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Abstract

Multi-objective evolutionary algorithms (MOEAs) are well known for their ability to optimise
the water distribution network design problem. However, their complex nature often restricts
their use to algorithm experts. A method is proposed for visualising algorithm performance
that will enable an engineer to compare different optimisers and select the best optimisation
approach. Results show that the convergence and preservation of diversity can be shown in a
simple visualisation that does not rely on in-depth MOEA experience.
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design.

1 Introduction

Optimisation problems abound in hydroinformatics, with water distribution network (WDN)
design being a prominent example. An approach that has been widely used to optimise such
problems is evolutionary computation. Evolutionary algorithms (EAs) are search algorithms
that optimise complex problems based on the principles of natural selection observed in the real
world. While methods for generating solutions using an EA are plentiful (see Wang et al. (2014)
for a recent review), visualisation methods associated with EAs have lagged behind. Some
work exists on population visualisation (e.g., Fu et al. (2012)), enabling the algorithm user to
present a decision maker with a set of solutions from which they can select the final design for
implementation, but there has been little work on visualising the optimisation processes used
to generate solutions. Such visualisation is an important consideration, enabling the user to
understand how effective their evolutionary search is; this paper demonstrates the use of such a
visualisation method to visualise the performance of a suite of EAs used to optimise benchmark
WDNs.

An EA is a complex system, typically highly sensitive to its parametrisation, and the level of
understanding required for a practitioner to use them to their best advantage can be said to be
responsible for a gap between academic advances and industrial adoption of methods. This work
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seeks to narrow that gap by proposing a visualisation method that can reveal how successful the
parametrisation of an EA is at solving the problem at hand. EAs comprise a set of operators,
which mimic an aspect of natural evolution. The application of all of these operators is governed
by parameters, controlling (for example) how much of a solution is mutated; a strong mutation
changing most of a solution will encourage more exhaustive search of the solution space, but
at the expense of the ability to exploit known good solutions. Parametrisations are problem
specific, and thus it is important to have a principled approach for parametrising an algorithm
for a new problem. This paper presents the advancement of a recent method (Walker and
Craven, 2018) for visualising algorithm performance to the analysis of EAs optimising the WDN
problem. The method has been applied to continuous test problems and to a basic instance of
the WDN problem. Following more extensive analyses of that experiment, this paper presents a
more thorough analysis of its use on a more complex WDN design problem - comprising a larger
number of pipes and, thus, presenting the EA with a larger search space - which it optimises
with EAs of populations of different sizes to compare the performance of the visualisations
under different conditions. The paper is structured as follows. Following background material
in Section 2, Section 3 outlines the visualisation method. Section 4 describes the experimental
setup and Section 5 describes the visualisations resulting from the simulations. Concluding
remarks are made in Section 6.

2 Background

Designing an effective WDN is a highly combinatoric problem. Hence, an exhaustive search of
the search space of possible designs is infeasible. EAs are search algorithms commonly applied
to such problems. The algorithms are based on the concepts of reproduction and survival of the
fittest found in the natural world. The work presented herein is concerned with one of the best
known varieties of EA, the genetic algorithm (GA). A GA optimises a problem by maintaining a
pool of candidate solutions to the problem; initialised at random, over some number of iterations
(called generations) the population aims to converge on a good approximation of the optimal
solution, or set of solutions. One operator is the crossover operator, which generates a new
solution from two (or more) parents, while another - the mutation operator - introduces variety
into the population by making random changes to a child. Having analysed the quality of
the child solutions generated using objective functions - mathematically defined notions of how
suitable a candidate solution is - the selection operator is used to identify the strongest solutions
and ensure that they persist as parents in the next generation.

Since the first optimisation of a WDN using a GA, the WDN design problem has been in-
vestigated in detail by the hydroinformatics community. Many problem formulations have been
considered, including single-objective (considering a single fitness function) and multi-objective
(considering a set of objective functions - either independently or using an aggregation func-
tion). Common problem objectives are the minimisation of network cost, minimisation of head
loss, and the minimisation of water age - a measure of water quality. Research on visualisation
within EC generally lags behind work on algorithm development, and within hydroinformatics
this is also the case. While there exists some work, it is usually in the area of visualising popula-
tions of solutions to aid a decision maker (e.g., Walker et al. (2013)). A simple method from the
EC visualisation literature is the GAVEL tool, which visualises the way in which evolutionary
operators are applied (Hart and Ross, 2001). A method for visualising how individual solutions
are evolved over time was applied to WDN design optimisation in Keedwell et al. (2015), illus-
trating the pipes themselves that had better converged and did not require further mutation
over those that did. This work presents a method for visualising populations of solutions to
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multiple EA runs, aiming to identify good (and bad) parametrisations of an algorithm.

3 Visualising Algorithm Performance

The visualisation consists of a circle, in which a small circle represents a solution during the
execution of an EA. Figure 1 presents a schematic of the visualisation. The grey circle rep-
resents a single solution within one of the populations of solutions at a specific point during
EA execution. Information about the population is conveyed by the distance of the circle from
the centre of the visualisation, its angle from the origin (‘O’ in the figure) and its colour. Two
important aspects of algorithm operation are the convergence of the population to the true
Pareto front, and the diversity within the population (which ensures that the search properly
explores the space of candidate solutions). Convergence is shown using hypervolume (Fleischer,
2003), which computes the volume of objective space between the population and a predefined
reference point. Specifically, the visualisation shows the difference between the hypervolume
of one generation and the next; when the search begins, this will be large as the population
searches through the space. As the algorithm converges, and exploits known strong solutions,
they hypervolume will change less. The colour of a solution shows the mean crowding distance
of solutions within the population. A low value on this measure conveys that solutions are
close together, implying the search is not properly exploring the space. The radius of the circle
from the centre of the visualisation shows an aspect of the optimiser; in this case, the type of
mutation has been conveyed (each type of mutation, as discussed later, has its own ring).

θ

r

O

Figure 1: Illustrating the placement of a single solution in the visualisation. A candidate
solution is shown by the filled grey circle. The distance r determines the distance of the
solution from the centre of the visualisation, and the angle θ governs its angle from the origin
(Walker and Craven, 2018).

4 Experiments

This section describes the experimental setup used to generate data for visualisations. First the
optimisation is defined, before the algorithms used to optimise it are introduced. To demon-
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strate the efficacy of the proposed methods, the New York Tunnels and Hanoi networks are
optimised with EAs using both 10- and 100-solution populations. A similar initial experiment
demonstrated the potential of this process wherein the execution of an EA with a 10-solution
population was demonstrated (Walker and Craven, 2018). Hydraulic information is provided by
Epanet (Rossman, 2000), and solutions are evaluated under two objective functions: network
cost (1) and head deficit (2), both to be minimised.

f1 =

K∑
k=1

(
1.1d b

k × lk
)

(1)

f2 =

P∑
n=1

((
ĥn − hn

)
> 0
)

(2)

We have that b is a network-specific constant (b = 1.24 for New York Tunnels and b = 1.5 for
Hanoi). The length and diameter of pipe k (out of a total of K pipes in the WDN) are given

by lk and dk, respectively. The target head for a node is given by ĥn, while the actual head is
denoted by hn. The problem is optimised using a GA, which uses a population of N solutions
(where either N = 10 or N = 100). At each generation of the algorithm, members of the
current parent population are combined using crossover to produce a population of candidate
child solutions. The child solutions are then mutated with the application of a simple heuristic.
To show different algorithm behaviours in the visualisation, the algorithm is run with five
different heuristics:

• Shuffle: a block of pipe diameters are selected at random and their order is randomly
permuted.

• Swap: a pair of pipes are selected and their diameters exchanged.

• Ruin and recreate: the solution is replaced with a completely new chromosome, gen-
erated at random from the available pipe diameters.

• Change pipe: the diameter of a randomly selected pipe is changed to another available
size at random.

• Change by one size: the diameter of a randomly selected pipe is increased or decreased
to the next available size.

5 Results

Each parametrisation of the algorithm was executed for 5,000 generations. After that time, the
estimated Pareto fronts for the New York Tunnel problem were as shown in Figure 2. Figure 3
presents three performance visualisations, showing different points during the execution. Each
ring of the visualisation displays a mutation heuristic (1: change by one size; 2: change pipe;
3: ruin and recreate; 4: shuffle; and 5: swap). The left-hand plot shows generation 0. The
scattering of solutions in the top section of the plot shows the solutions are randomly generated
and have not converged. By the second plot (generation 20), the solutions are progressing
into the bottom half of the plot, showing the population has begun to converge. By the final
plot, the solutions of the better performing EAs are clustered around the origin. Three of the
heuristics (ruin and recreate, shuffle and swap) have not converged; this behaviour is seen in
Figure 3, wherein only the ‘change by one size’ and ‘change pipe’ heuristics have converged to
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the knee of the approximated Pareto front, the region of the front representing the best known
trade-off between the two objectives. Colour between these three plots shows the reducing
crowding distance (moving from red/green to blue), indicating diversity is reducing as the
optimiser converges toward the Pareto front. Using such schematics allows the user to verify
the optimiser is converging and that diversity is not reducing too quickly.

(a) New York Tunnels (b) Hanoi

Figure 2: Estimated Pareto fronts for New York Tunnels produced by the optimisation algo-
rithms. The left-hand version shows the final Pareto front approximation obtained over the
5,000 generations the algorithm executed for, while the right-hand panel shows the final search
populations. Colour indicates the type of mutation used (cyan - change by one size; green -
change pipe; red - ruin and recreate; magenta - shuffle; and black - swap).

(a) (b) (c)

Figure 3: Visualisations of algorithm performance during the execution of the five EAs (using
a population of 10 solutions) on the New York Tunnels problem. Colour indicates crowding
distance - blue solutions have a low crowding distance, and red solutions a high distance.

Figure 4 shows similar results for the Hanoi problem. As above, this problem features a
larger number of pipes for which sizes must be chosen from six available diameters. Here,
similar behaviour is shown to that of Figure 3, in that the ‘change by one size’ and ‘change
pipe’ heuristics have converged. In this example, the ‘shuffle’ heuristic has also resulted in
convergence, while ‘ruin and recreate’ and ‘swap’ have still not converged.

Examples so far have focussed on EAs using small populations, to aid the description of
the visualisation. Often, larger populations are necessary to achieve the full benefit of evolving
solutions and increase diversity, so a demonstration of the method with such populations is also
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(a) (b) (c)

Figure 4: Visualisations of algorithm performance during the execution of the five EAs on the
Hanoi problem. Colour indicates crowding distance - blue solutions have low crowding distance,
and red solutions high distance.

called for. Figure 5 shows estimated Pareto fronts for the same five heuristics on New York
Tunnels (left) and Hanoi (right). Figure 6 shows corresponding performance visualisations for
those EAs. As can be seen, the behaviour of the heuristics is generally consistent with that
seen in the 10-solution population, with the ‘change by one size’ and ‘change pipe’ heuristics
generally showing more consistently good performance than the other three heuristics. That
said, due to the number of solutions in the population, it is now difficult to observe distinct
solutions. To this end, the visualisation method was modified to improve this cluttered view
of the populations. Rather than presenting the individual solutions, summary statistics on the
convergence and diversity properties of the population are shown instead. A line shows the
region between the maximum and minimum hypervolume shown by any individual within the
population, and the solution with the median hypervolume is marked by a circle. Colour still
indicates diversity, this time showing the mean diversity score (in these experiments, mean
crowding distance is shown).

(a) New York Tunnels (b) Hanoi

Figure 5: Final Pareto fronts for New York Tunnels (left) and Hanoi (right), produced using
EAs with a population of 100 solutions. As can be seen, the coverage of the Pareto front is
better in both cases.

Figure 7 shows the summary statistic version of the Figure 3 visualisations. Rather than a
distinct point marking each individual solution, the range of convergence values (hypervolume
scores) is shown with an arc, and can be interpreted in the same way as a box and whisker
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(a) New York Tunnels (b) Hanoi

Figure 6: A visualisation of algorithm performance for the final generation of (a) the New
York Tunnels and (b) Hanoi optimisations. Individual solution clarity is reduced due to the
increased number of solutions. (Note: the EA executed for fewer generations to take account
of the increased number of solutions in the population.)

plot would be. Though offering a simpler view, in this small-population example there is not
much extra information to be gleaned in terms of convergence over that available in Figure 3.
Interestingly, those solutions with a high crowding distance in Figure 3 appear to be outliers,
as the mean crowding distance is uniformly low. This indicates that the EA in use is perhaps
not searching the space fully, and is unsurprising since the EA in use does not make use of
diversity-preserving mechanisms.

The summary statistics plots shown in Figure 8 illustrate algorithm performance for an EA
optimising New York Tunnels with a 100-solution population. Unlike a comparison between
Figures 3 and 6, comparing these plots with those in Figure 7 shows that there is no extra
complexity introduced into the visualisation by increasing the population size. As has been
seen before, ‘change by one size’ and ‘change pipe’ are the winning heuristics, on this occasion
by a considerable margin. The ‘swap’ heuristic in particular has converged very poorly on this
run. It is important to note that the algorithm allows “backward moves”, that is, solutions
can be perturbed to a position poorer than their starting point; such a solution would not be
placed into the archive, but might persist in the population, as is the case here. The worst
solution in the ‘swap’ heuristic ring is worse by the end of the optimisation than it is at the
beginning. Figure 9 shows algorithm performance for the 100-solution population EA optimising
the Hanoi network. Again, convergence is clearly visible for ‘change by one pipe’ and ‘change
pipe’, with the usual heuristics lagging behind. As with the previous two examples, diversity
in the population is low. As can be seen from Figure 5, this has not prevented the solutions
from spreading out along the Pareto front.

6 Conclusion

This work has demonstrated a visualisation tool for understanding the behaviour of MOEAs
tasked with optimising the WDN design problem. Results are shown that indicate the promise
of this method; exposing aspects of the algorithm’s operation visually enables a water engi-
neer to use the algorithm without in-depth knowledge of MOEAs, and this work is a first step
towards such a framework. The initial version of the visualisation tool, showing distinct solu-
tions, is able to convey information about the algorithm’s operation; however, the visualisation
becomes cluttered when population size increases. Rather than visualising individual solutions
that cannot be seen within the visualisation, summary statistics are shown to offer similar in-

2256



Visualising EA Operation for WDN Problems Walker and Craven

(a) (b) (c)

Figure 7: Visualisations of algorithm performance for New York Tunnels, for the 10-solution
population EA (corresponding to the results shown in Figure 3), showing summary population
statistics.

(a) (b) (c)

Figure 8: Visualisations of algorithm performance for New York Tunnels, for the 100-solution
population EA showing summary population statistics rather than individual solutions.

formation in a less cluttered fashion. Further ongoing experiments will demonstrate a wider
range of algorithm performance measures that will cause the algorithms to behave in different
ways. Specific attention is being given to highlighting multi-objective aspects of the EAs, such
as highlighting non-dominated population members. Current work is also examining methods
for incorporating decision space into the visualisation, rather than just considering objective
space as is the case herein. A promising avenue of investigation in this direction is examining
the evaluation of decision space diversity.

7 Acknowledgements

David Walker was supported by EPSRC grant EP/P009441/.

References

M. Fleischer. The Measure of Pareto Optima. Applications to Multi-objective Metaheuristics.
In Evolutionary Multi-Criterion Optimization. Second International Conference, EMO 2003,

2257



Visualising EA Operation for WDN Problems Walker and Craven

(a) (b) (c)

Figure 9: Visualisations of algorithm performance for Hanoi, for the 100-solution population
EA, showing population statistics.

pages 519–533. Springer, 2003.

G. Fu, Z. Kapelan, J. R. Kaspryzyk, and P. Reed. Optimal Design of Water Distribution Sys-
tems Using Many-objective Visual Analytics. J. Water Resources Planning and Management,
139(6):624–633, 2012.

E. Hart and P. Ross. GAVEL - a new tool for genetic algorithm visualization. IEEE Transactions
on Evolutionary Computation, 5(4):335–348, Aug 2001.
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