Efficient Simulation for Hardware Model Checking

Joseph Tafese and Arie Gurfinkel

University of Waterloo, Waterloo, Ontario, Canada
{jetafese, agurfink}@uwaterloo.ca

Abstract

Simulation is an important aspect of model checking, serving as an invaluable preprocessing step that can quickly generate a set of reachable states. This is evident in model checking tools at the Hardware Model Checking Competitions, where BTOR2 is used to represent verification problems. Recently, BTOR2MLIR was introduced as a novel format for representing safety and correctness constraints for hardware circuits. It provides an executable semantics for circuits represented in BTOR2 by producing an equivalent program in LLVM-IR. One challenge in simulating BTOR2 circuits is the use of persistent (i.e., immutable) arrays to represent memory. Persistent arrays work well for symbolic reasoning in SMT but they require copy-on-write semantics when being simulated natively. We provide an algorithm for converting persistent arrays to transient (i.e., mutable) arrays with efficient native execution. This approach is implemented in BTOR2MLIR, which opens the door for rapid prototyping, dynamic verification techniques and random testing using established tool chains such as LibFuzzer and KLEE. Our evaluation shows that our approach, when compared with BTORSIm, has a speedup of three orders of magnitude when safety properties are trivial, and at least one order of magnitude when constraints are disabled.

1 Introduction

Model Checking [7] has been an important part of the hardware verification pipeline. Given a circuit and its specifications, model checking exhaustively searches through the circuit state space to determine if any property is violated. This is known to be expensive for circuits with a large number of states. Simulation as a preprocessing step can provide a fast, yet incomplete, method of exploring the state space defined by a circuit. In a well integrated pipeline [18], the states that are found to be reachable by the simulation effort can be used to guide the model checking component. These semi-formal [11] verification methods have been used to verify microprocessors [4] by striking a balance between the speed of simulation and the rigor of model checking. We are interested in exploring semi-formal verification through the simulation of formal designs with native code. This is not only useful as a preprocessing step for model checking, but it is also a valuable addition to a verification pipeline.

Formal designs are tailored to capture specifications in a format that benefits downstream solvers. Adjacent fields have seen this with the adaption of SMT-LIB [3] for SMT solving and Conjunctive Normal Form for SAT solving. In the domain of hardware verification, BTOR2 [12]...
has risen to be a popular format for word-level verification as seen in the Hardware Model Checking competitions [5]. Benchmarks in these competitions span two categories: bit-vectors and arrays. We focus our attention on the simulation of arrays. A robust memory representation is a prerequisite for model checking and simulation alike. For instance, BTOR2 has persistent arrays (i.e., immutable) that are designed to correspond to Smt-Lib [3] arrays. This is a convenient logical representation of memory for the underlying solvers. Tools like BTORSIM [2] simulate circuits with arrays using an interpreter that maintains a map from array indices to values. For native simulation, however, enforcing copy-on-write semantics can be an expensive ordeal. It is therefore interesting for us to convert as many persistent arrays to transient (i.e., mutable) arrays as possible. This allows us to reap the benefits of compiling to native code while maximizing the speed at which simulations are executed.

To this end, we extend BTOR2 with new operations that are applied to transient arrays. We provide the semantics for existing BTOR2 operations as well as our extensions. Using the new operations, we enable an efficient simulation of BTOR2 circuits by contributing: a sound but incomplete algorithm for converting persistent arrays to transient arrays and translation passes that generate executable native programs in LLVM-IR. The implementation has been incorporated into BTOR2MLIR [16] to build a verification pipeline that produces native code for the purpose of simulation.

The rest of the paper is organized as follows: we provide the necessary background in Section 2, present semantics for BTOR2 and new operations for transient arrays in Section 3, our transformation algorithm in Section 4, an evaluation of our techniques in Section 5 and our conclusions in Section 6.

2 Background

The dominant format in the Hardware Model Checking competition has been BTOR2. It is used to represent sequential circuits over Smt-Lib theories of BitVec [14] and Arrays [17]. The formal syntax is provided in [12]. A circuit consists of sort definitions, state definitions, inputs, gates, safety and liveness properties, and initial state and next state functions. We illustrate BTOR2 using a four bit counter, C (see Fig. 1a), that uses an array to store its current value. The example does not show the use of liveness properties or inputs. Observe that each line in C is referred to by a line identifier (lid) that represents a sort (sid) or a node (nid). For a given line, a sid gives the sort of the operation and arguments are given by their nid. For a nid to be used as an argument, the syntax requires that it refers to a value producing gate i.e., it cannot refer to a property or function.

Sort definitions are shown in line 1 for a bit-vector of bit width 4 ($bv4$) and line 2 for an array of index and element sort $bv4$. Constants $b0001$ (resp. $b1000$) are defined in line 3 (resp. line 4). A state definition for an array is shown in line 5. BTOR2 has an implicit clock that simulates the execution of a circuit. Therefore, the initial (resp. next) state function is used to initialize (resp. update) a state given a value. The initial state function (line 6) sets all the indices of our state array ($nid 5$) to $b0001$. This is run once at the beginning of circuit execution. C uses the 8th ($nid 4$) index of the state array as the counter by reading the current value ($nid 7$), incrementing it ($nid 9$) and storing it ($nid 10$). Then, depending on whether the safety property has been violated ($nid 13$), either the old state array ($nid 5$) or the new array ($nid 10$) is chosen and stored at $nid 14$. The next state function (line 15) updates the state with $nid 14$ at the end of each cycle. The safety property (line 17) asserts that the counter is not 15 ($b1111$). It is checked using the value of the counter at the beginning of the cycle ($nid 7$).
In this section, we introduce formal semantics for \texttt{Btor2} circuits in a transition system, \(T = \langle St, I, O, INIT, TR \rangle \). \(St \) is a set of states, \(I \) represents the set of possible inputs and \(O \) represents the set possible outputs. \(INIT \) is a subset of \(St \) that represents the set of initial states for the system. \(TR \) represents the relationship between states such that a directed edge \((s, i, s', o)\) relates state \(s \) to state \(s' \) given input \(i \in I \) and producing output \(o \in O \). Let \(r = (s_1, i_1, o_1), (s_2, i_2, o_2), \ldots \) be an infinite sequence of tuples of states, inputs and outputs that represents the run of a transition system. It is a feasible run if \(s_1 \) satisfies \(INIT \), and, for all \(i, (s_i, i_i, s_{i+1}, o_i) \) is in \(TR \). The semantics of a circuit \(A \) is the set \(L(A) \) of all its feasible runs, called the language of \(A \). Two circuits, \(A \) and \(B \), are observationally equivalent if they have the same languages, i.e., \(L(A) = L(B) \).

Let \(\pi : \text{Nid} \rightarrow \text{Val} \) be an evaluation context – a map from node identifiers \(\text{Nid} \) to values \(\text{Val} \). The domain of values is \(\text{Val} = \text{BitVec} | \text{Array}(\text{Arr}) | \text{ArrayRef}(\text{Nid}) \), where \(\text{BitVec} \), \(\text{Arr} \), and \(\text{Nid} \) are, respectively, the sorts for bit-vectors, arrays, and node identifiers. Let \(\text{dec} : (\text{Nid} \rightarrow \text{Val}) \rightarrow \text{St} \) to decode an evaluation context into a state in \(\text{St} \). The opposite direction is performed by function\(\text{enc} : \text{St} \rightarrow (\text{Nid} \rightarrow \text{Val}) \). Note that \(\text{dec} \) is bijective, and \(\text{enc} \) its inverse, since there is a unique encoding of the state of an evaluation context i.e., \(\pi = \text{enc}(\text{dec}(\pi)) \).
Inputs are encoded into the evaluation context with $\text{enci} : I \rightarrow (\text{Nid} \rightarrow \text{Val})$. Outputs are extracted from the evaluation context with $\text{deco} : (\text{Nid} \rightarrow \text{Val}) \rightarrow O$. An evaluation context for a state, i.e. $\text{enc}(s)$, can be combined with a non-intersecting evaluation context for inputs, i.e. $\text{enci}(i)$, with ($+$) where the values for inputs are added to the encoding of a state. For example, in $\text{enc}(s) + \text{enci}(i)$, the resulting evaluation context is $\text{enc}(s)$ with the values from $\text{enci}(i)$ added to it.

We describe the semantics of BTOR2 operations relative to SMT-Lib theories of BitVec and Array, as shown in Fig. 2. The definition of the semantics relies on the helper functions $\text{root} : \text{Nid} \times (\text{Nid} \rightarrow \text{Val}) \rightarrow \text{Nid}$ and $\text{IsArrayRef} : \text{Val} \times \text{Nid} \rightarrow \text{Bool}$ defined in Fig. 2b. We use the notation $B_{\text{mode}}(\pi)$ in Fig. 2a to represent the evaluation of circuit B under a specific mode. For example, we use the rules in Fig. 2c to determine the initial states of circuit B. More specifically, we get the initial states of mode. For example, we use the rules in Fig. 2c to determine the initial states of circuit B using the mode specific rules and an OFFSET in Fig. 2d. OFFSET is the size of circuit B and it allows us to hold new values for an Nid in π. We assume that a given Nid is assigned at most one new value per cycle.

BTOR2 operations can represent circuit gates or circuit level functions. There are two important functions in BTOR2: init and next. These define the initial state function and the next state function respectively. To simplify the presentation of our semantics, we use the notation B_{init} and B_{next} to represent the rules for evaluating a circuit B in the respective mode. The sets in T are defined as:

$$\text{INIT} = \{s \in \text{St} | \ B_{\text{init}} t \land s = \text{dec}(t)\}$$

$$\text{TR} = \{s, s' \in \text{St}, i \in I, o \in O | \text{enc}(s) + \text{enci}(i) \ B_{\text{next}} t \land s' = \text{dec}(t) \land o = \text{deco}(t)\}$$

BTOR2 has three instructions that work with array values: read, write and ite. The formal semantics are presented in Fig. 2e. For example, consider $a' = \text{write}(a, x, v)$, where a and a' are indexes of arrays in the execution context π. After write executes, $\pi(a)$ and $\pi(a')$ refer to the original and updated array respectively. This is consistent with the behaviour of persistent arrays, therefore, we map write to SMT-Lib STORE in our semantics. read and ite are mapped to SMT-Lib SELECT and ITE with the results stored at the operation oid. Our key idea is to extend the semantics of BTOR2 with transient array operations: write_mut and write_mutz to represent, respectively, unconditional and conditional mutable writes. Unlike their persistent counterparts, these operations update an array in place. We describe the intuition behind the semantics with the write_mut operation since write_mutz is similar. Consider an instruction $a' = \text{write_mut}(a, x, v)$, where a and a' are indexes of arrays in the execution context π. After write_mut executes, $\pi(a)$ and $\pi(a')$ both refer to the same array. Moreover, that array is the same as the array $\pi(a)$ before the execution, but with value v stored at index x. To this end, we add the notion of pointing in the execution context π, by extending allowed values with $\text{Array}Ref$. Intuitively, the value $\text{Array}Ref(i)$ represents a pointer to an array at location i in the context π. This allows us to represent references to an array while preserving support for existing array operations. In our example above, at the end of execution, $\pi(a') = \text{Array}Ref(a)$, $\pi(a) = \text{Array}(u)$, and u is the new array value. In our formal semantics, we resolve (or dereference) pointers using a helper root, that returns the index of an Array in π pointed to by the corresponding reference. Note that in our semantics, every $\text{Array}Ref$ is one hop away from an array value. That is, $\text{root}(d, \pi)$ returns d if $\pi(d)$ is an Array, or v if $\pi(d) = \text{Array}Ref(v)$ and, therefore, $\pi(v)$ must be an Array.

Conditional writes in BTOR2 are a result of combining the write and ite instructions. To support in place conditional writes, we extended BTOR2 with write_mutz. The formal
\[
\begin{align*}
t = \pi & \quad \llbracket B \rrbracket_{\text{mode}}(\pi) \sim \pi' \quad t' = \pi' \\
& \quad t \xrightarrow{B}_{\text{mode}} t'
\end{align*}
\]

\[\exists \pi_1, \ldots, \pi_{|B|} \quad \forall i. \llbracket B_i \rrbracket(\pi_i) \sim_{\text{mode}} \pi_{i+1} \quad \pi' = \pi_{|B|}\]

(a) Semantics of whole-circuit evaluation

\[\text{root}(d, \pi) = \begin{cases}
 d & \text{if IsArray}(\pi(d)) \\
 v & \text{if IsArrayRef}(\pi(d), v) \\
 d & \text{otherwise}
\end{cases}\]

\[\text{IsArrayRef}(u, v) = \begin{cases}
 \text{True} & \text{if } u = \text{ArrayRef}(v) \\
 \text{False} & \text{otherwise}
\end{cases}\]

(b) Helper functions.

\[\llbracket \text{init}(s, v) \rrbracket(\pi) \sim_{\text{init}} \pi\]

(c) Semantics of \text{init} mode.

\[\llbracket \text{next}(s, v) \rrbracket(\pi) \sim_{\text{next}} \pi [s' := a] \]

(d) Semantics of \text{next} mode.

\[m = \pi(\text{root}(a, \pi)) \quad v = \text{SELECT}(m, \pi(x))
\]

\[\llbracket n = \text{read}(a, x) \rrbracket(\pi) \sim_{\text{mode}} \pi[n := v]\]

\[u = \pi(\text{root}(a, \pi)) \quad v = \pi(\text{root}(b, \pi))
\]

\[\llbracket n = \text{ite}(c, a, b) \rrbracket(\pi) \sim_{\text{mode}} \pi[n := \text{ITE}(c, u, v)]\]

\[m = \pi(\text{root}(a, \pi))\]

\[\llbracket n = \text{write}(a, x, v) \rrbracket(\pi) \sim_{\text{mode}} \pi[n := \text{STORE}(m, \pi(x), \pi(v))]\]

\[p = \text{root}(a, \pi) \quad m = \text{STORE}(\pi(p), \pi(x), \pi(v))
\]

\[\llbracket n = \text{write}_{\text{mut}}(a, x, v) \rrbracket(\pi) \sim_{\text{mode}} \pi'[n := p]\]

\[p = \text{root}(a, \pi) \quad m' = \text{STORE}(\pi(p), \pi(x), \pi(v))
\]

\[\llbracket n = \text{write}_{\text{mutz}}(c, a, x, v) \rrbracket(\pi) \sim_{\text{mode}} \pi'[n := p]\]

(e) Semantics of array operations

\[\forall v. \text{IsBv}(v) \quad \llbracket n = \text{input}(\pi) \rrbracket(\pi) \sim \pi [n := v]\]

\[v = \text{bv_op}(\pi(a))
\]

\[\llbracket n = \text{op}(a) \rrbracket(\pi) \sim_{\text{mode}} \pi[n := v]\]

\[v = \text{bv_op}(\pi(a), \pi(b))
\]

\[\llbracket n = \text{op}(a, b) \rrbracket(\pi) \sim_{\text{mode}} \pi[n := v]\]

\[v = \text{bv_op}(\pi(a), \pi(b), \pi(c))
\]

\[\llbracket n = \text{op}(a, b, c) \rrbracket(\pi) \sim_{\text{mode}} \pi[n := v]\]

(f) Semantics of Btor2 operations.

Figure 2: Semantics of Btor2 operations.
Then, for two operations \(\text{op} \) and \(\text{op} \) terminology. Let \(\pi \) and their corresponding operations. perform a replacement of the to determine which array will be used going forward. If this pattern is detected, then we can writes, we observe that an array is copied, a value is written into it and an pattern is detected, we can perform the replacement discussed above. In the case of conditional writes. We offer the intuition behind our approach by breaking down these cases. In the first case, we observe that the copied array is not used after a \(\text{write} \) operation. If this pattern is detected, we can perform the replacement discussed above. In the case of conditional writes, \(\text{write} \) is resolved using \(\text{root} \) before being assigned to the next state.

To illustrate the semantics, consider the two BTOR2 circuits shown in Fig. 3. The circuit on the left (\(C_1 \)) uses \(\text{write} \) while the one on the right (\(C_2 \)) uses the new conditional write \(\text{write}_\text{mut} \). Both circuits create and initialize an array state, \(\text{write} \) to the array, read from the array state and output the read value. Let \(\pi_1 \) (resp. \(\pi_2 \)) be the evaluation context for \(C_1 \) (resp. \(C_2 \)). Assume that the evaluation contexts have the array state initialized according to the initial state function. In \(C_1 \), \(\text{root} \) returns 5 when \(\text{write} \) is evaluated under our semantics and the result is referred to as \(\pi(7) \). Note that \(\text{root}(7, \pi) \neq \text{root}(5, \pi) \). Therefore, when \(C_1 \) is evaluated under our semantics, \(\text{root} \) never returns an id that resolved to an \(\text{ArrayRef} \) in \(\pi \). Hence, the values that are written are not visible at \(\pi(5) \). Now consider \(C_2 \), where \(\text{root} \) returns 5 when \(\text{write}_\text{mut} \) is evaluated and the result is referred to as \(\pi(7) \). Unlike the evaluation of \(C_1 \), \(\text{root}(7, \pi) = \text{root}(5, \pi) \). Therefore, unlike the evaluation of \(C_1 \), the value written at \(\pi(7) \) are also visible at \(\pi(5) \) in the evaluation of \(C_2 \).

4 Persistent to Transient Arrays

BTOR2 \(\text{write} \) operations use persistent arrays which, as shown in the previous section, have copy-on-write semantics. This is expensive to simulate when large arrays are involved, especially when the copied array is not used by future operations. For example, if the copied array is never used, it does not need to be preserved, and we can replace \(\text{write} \) with \(\text{write}_\text{mut} \). In fact, we have found two common patterns where significant gains can be made: unconditional writes and conditional writes. We offer the intuition behind our approach by breaking down these cases. In the first case, we observe that the copied array is not used after a \(\text{write} \) operation. If this pattern is detected, we can perform the replacement discussed above. In the case of conditional writes, we observe that an array is copied, a value is written into it and an \(\text{ite} \) operation is used to determine which array will be used going forward. If this pattern is detected, then we can perform a replacement of the \(\text{write} \) and \(\text{ite} \) operations with a single \(\text{write}_\text{mut} \) operation. In both cases, under some conditions, we can omit the copy altogether by using transient arrays and their corresponding operations.

To present the conditions under which our transformation takes place, we setup some useful terminology. Let \(\text{id}(\text{op}) \) represent an operation in BTOR2, and \(\text{id}(\text{op}) \) its unique identifier (line id). Then, for two operations \(\text{op}_1 \) and \(\text{op}_2 \), let \(\text{uses}(\text{op}_2, \text{op}_1) \) be a function that returns true iff \(\text{op}_2 \) uses the result of \(\text{op}_1 \). In other words, \(\text{op}_2 \) has \(\text{id}(\text{op}_1) \) as an argument. Using this, we construct a def-use graph \(G = (V, E) \), where \(V \) is the set of nodes corresponding to an array operation and \(E \) the set of use relationships between nodes. Thus, for \(\{u, v\} \in V, (u, v) \in E \iff \text{uses}(v, u) \).

There are four array operations: \(\text{state} \), \(\text{write} \), \(\text{ite} \) and \(\text{read} \). The first three operations are used to define arrays and the last three operations use arrays. Let us call \(\text{write} \) and \(\text{ite} \) hybrid operations since they do both. Let \(u \in V \) be a node corresponding to an array valued state, and \(G_u \) the largest connected component containing \(u \). We assume that the operations of a
circuit are sorted in topological order relative to the def-use graph. Under these conditions, we say that G_u represents an array group.

Our goal is to replace all hybrid operations in G_u with `write_mut` and `write_mutz`, as appropriate. We illustrate this using our running example (left of Fig. 3) where u represents the state operation in line 5. The array group, G_u, is shown on the left of Fig. 4. We can see that G_u has four nodes corresponding to the array operations in the circuit, and each use is represented with an edge, as expected. We would like to replace each hybrid operation in G_u such that `write` and `ite` are replaced with `write_mutz`. To do this safely, we use a common definition of liveness, i.e., the result of an array operation with identifier v is live at location w if it is defined before w and used after w.

We now present the conditions under which it is legal to transform an array group (e.g., G_u) by replacing its hybrid operations. Condition 4.1 relies on the fact that an operation result cannot be resurrected. Once it is not live at a location, it is not live in all future locations. Therefore, storage can be transferred from one member of a component to its successor. These are the conditions under which we can replace `write` with `write_mut`. Condition 4.2 relies on the fact that a conditional write, represented with a combination of `write` and `ite` operations, will result in a connected component that does not satisfy our first condition. Note that it would require at most two members of the component are live at a given location and time. If the connected component satisfies our first condition when the `ite` operation is removed, we can replace the conditional write with `write_mutz`.

Condition 4.1. Let C be a connected component of G that has at least one `write` operation. The `write` operations in C can be replaced with `write_mut` if for every location l, only one member of the component is live at any one time.

Condition 4.2. Let C be a connected component of G where for every location l, at most two

![Figure 3: Comparing running example using `write` vs `write_mutz`.](image)

![Figure 4: Graph representation for running example.](image)
Algorithm 1: Transformation Algorithm.

Function transform($Q : \text{BTOR2 Circuit}$, $G = (V, E) : \text{def-use graph for } Q$):

\[
Q' := Q;
\]

for $C = (V_C, E_C) \in G$ do

if Cond2(C) then

for $(u, v) \in E_C$ do

if $u =$ write and $v =$ ite then

/* $u =$ write arr, idx, val; $v =$ ite c, id(u), arr */

arr, idx, val := u; c, \ldots := v;

$Q'[\text{id($v$)} := \text{write mutz c, arr, idx, val}];$

endif

eendif

if Cond1(C) then

for $v \in V_C$ do

if $v =$ write then

/* $v =$ write arr, idx, val */

arr, idx, val := v;

$Q'[\text{id($v$)} := \text{write mut arr, idx, val}];$

eendif

eendif

return Q';

members of the component are live at any one time. Let w be a write operation and t be an ite operation in C. Then, if $C \setminus t$ satisfies Condition 4.1 and uses(t, w) is true, t can be replaced with write_mutz.

We present Algorithm 1 using (Q, G) as input, where Q is a BTOR2 circuit and G is its corresponding def-use graph. Let Cond1(C) (resp. Cond2(C)) be a function that take a component C, of G, and evaluates the condition described in Condition 4.1 (resp. Condition 4.2). Algorithm 1 iterates over every component in G and checks if it satisfies Cond2(C) or Cond1(C). It is clear that the two conditions are mutually exclusive, hence, a component will satisfy at most one of our conditions.

We illustrate the algorithm using the running example on the left of Fig. 3 and its corresponding def-use graph on the left of Fig. 4. Observe that there is only one component in G and it does not satisfy Cond1(C). Therefore, since Cond2(C) is satisfied, Algorithm 1 iterates over every edge in the component to find a write that is succeeded by an ite operation. Then, the ite operation is replaced with write_mutz and the change is persisted in an updated circuit. Let Q' be the transformed circuit that results from running Algorithm 1 on Q. Note that the only update to Q happens at index id(v). Therefore, Q and Q' differ only at line 14, where the ite operation of Q is replaced with write_mutz in Q'. It is important to note that the write operation at line 10 of Q has no uses in Q', i.e., the result of write is dead. We show Q' on the right of Fig. 3 and G', its corresponding def-use graph, on the right of Fig. 4. Note that, under the semantics we have provided for BTOR2, Q' is equivalent to Q.

In the case where Q satisfies Cond1(C), Algorithm 1 iterates over every vertex in the component to identify a write. Then, the write operation is replaced with its mutable counterpart, write_mutz. Let Q' be the resulting transformed circuit. Since the update only happens at most once for an array in a component, Q and Q' will only differ at these locations. Similar to the previous case, under the semantics we have provided for BTOR2, Q and Q' are equivalent.

Theorem 1. Let Q be a BTOR2 circuit. Let Q' be the result of Algorithm 1. Q and Q' are observationally equivalent.
Efficient Simulation for Hardware Model Checking

Tafese and Gurfinkel

<table>
<thead>
<tr>
<th>Constraints Disabled</th>
<th>Constraints Enabled</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>BtorSim</td>
<td>Btor2MLIR</td>
<td>BtorSim</td>
</tr>
<tr>
<td>w_18A</td>
<td>991</td>
<td>9544</td>
</tr>
<tr>
<td>w_19A</td>
<td>409</td>
<td>2577</td>
</tr>
<tr>
<td>w_19B</td>
<td>1895</td>
<td>32138</td>
</tr>
<tr>
<td>w_19C</td>
<td>201</td>
<td>2616</td>
</tr>
<tr>
<td>19_mann</td>
<td>3429</td>
<td>13697</td>
</tr>
<tr>
<td>20_mann</td>
<td>4770</td>
<td>79966</td>
</tr>
</tbody>
</table>

Table 1: Mean running time of BtorSim vs Btor2MLIR in execution cycles per second.

5 Implementation and Evaluation

Implementation. We implement Algorithm 1 in Btor2MLIR to convert persistent arrays in Btor2 to transient arrays in LLVM-IR. Our implementation is encapsulated in the convert-btor-to-memref pass i.e., a conversion from BTOR DIALECT to MemRef Dialect. An MLIR dialect is designed to capture the operations and types of a language through its syntax, instructions and properties. MemRef is an MLIR dialect for representing operations on transient array types and BTOR DIALECT [16] is used to represent Btor2 circuits. In addition to MemRef, there is a Vector Dialect for representing array operations on Single Instruction/Multiple Data (SIMD) vectors (i.e., persistent arrays). These define operations that use register allocated memory and can be useful for efficiently modelling small arrays. We implement this in the convert-btor-to-vector pass.

A core contribution of MLIR is that its users can define dialects that meet their needs and interoperate with other dialects using conversion and translation passes. Conversion (resp. translation) passes represent a conversion from a dialect to another dialect (resp. target language). This is why we use existing conversion passes for translating Btor2 to BTOR DIALECT, MemRef Dialect to LLVM Dialect and BTOR DIALECT to LLVM Dialect. Once all the passes have been run, we use a translation pass that generates LLVM-IR from LLVM Dialect. Working in the MLIR framework makes it easy to manipulate the intermediate representation structure for def-use analysis when checking the conditions in Algorithm 1 and pattern-based rewrites. Pattern-bases rewrites are how MLIR matches the operations to be transformed with their respective transformation. For example, to convert write:mut to a store in MemRef Dialect, we provide a function that performs the conversion and a pass that marks all write:mut operations for conversion.

Evaluation. An important metric in evaluating the efficacy of our approach is cycles per second. A fast simulation approach is beneficial because the user can explore more cycles, and potentially more states. In contrast to model checking, simulation does not exhaustively search a state space. Therefore, having a fast simulator makes guiding a simulation more effective than the slower counterpart. The goal of our evaluation is to show that Btor2MLIR makes it easy to produce efficient LLVM programs that can be compiled and executed for the purpose of simulation. In the future, we plan to do a case study using LLVM-based analysis tools, such as symbolic execution engine KLEE [6], and fuzzing framework LibFuzzer [15].

For the evaluation, we have chosen the array category of Btor2 benchmarks from the most recent Hardware Model Checking Competition (HWMCC) [5]. All our experiments are run on a Linux machine with x86,64 architecture, with a timeout of 1 second and memory limit of 65
GB. These results are reported in Table 1, grouped by competition contributor and whether constraints are enabled or disabled. For all benchmarks, safety properties are set to false so that we can maximize the number of cycles for both tools.

BTORSIM was chosen because it is well integrated with the HWMCC environment and is specifically designed for **Btor2**. We evaluate **BTORSIM** and show the results in the first column of Table 1. For each category, we show the mean number of cycles per second. For example, for the case where constraints are disabled, the **w_19B** category has an average of 1,895 cycles per second. **BTOR2MLIR** is evaluated by compiling the harnessed LLVM-IR output with clang to create an executable that generates random values for inputs and reports its metrics after each cycle. We present the results for this run in the second column of Table 1. For example, for the case where constraints are disabled, the **w_19B** category has an average of 32,138 cycles per second. The speedup of **BTOR2MLIR** compared to **BTORSIM** is computed for each benchmark in a category. For each category, the mean of these values is presented in the third column of Table 1. When constraints are enabled, the running time varies heavily. This is expected when running simulation experiments since the approach does not exhaustively search through a circuits search space. The results show that **BTOR2MLIR** is consistently faster regardless of what benchmarks we run.

6 Conclusion

In this paper we present semantics for existing and new **Btor2** operations. We use the new operations to develop an algorithm for converting persistent arrays to transient arrays. This conversion provides a fast method for simulating formal designs for hardware circuits as demonstrated by our results. The implementation of the algorithm has been incorporated into **BTOR2MLIR** and can be used to simulate formal designs of circuits represented in **Btor2**. In the future, we plan to extend this work with a case study that evaluates the application of testing and simulation technologies such as **LibFuzzer** and **Klee**, as well as model checking tools such as **SEAhorn**. Furthermore, it is interesting to explore the simulation of other formal designs with the goal of improving verification pipelines that have exhaustive search by design.

References

