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Abstract 
This study addresses the pressing need for effective methods in detecting Attention-

Deficit/Hyperactivity Disorder (ADHD), a neurodevelopmental condition significantly 
impacting individuals' attention, impulse control, and activity regulation. Leveraging 
advancements in machine learning and wearable technology, the research explores the 
potential of Heart Rate Variability (HRV) data as a novel source for ADHD detection. 
Six machine learning algorithms, including Logistic Regression, Random Forest, 
XGBoost, LightGBM, Neural Network, and Support Vector Machine, were rigorously 
investigated using an HRV dataset, marking a pioneering effort in utilizing HRV data for 
ADHD identification. The results demonstrate promising performance, with Logistic 
Regression exhibiting the highest F1 score (0.71), and Support Vector Machine achieving 
the highest Matthews Correlation Coefficient (0.44). This study showcases the capacity 
of machine learning utilizing HRV data for identifying ADHD, contributing to the 
evolving landscape of machine learning applications in mental health diagnostics. 

1 Introduction 
Attention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that affects 

individuals' ability to pay attention, control their impulses, and regulate their level of activity. The 
disorder has a significant impact on various aspects of a person's life, including academic and 
occupational performance, relationships, mental health, and overall well-being [1]. ADHD is a diverse, 
enduring condition that impacts 5.9 to 7.1% of school-aged children and almost 5% of the adult 
population [2]. ADHD in adults often manifests with a varied clinical presentation that goes beyond the 
fundamental motor symptoms observed in children. It encompasses a wider spectrum of emotional 
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dysregulations and functional impairments [3] which necessitate effective ADHD detection methods to 
minimize the risk of mental health disorders, self-injury, and suicidal tendencies. 

Presently, there are no definitive biomarkers or valid objective tests to identify ADHD [4], and to 
differentiate ADHD diagnosis from other mental disorders, including bipolar disorder [5] or anxiety 
[6]. ADHD diagnosis primarily relies on subjective clinical evaluation, observation of behavior, and 
reported symptoms. Due to the subjective nature of this assessment process, there exists a risk of both 
under and over-diagnosis. Consequently, there is a demand for more objective assessment approaches 
[7] [8]. 

Wearable sensor technology combined with machine learning methods has garnered considerable 
interest as a means to complement established subjective diagnostic procedures in the realm of mental 
health [9]. To identify or classify ADHD, researchers have utilized data collected via different types of 
wearable sensors and experimented with various machine learning algorithms. For example, deep 
convolutional neural networks have been utilized to classify the electroencephalography signal of 
healthy children from ADHD children with two subtypes of Combined ADHD (ADHD-C) and 
inattentive AHDH (ADHD-I) [10]. Kol et al. employed a bagged tree classifier to categorize ADHD, 
ADHD+CD (conduct disorder), and CD automatically on electrocardiography (ECG) signals [11].  

Heart rate data emerges as a potential data source for investigating psychotic disorders. It can be 
utilized to compute heart rate variability (HRV), indicating the extent of variation in the time intervals 
between successive heartbeats. HRV can provide valuable insights into the autonomic nervous system 
and overall health. Researchers have found evidence of reduced HRV in neuropsychiatric conditions 
like depression and psychotic disorders [12] as well as ADHD [13]. However, there are very limited 
studies employing HRV for ADHD diagnosis in the literature. In a pilot study [14] on this subject, 
short-term HRV data were gathered from 20 children (10 with ADHD and 10 controls), aged 7-12 years. 
Statistical analyses, including Mann-Whitney and Wilcoxon tests, were employed to discern parameters 
distinguishing the ADHD and non-ADHD groups. Another study reported a correlation between lower 
HRV and poor emotional regulation in adolescents diagnosed with ADHD [15]. Notably, both studies 
did not incorporate machine learning algorithms, and no accuracy data were reported. 

In this study, six different machine learning algorithms were examined for automatically 
distinguishing individuals with ADHD from other clinical controls through the analysis of heart rate 
data. Statistical features were derived from patients’ HRV data, and a subset of these features was 
chosen using their associated p-values. The selected subset was then utilized by the six machine learning 
algorithms: Logistic Regression, Random Forest, XGBoost, LightGBM, Neural Network, and Support 
Vector Machine. The comparative analysis of these six classifiers indicated that Logistic Regression 
achieved the highest F1 score. To the best of our knowledge, this is the first study that utilized machine 
learning-based methodologies for identifying ADHD patients among other patients with different 
conditions. 

2 Methodology 
In this section, we present the proposed framework for detecting ADHD among clinical controls, 

introduce the dataset employed, and describe the chosen feature selection method.  

2.1 ADHD Detection Framework 
This section presents an outline of the proposed framework designed for identifying ADHD among 

clinical controls. Figure 1 provides a big picture of the proposed framework, demonstrating its utility 
in classifying patients into ADHD or non-ADHD categories based on the dataset. In the initial stage, 
data is collected from patients, including heart rate data recorded through wearable devices, and patient 
details encompassing background and medical history. Subsequently, statistical features are extracted 
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using a Python library tsfresh [16] and then relevant features are chosen if their p-value is less than 
0.05. The next step involves implementing, tuning, and testing various machine learning algorithms 
with 10-fold cross-validation. This facilitates the identification of an optimal algorithm based on diverse 
performance metrics, ensuring the accurate identification of ADHD patients. 
 

2.2 Dataset 
This current study utilizes a publicly available ‘Hyperaktiv’ dataset (accessible at 

https://osf.io/3agwr) [17]. This dataset includes patient information, activity, and heart rate data 
retrieved from 103 enrolled patients, with 51 diagnosed with ADHD and 52 with other clinical 
disorders. The heart rate data is ECG-based and recorded through a compact, chest-worn device 
powered by a battery. This setup enables unrestricted movement and facilitates extended recording 
periods. Figure 2 illustrates the HRV log of an ADHD-diagnosed patient over 24 hours. The figure 
indicates that this patient exhibits reduced HRV during the early morning and the later afternoon. The 
fluctuations in HRV over time could provide insights into diagnosing ADHD, given the time-dependent 
characteristics of ADHD hyperactivity. In the current dataset, 80 patients contributed HRV recordings. 
Among them, 38 individuals with ADHD recorded their HRV for an average duration of 20.5 ± 3.9 
hours, while 42 clinical controls logged their HRV for an average of 21 ± 4 hours [17]. The recorded 
data is organized into one file per participant. 

2.3 Feature Extraction and Selection 
Utilizing HRV data, 788 statistical features were derived using the open-source Python package 

tsfresh [16]. This library is specifically crafted for the systematic extraction of pertinent features from 
time series data to facilitate machine learning tasks. The extracted features encompass a range of 
attributes, encompassing basic statistics like mean, median, standard deviation, skewness, kurtosis, as 
well as entropy measures, FFT (Fast Fourier Transform) features, temporal characteristics, and more. 

Heart Rate 
Data

Patient 
Information

Feature Extraction 
(using Tsfresh)

Feature Selection 
(p<0.05)

Machine Learning 
Algorithms (with 10-
fold cross validation)

Patients
ADHD NON-ADHD

 
 

Figure 1: ADHD Detection Framework 
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The resultant feature data is stored in a features file, with each row encapsulating the feature data for 
an individual participant. 

As the number of extracted features is relatively large in comparison to the size of the HRV dataset 
(consisting of 80 patients), the training phase of a machine learning model may not be able to generalize 
effectively, potentially diminishing its predictive power unnecessarily. Therefore, a subset of the 788 
extracted features was chosen based on their p-values. The threshold for selecting features based on 
their statistical significance is set at p < 0.05. This threshold is a conventional choice and stems from 
the field of statistics. As a result, 28 features have been selected for utilization in the machine learning 
algorithms. 

2.4 Machine Learning Models and HyperParameters 
To classify patients with ADHD and other clinical controls, six distinct machine learning 

algorithms—Logistic Regression (LG), Random Forest (RF), Extreme Gradient Boosting (XGB), 
LightGBM (LGBM), Neural Network (NN), and Support Vector Machine (SVM)—have been 
implemented and tested. The ultimate objective is to develop algorithms that achieve the highest 
classification accuracy. To enhance the performance of these models, it is crucial to identify and fine-
tune essential hyperparameters to precisely tailor them to the provided data, ensuring the creation of 
accurate models. The chosen algorithms and their specific hyperparameters are described below. 

1) Logistic Regression (LG): LG is a fundamental machine learning algorithm primarily utilized for 
binary classification tasks. It focuses on estimating the probability of an instance belonging to a specific 
class. Employing the logistic function, also known as the sigmoid function, it transforms the linear 
combination of input features into a range between 0 and 1. The algorithm establishes a decision 
boundary based on a threshold probability, facilitating the classification of instances. In this study, the 
model incorporates the L2 penalty, also known as Ridge regularization, to prevent overfitting and 
enhance generalization performance. The stopping criteria tolerance is set at 0.0001. The model 
employs a linear solver, and the class weights are set to "balanced" mode. 

2) Random Forest (RF): RF is a powerful ensemble learning algorithm. This algorithm constructs 
multiple decision trees during training and predicts the output based on the majority votes of the trees. 
Each tree in the forest is built on a random subset of a dataset, introducing diversity and mitigating 
overfitting. RF excels in handling high-dimensional data, capturing complex relationships, and 
providing robust predictions. In this model, the number of trees is set to 1000, and the entropy function 

 
 

Figure 2: Example of 24 hours (from noon to noon) of HRV recordings from a patient diagnosed with 
ADHD. 
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is utilized to measure the quality of a split. The maximum depth and leaf nodes are both set to none. 
When selecting features for splitting, the model is set to use the square root of the total available features 
as the maximum number of features to choose from. 

3) Extreme Gradient Boosting (XGB): XGB also utilizes an ensemble of decision trees. It 
sequentially builds trees to correct errors of the preceding ones, resulting in a robust and accurate 
predictive model. XGB is known for its speed, scalability, and ability to handle diverse datasets. Its 
incorporation of regularization techniques and advanced features such as tree pruning contributes to its 
success in achieving state-of-the-art results across various domains. In this work, the number of 
boosting rounds is set to 1000, and the "verbosity" is set to 0 for silent mode during training. The 
algorithm is tailored for binary classification using the logistic objective function, while the learning 
rate is fine-tuned to 0.01, controlling the step size during optimization. 

4) LightGBM (LGBM): As a cutting-edge gradient-boosting framework, LGBM excels in handling 
large datasets and complex tasks. Its key innovation lies in the implementation of a histogram-based 
learning approach, where feature values are binned into discrete intervals, significantly accelerating the 
training process. LGBM supports classification tasks and offers flexibility in model customization 
through various hyperparameters. Known for its ability to handle imbalanced datasets, categorical 
features, and intricate relationships, LGBM has become a popular choice in real-world applications. 
Being a boosting algorithm, LGBM shares similarities in parameter configuration with XGB. The 
number of boosting rounds is specified as 1000, and a silent mode is activated for training. The 
algorithm is tailored for binary classification, and the learning rate is adjusted to 0.01, dictating the step 
size in the optimization process. 

5) Neural Network (NN): Inspired by the structure and functioning of the human brain, NNs are 
characterized by interconnected nodes organized into layers. They can effectively model complex 
relationships in data for classification. The input layer receives features, and subsequent hidden layers 
process and learn hierarchical representations, culminating in the output layer's predictions. Training 
involves adjusting the network's weights through backpropagation, optimizing its ability to generalize 
from training data to unseen examples. NNs are capable of learning intricate patterns and non-linear 
relationships, making them instrumental in diverse applications. In this investigation, a compact NN 
was employed with two hidden layers, a design choice aligned with the limited size of the HRV dataset. 
The hidden layers consist of 25 and 15 neurons, respectively, utilizing the rectified linear unit function 
as the chosen activation function. For weight optimization, the 'adam' optimizer is employed, with the 
maximum training iterations capped at 1000. The initial learning rate is established at 0.001. To 
maintain result reproducibility, the random seed is set to 42. 

6) Support Vector Machine (SVM): SVM is a powerful machine learning algorithm utilized for 
classification tasks. Its main objective is to find a hyperplane that maximizes the margin between 
different class data points. SVM accommodates both linear and non-linear decision boundaries using 
kernel functions. By mapping instances into a high-dimensional feature space, SVM determines the 
optimal hyperplane. Known for its effectiveness in high-dimensional spaces and handling complex 
datasets, SVM offers flexibility with various kernel functions, making it widely employed in various 
domains. This study utilizes the radial basis function as the kernel for this model, with a kernel degree 
set to three. The termination criteria tolerance is established at 0.001, and the shrinking heuristic is 
configured to true. 

2.5 Performance Metrics 
Five performance metrics, namely accuracy, precision, recall, F1-score, and Matthews Correlation 

Coefficient (MCC), are employed to evaluate the performance of the studied machine learning 
algorithms. The definitions of these metrics rely on the confusion matrix, a tabular representation with 
four quadrants, each illustrating the outcomes of the classifier. These quadrants consist of True Positive 
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(TP), True Negative (TN), False Positive (FP), and False Negative (FN). The following are the 
definitions of these five metrics. 

Accuracy is a performance metric that measures the overall correctness of a classification model. It 
is defined as the ratio of correctly predicted instances (both positive and negative) to the total number 
of instances. 
 

                                                              𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇
                                                    (1) 

 
Precision evaluates the accuracy of the positive predictions made by a classification model. It is 

defined as the ratio of correctly predicted positive instances (TP) to the total number of instances 
predicted as positive (sum of TP and FP). 

 

                                                                          𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝑇𝑇
                                                              (2) 

 
Recall, also known as sensitivity or true positive rate, is a performance metric that measures the 

ability of a classification model to correctly identify all relevant instances of the positive class. It is the 
ratio of correctly predicted positive instances (TP) to the total number of actual positive instances (sum 
of TP and FN). 
 

                                                                            𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝑇𝑇
                                                                  (3) 

 
F1-score is the harmonic mean of precision and recall. 
 

                                                           𝐹𝐹1 − 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 =
2 ∗ 𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅
𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅

                                                 (4) 
 
MCC provides a balanced measure of the quality of a binary classification model, especially in cases 

of imbalanced class distribution. Its formula is as follows: 
 

                                             𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑇𝑇𝑇𝑇 ∗ 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝑇𝑇 ∗ 𝐹𝐹𝑇𝑇

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)
                               (5) 

3 Results 
The HRV dataset was employed to train and evaluate the predictive capabilities of the six machine 

learning algorithms for ADHD. Following z-score normalization, the transformed data was split into 
training (70%) and testing (30%) sets, with the latter reserved for the final evaluation phase. Each 
algorithm underwent training on the stratified 10-fold cross-validated training dataset, resulting in ten 
distinct models per algorithm (one for each fold). Subsequently, these models were applied to the testing 
dataset, and the reported results represent the averages across the ten models for each algorithm. The 
evaluation encompasses five metrics—accuracy, precision, recall, F1-score, and Matthews Correlation 
Coefficient (MCC). A comprehensive overview of the performance of the six classification algorithms 
is presented in Table I. 
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The experiment results in Table I demonstrate comparable performance between the LR and SVM 

methods in classifying ADHD and non-ADHD patients using the HRV dataset. Among the six models, 
the LR model achieves superior recall (0.79) and F1-score (0.71), while the SVM model excels in 
accuracy (0.72), precision (0.70), and MCC (0.44). Both LR and SVM outperform the remaining four 
models. Figure 3 displays the AUCROC and AUPRC curves for the SVM model. Overall, these 
experiments underscore the significant potential of utilizing machine learning with HRV data for 
ADHD detection. 

4 Discussions 
This study aimed to employ HRV data for the classification of ADHD and non-ADHD patients 

through machine learning algorithms. In related work, Hicks et al. utilized activity data from actigraphs 
for ADHD detection, reporting results for LR, RF, XGB, and LGBM models [17]. A comparison 
between the two sets of results reveals that HRV data yields comparable outcomes to activity data. For 
instance, the LR model achieves an F1-Score of 0.71 and an MCC of 0.42 with the HRV dataset, while 

it achieves 0.68 for F1-Score and 0.46 for MCC with the activity data. This study emphasizes HRV data 
as a valuable source for detecting ADHD using machine learning algorithms. 

A limitation of this study lies in the relatively small size of the HRV dataset, comprising only 38 
ADHD patients and 42 clinical controls. The efficacy of machine learning algorithms in automatic 

Model Accuracy Precision Recall F1-Score MCC 
LR 0.70 0.64 0.79 0.71 0.42 
RF 0.68 0.65 0.63 0.64 0.35 
XG 0.65 0.62 0.66 0.63 0.31 

LGBM 0.66 0.62 0.66 0.63 0.32 
NN 0.68 0.64 0.71 0.67 0.37 

SVM 0.72 0.70 0.69 0.69 0.44 
Table 1: Experiment Results for Predicting ADHD on the Test Dataset Averaged across 10 Folds 

 
 

 
 

Figure 3: AUCROC AND AUPRC PLOTS FOR THE SVM MODEL. 
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ADHD detection could be substantially enhanced with a larger and more diverse dataset. 
Encouragingly, the research community's collaboration and willingness to share additional HRV data 
would significantly contribute to advancing the study and improving the robustness and generalizability 
of ADHD detection models based on machine learning algorithms. 

In the realm of machine learning, the conventional threshold for feature selection based on statistical 
significance is commonly set at p < 0.05. This means that there is less than a 5% chance that the 
observed feature occurred solely by random chance. While this threshold is rooted in statistical 
practices, it is not an absolute rule. In our experimentation with the HRV dataset, we explored a more 
stringent threshold of p < 0.01, but it resulted in the selection of only 2 features, which proved 
insufficient for effective machine learning algorithms. On the other hand, a looser threshold of p < 0.1 
selected 53 features. Although the LR model exhibited slightly improved performance, the SVM's 
performance declined with these 53 features. Therefore, setting the threshold at p < 0.05 seems to be 
appropriate for this study. 

5 Conclusions 
This study explores machine learning algorithms utilizing HRV data, an underexplored domain for 

ADHD diagnosis. Six algorithms—LR, RF, XGB, LGBM, NN, and SVM—are investigated, with LR 
and SVM emerging as the top performers. Despite the promising results, the study acknowledges 
limitations in dataset size and advocates for collaborative efforts to enhance model robustness. This 
pioneering work demonstrates the potential of HRV-based machine learning for ADHD identification 
and opens avenues for future research collaborations and improvements in diagnostic models. 
 

References 
 

[1]  N. D. Volkow and J. M. Swanson, "Adult attention deficit–hyperactivity disorder," New England 
Journal of Medicine, vol. 369, no. 20, p. 1935–1944, 2013.  

[2]  E. G. Willcutt, "The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-
analytic review," Neurotherapeutics, vol. 9, no. 3, pp. 490-499, 2012.  

[3]  P. Shaw, A. Stringaris, J. Nigg and E. Leibenluft, "Emotion dysregulation in attention deficit 
hyperactivity disorder," American Journal of Psychiatry, vol. 171, no. 3, pp. 276-293, 2014.  

[4]  W. Das and S. Khanna, "A Robust Machine Learning Based Framework for the Automated 
Detection of ADHD Using Pupillometric Biomarkers and Time Series Analysis," Scientific 
Reports, vol. 11, no. 1, p. 16370, 2021.  

[5]  M. J. Brus, M. V. Solanto and J. F. Goldberg, "Adult ADHD vs. Bipolar Disorder in the DSM-5 
Era," Journal of Psychiatric Practice, vol. 20, no. 6, pp. 428-437, 2014.  

[6]  A. Koyuncu, T. Ayan, E. I. Guliyev, S. Erbilgin and E. Deveci, "ADHD and Anxiety Disorder 
Comorbidity in Children and Adults: Diagnostic and Therapeutic Challenges," Current 
Psychiatry Reports, vol. 24, pp. 129-140, 2022.  

[7]  L. G. Murillo, S. Cortese, D. Anderson, A. D. Martino and F. X. Castellanos, "Locomotor activity 
measures in the diagnosis of attention deficit hyperactivity disorder: Meta-analyses and new 
findings," Journal of Neuroscience Methods, vol. 252, pp. 14-26, 2015.  

Machine Learning-Based Automated Detection of ADHD Using Heart Rate VD Y. Ji et al.

56



[8]  N. Takahashi, K. Ishizuka and T. Inada, "Peripheral biomarkers of attention-deficit hyperactivity 
disorder: Current status and future perspective," Journal of Psychiatric Research, vol. 137, pp. 
465-470, 2021.  

[9]  E. Garcia-Ceja, M. Riegler, T. Nordgreen, P. Jakobsen, K. J. Oedegaard and J. Tørresen, "Mental 
health monitoring with multimodal sensing and machine learning: A survey," Pervasive and 
Mobile Computing, vol. 51, pp. 1-26, 2018.  

[10]  A. Ahmadi, M. Kashefi, H. Shahrokhi and M. A. Nazari, "Computer aided diagnosis system using 
deep convolutional neural networks for ADHD subtypes," Biomedical Signal Processing and 
Control, vol. 63, 2021.  

[11]  J. E. Koh, C. P. Ooi, N. S. Lim-Ashworth, J. Vicnesh, H. T. Tor, O. S. Lih, R.-S. T. MBBS, U. 
Acharya and D. S. S. Fung, "Automated classification of attention deficit hyperactivity disorder 
and conduct disorder using entropy features with ECG signals," Computers in Biology and 
Medicine, vol. 140, p. 105–120, 2022.  

[12]  G. A. Alvares, D. S. Quintana, I. B. Hickie and A. J. Guastella, "Autonomic nervous system 
dysfunction in psychiatric disorders and the impact of psychotropic medications: a systematic 
review and meta-analysis," Journal of Psychiatry and Neuroscience, vol. 41, no. 2, pp. 89-104, 
2016.  

[13]  A. Robe, A. Dobrean, I. A. Cristea and C. R. Păsărelu, "Attention-deficit/hyperactivity disorder 
and task-related heart rate variability: A systematic review and meta-analysis," Neuroscience & 
Biobehavioral Reviews, vol. 99, pp. 11-22, 2019.  

[14]  M. R. Rukmani, S. P. Seshadri, K. Thennarasu, T. R. Raju and T. N. Sathyaprabha, "Heart Rate 
Variability in Children with Attention-Deficit/Hyperactivity Disorder: A Pilot Study," Annals of 
Neurosciences, vol. 23, pp. 81-88, 2016.  

[15]  E. Kvadsheim, O. B. Fasmer, B. Osnes, J. Koenig, S. Adolfsdottir, H. Eichele, K. J. Plessen and 
L. Sørensen, "Lower Cardiac Vagal Activity Predicts Self-Reported Difficulties With Emotion 
Regulation in Adolescents With ADHD," Frontiers in Psychiatry, vol. 17, no. 11, p. 244, 2020.  

[16]  M. Christ, N. Braun, J. Neuffer and A. W. Kempa-Liehr, "Time Series FeatuRe Extraction on 
basis of Scalable Hypothesis tests (tsfresh – A Python package)," Neurocomputing, vol. 307, pp. 
72-77, 2018.  

[17]  S. A. Hicks, A. Stautland, O. B. Fasmer, W. Førland, H. L. Hammer, P. Halvorsen, K. Mjeldheim, 
K. J. Oedegaard, B. Osnes, V. E. G. Syrstad, M. A. Riegler and P. Jakobsen, "HYPERAKTIV: 
An Activity Dataset from Patients with Attention-Deficit/Hyperactivity Disorder (ADHD)," in 
Proceedings of the 12th ACM Multimedia Systems Conference, Istanbul, Turkey, 2021.  

 
 

Machine Learning-Based Automated Detection of ADHD Using Heart Rate VD Y. Ji et al.

57


	Abstract
	1 Introduction
	2 Methodology
	2.1 ADHD Detection Framework
	2.2 Dataset
	2.3 Feature Extraction and Selection
	2.4 Machine Learning Models and HyperParameters
	2.5 Performance Metrics

	3 Results
	4 Discussions
	5 Conclusions
	References

