lemma 5.2. If the input to our positive supercompilation algorithm is in λ-prefix form, then
every infinite sequence of transformation steps must include function unfolding.

Proof. Every infinite sequence of transformation steps must include either function unfolding or
λ-application. If the input term is in λ-prefix form, then by Lemma 5.1, the only λ-abstractions
in the terms subsequently encountered will be in the prefix of the redex, so transformation
rule (4) or (5) will be continually applied until there are no λ-abstractions remaining in the
current term. Thus, the only way in which new λ-abstractions can be introduced is by function
unfolding. Thus every infinite sequence of transformation steps must include function unfolding.

We are now able to prove our desired result.

Theorem 5.3. If the input to our positive supercompilation algorithm is in λ-prefix form, then
it is guaranteed to terminate.

Proof. The proof is by contradiction. If our positive supercompilation algorithm did not ter-
minate then the set of memoised expressions ρ must be infinite, since by Lemma 5.2 every
infinite sequence of transformation steps must include function unfolding. Every new expres-
sion which is added to ρ cannot have any of the previous expressions in ρ embedded within it
by the homeomorphic embedding relation ., since folding or generalization would have been
performed instead. However, this contradicts the fact that . is a well-quasi-order (Theorem
3.3).

52

On the Termination of Higher-Order Positive Supercompilation G.W. Hamilton

6 Conclusion and Related Work

In this paper, we have described a simple pre-processing step which can be applied to higher-
order programs prior to transformation by positive supercompilation to ensure that in any
potentially infinite sequence of transformation steps there must be an unfolding. This involves
introducing names for some anonymous functions to ensure that only memoising expressions
immediately preceding an unfold step is sufficient to ensure termination of the transformation.
The original positive supercompilation algorithm [19, 22] was only formulated for a first-order
language, so it was sufficient to only memoise the expressions immediately prior to an unfolding
step. In the higher-order formulations of positive supercompilation given by Mitchell [17] and
Bolingbroke [2], all expressions are memoised. We argue that the extra work required for the
additional checking for generalization and folding is too computationally expensive, particularly
since the homeomorphic embedding check is very time consuming; this has been borne out by
the experimental results obtained using this approach. It should also be pointed out that the
implementation of positive supercompilation in [17] will not terminate on programs such as
that given in Example 2. This is because the simplification rules that are applied to terms prior
to transformation by positive supercompilation will not terminate for such programs which
use contravariant (negative) data types. It is argued in [17] that this problem only occurs for
contrived programs, and it is also a problem for GHC, which will not terminate when compiling
this example program. However, this seems unsatisfactory. It is noted in [17] that this non-
termination problem could be avoided by not performing simplification on negative data types.
A similar approach was also adopted by Jonsson [8] and Mendel-Gleason [15] by requiring that
all types in the input program are positive. This also seems unsatisfactory since such typing
schemes are not used in mainstream functional languages.

Rather than memoising all expressions, the approach taken in the higher-order supercom-
piler HOSC [9, 10, 11] is to restrict this to only those expressions which are considered to be
non-trivial. In HOSC 1.0 [9], an expression is considered to be non-trivial if it either has a func-
tion in the redex or an irreducible expression in the selector of a case expression (corresponding
to the left hand side of our rules (6), (12) and (13)). However, it was subsequently discovered
[10] that this was not sufficient to ensure the termination of the supercompiler, because it will
not terminate for programs which encode recursion using a data type such as that given in
Example 2. In HOSC 1.1 [10], an expression for which the next transformation step involves
a substitution (corresponding to the left hand side of our rules (3) and (5)) is considered to
be non-trivial if it satisfies a size constraint in which the expression resulting from the sub-
stitution is no smaller than the expression before substitution. However, it was subsequently
discovered [11] that memoising every expression for which the next transformation step involves
a β-reduction produces poor residual programs. In HOSC 1.5 [11], expressions for which the
next transformation step involves a β-reduction are not memoised, but all applications and
case expressions are (corresponding to the left hand side of our rules (7) and (8)), thus en-
suring that in any potentially infinite sequence of transformation steps expressions will still be
memoised. However, we argue that this approach still requires a lot of additional work when
checking for generalization and folding, and can still produce poor residual programs. Using
our approach, after the pre-processing step, only those expressions encountered immediately
prior to an unfolding step (rule (6)) need to be memoised and checked for generalization and
folding.

Using our approach, we are not able to prove that the programs resulting from transforma-
tion are an improvement over the original programs, since not all new functions are introduced
in conjunction with the unfolding of an old function. However, this is a problem for all of the

53

On the Termination of Higher-Order Positive Supercompilation G.W. Hamilton

described algorithms for higher-order positive supercompilation. However, using our approach,
less new functions will be created and generalization will be performed less often, resulting in
more improved residual programs. We have implemented the techniques described in this paper
and preliminary experiments show that they make the resulting supercompiler more efficient
and that they produce more improved residual programs in some cases.

Acknowledgements

Many thanks to the anonymous referees who provided very useful comments and feedback on an
earlier version of this paper. This work was supported, in part, by Science Foundation Ireland
grant 10/CE/I1855 to Lero - the Irish Software Engineering Research Centre (www.lero.ie),
and by the School of Computing, Dublin City University.

References

[1] R. Bol. Loop Checking in Partial Deduction. Journal of Logic Programming, 16(1–2):25–46, 1993.

[2] Max Bolingbroke and Simon Peyton Jones. Supercompilation by Evaluation. In Proceedings of
the Third ACM Haskell Symposium on Haskell, pages 135–146 , 2010.

[3] L. Damas and R. Milner. Principal Type Schemes for Functional Programs. In Proceedings of the
Ninth ACM Symposium on Principles of Programming Languages, pages 207–212, 1982.

[4] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, pages 243–320. Elsevier, MIT Press, 1990.

[5] G. Higman. Ordering by Divisibility in Abstract Algebras. Proceedings of the London Mathematical
Society, 2:326–336, 1952.

[6] G. Huet. The Zipper. Journal of Functional Programming, 7(5):549–554, 1997.

[7] T. Johnsson. Lambda Lifting: Transforming Programs to Recursive Equations. In Proceedings of
the Workshop on Implementation of Functional Languages, pages 165–180, February 1985.

[8] Peter Jonsson. Time- and Size-Efficient Supercompilation. PhD thesis, Dept. of Computer Science
and Electrical Engineering, Lulea University of Technology, 2011.

[9] Ilya Klyuchnikov. Supercompiler HOSC 1.0: Under the Hood. Preprint 63, Keldysh Institute of
Applied Mathematics, Moscow, 2009.

[10] Ilya Klyuchnikov. Supercompiler HOSC 1.1: Proof of Termination. Preprint 21, Keldysh Institute
of Applied Mathematics, Moscow, 2010.

[11] Ilya Klyuchnikov. Supercompiler HOSC 1.5: Homeomorphic Embedding and Generalization in a
Higher-Order Setting. Preprint 62, Keldysh Institute of Applied Mathematics, Moscow, 2010.

[12] J.B. Kruskal. Well-Quasi Ordering, the Tree Theorem, and Vazsonyi’s Conjecture. Transactions
of the American Mathematical Society, 95:210–225, 1960.

[13] M. Leuschel. On the Power of Homeomorphic Embedding for Online Termination. In Proceedings
of the International Static Analysis Symposium, Pisa, Italy, pages 230–245, 1998.

[14] R. Marlet. Vers une Formalisation de l’Évaluation Partielle. PhD thesis, Université de Nice -
Sophia Antipolis, 1994.

[15] Gavin Mendel-Gleason. Types and Verification for Infinite State Systems. PhD thesis, School of
Computing, Dublin City University, 2012.

[16] R. Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and System
Science, 17:348–375, 1978.

[17] Neil Mitchell. Rethinking Supercompilation. In Proceedings of the 15th ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages 309–320 , 2010.

54

On the Termination of Higher-Order Positive Supercompilation G.W. Hamilton

[18] H. Seidl and M. H. Sørensen. Constraints to Stop Higher-Order Deforestation. Proceedings of the
Twelfth Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
pages 400–413, 1997.

[19] M. H. Sørensen. Turchin’s Supercompiler Revisited. Master’s thesis, Department of Computer
Science, University of Copenhagen, 1994. DIKU-rapport 94/17.

[20] M. H. Sørensen. Convergence of Program Transformers in the Metric Space of Trees. Lecture
Notes in Computer Science, 1422:315–337, 1998.

[21] M. H. Sørensen and R. Glück. An Algorithm of Generalization in Positive Supercompilation.
Lecture Notes in Computer Science, 787:335–351, 1994.

[22] M. H. Sørensen, R. Glück, and N.D. Jones. A Positive Supercompiler. Journal of Functional
Programming, 6(6):811–838, 1996.

[23] V.F. Turchin. Program Transformation by Supercompilation. Lecture Notes in Computer Science,
217:257–281, 1985.

[24] V.F. Turchin. The Concept of a Supercompiler. ACM Transactions on Programming Languages
and Systems, 8(3):90–121, July 1986.

A Proof of Lemma 5.1

We need to prove that for each of the transformation rules given in Figure 4, if T [[e]] κ ρ ∆ =
. . . T [[e1]] κ1 ρ1 ∆ . . . T [[en]] κn ρn ∆ . . . and κ•e ∈ sf , then ∀i ∈ {1 . . . n}.κi•ei ∈ sf .

Case (1): T [[x]] κ ρ ∆ = T ′[[x]] κ ρ ∆

All further applications of T arising from this application of T ′ are applied to sub-expressions
from the context κ. Since κ•x ∈ sf , then for all sub-expressions ei in κ, ei ∈ pf ′, so ei ∈ sf

Case (2): T [[c e1 . . . en]] 〈〉 ρ ∆ = c (T [[e1]] 〈〉 ρ ∆) . . . (T [[en]] 〈〉 ρ ∆)

Since c e1 . . . en ∈ sf , then ∀i ∈ {1 . . . n}.ei ∈ pf ′, so ∀i ∈ {1 . . . n}.ei ∈ sf
Case (3): T [[c e1 . . . en]] 〈(case • of p1 → e ′

1 | · · · | pk → e ′
k) : κ〉 ρ ∆ =

T [[e ′
i{x1 7→ e1 , . . . , xn 7→ en}]] κ ρ ∆ (pi = c x1 . . . xn)

Since 〈(case • of p1 → e ′
1 | · · · | pk → e ′

k) : κ〉•(c e1 . . . en) ∈ sf , then ∀i ∈ {1 . . . n}.ei ∈
pf ′ ∧ ∀i ∈ {1 . . . k}.κ•ei ′ ∈ pf ′, so κ•e ′

i{x1 7→ e1 , . . . , xn 7→ en} ∈ sf

Case (4): T [[λx → e]] 〈〉 ρ ∆ = λx→ (T [[e]] 〈〉 ρ ∆)

Since λx → e ∈ sf , then e ∈ pf , so e ∈ sf

Case (5): T [[λx → e]] 〈(• e ′) : κ〉 ρ ∆ = T [[e{x 7→ e ′}]] κ ρ ∆

Since 〈(• e ′) : κ〉•(λx → e) ∈ sf , then κ•e ∈ pf ∧ e′ ∈ pf ′, so κ•e{x 7→ e ′} ∈ sf

Case (6a): T [[f]] κ ρ ∆ = eσ if ∃(e = e′) ∈ ρ, σ.e′σ ≡ κ•f

No further transformation is performed.

55

On the Termination of Higher-Order Positive Supercompilation G.W. Hamilton

Case (6b): T [[f]] κ ρ ∆ = T [[abstract(κ•f , e′)]] 〈〉 ρ ∆ if ∃(e = e′) ∈ ρ.e′ . κ•f

Since κ•f ∈ sf , then κ•f ∈ pf ′, so abstract(κ•f , e′) ∈ sf

Case (6c): T [[f]] κ ρ ∆ = f ′ x1 . . . xn
where
f ′ = λx1 . . . xn → (T [[∆(f)]] κ (ρ ∪ {f ′ x1 . . . xn = κ•f }) ∆)

otherwise

(f ′ is fresh, {x1 . . . xn} = fv(κ•f))

Since κ•f ∈ sf ∧∆(f) ∈ pf , then κ•∆(f) ∈ sf

Case (7): T [[e e ′]] κ ρ ∆ = T [[e]] 〈(• e ′) : κ〉 ρ ∆

Since κ•(e e ′) ∈ sf , then 〈(• e ′) : κ〉•e ∈ sf

Case (8): T [[case e0 of p1 → e1 | · · · | pn → en]] κ ρ ∆ =
T [[e0]] 〈(case • of p1 → e1 | · · · | pn → en) : κ〉 ρ ∆

Since κ•(case e0 of p1 → e1 | · · · | pn → en) ∈ sf , then 〈(case • of p1 → e1 | · · · | pn → en) :
κ〉•e0 ∈ sf

Case (9): T [[let x = e0 in e1]] κ ρ ∆ = let x = (T [[e0]] 〈〉 ρ ∆) in (T [[e1]] κ ρ ∆)

Since κ•(let x = e0 in e1) ∈ sf , then e0 ∈ pf ′ ∧ κ•e1 ∈ pf ′, so e0 ∈ sf ∧ κ•e1 ∈ sf

56

	Introduction
	Language
	Positive Supercompilation
	Termination
	Ensuring Termination
	Conclusion and Related Work
	Proof of Lemma 5.1

