
EPiC Series in Computer Science

Volume 33, 2015, Pages 17–30

ARQNL 2014. Automated Reason-
ing in Quantified Non-Classical Logics

A Logic for Verifying Metric Temporal Properties in

Distributed Hybrid Systems

Ping Hou1 and Yifei Chen2∗

1 Fondazione Bruno Kessler (FBK-irst), Trento, Italy
2 School of Information Science, Nanjing Audit University, Nanjing, China

phou@cs.cmu.edu, yifeichen91@nau.edu.cn

Abstract

We introduce a logic for specifying and verifying metric temporal properties of distributed hybrid

systems that combines quantified differential dynamic logic (QdL) for reasoning about the possible

behavior of distributed hybrid systems with metric temporal logic (MTL) for reasoning about the

metric temporal behavior during their operation. For our combined logic, we generalize the semantics

of dynamic modalities to refer to hybrid traces instead of final states. Further, we prove that this gives

a conservative extension of QdL for distributed hybrid systems. On this basis, we provide a modular

verification calculus that reduces correctness of metric temporal behavior of distributed hybrid systems

to generic temporal reasoning and then non-temporal reasoning, and prove that we obtain a complete

axiomatization relative to the non-temporal base logic QdL.

1 Introduction

Functional specifications for distributed hybrid systems [6, 17, 22, 23] with discrete, con-
tinuous, structural, and dimension-changing dynamics usually involve a number of critical
properties such as timing requirements, stability and bounded response. Metric Temporal
Logic (MTL) [16] is a popular formalism for expressing such properties. The problem of ver-
ifying MTL specifications is undecidable for hybrid systems and distributed hybrid systems.
Consequently, the bounded-time verification or falsification of such properties has been stud-
ied [10, 11, 18, 20, 27]. In addition to having successful uses in simulation-based methods,
metric temporal logic has been used in deductive approaches to prove validity of formulas in
calculi [12, 19]. Valid MTL formulas, however, cannot generally characterize the operations of
a specific system.

Very recently, a dynamic logic, called quantified differential dynamic logic (QdL) has been
introduced as a successful tool for deductively verifying distributed hybrid systems [22, 23].
QdL can analyze the behavior of actual distributed hybrid system models, which are speci-
fied operationally. Yet, operational distributed hybrid system models are internalized within

∗The work of this author is supported by the National Natural Science Foundation of China (No.61202135)
and the Natural Science Foundation of Jiangsu Province, China (No.BK2012472).

C.Benzmüller and J.Otten (eds.), ARQNL 2014 (EPiC Series in Computer Science, vol. 33), pp. 17–30 17

QdMTL: A Logic for Verifying Distributed Hybrid Systems P. Hou and Y. Chen

QdL formulas. However, QdL only considers the behavior of distributed hybrid systems at
final states, which is insufficient for verifying properties that hold within certain time bounds,
throughout the execution of the system.

We close this gap of expressivity by combining QdL with metric temporal logic. In this paper,
we introduce a logic, called quantified differential metric temporal dynamic logic (QdMTL),
which provides modalities for quantifying over traces of distributed hybrid systems based on
QdL. We equip QdMTL with metric temporal operators to state what is true all along a time
interval of a trace or at some time point during a trace. In this paper, we modify the semantics
of the dynamic modality [α] to refer to all traces of α instead of all final states reachable with α
(similarly for 〈α〉). For instance, the formula [α]2I φ expresses that φ is true at each state within
the time interval I along all traces of the distributed hybrid system α. With this, QdMTL can
also be used to verify temporal statements about the behavior of α at intermediate states during
system runs. As in our non-temporal dynamic logic QdL, we use quantified hybrid programs as
an operational model for distributed hybrid systems, since they admit a uniform compositional
treatment of interacting discrete transitions, continuous evolutions, and structural/dimension
changes in logic.

As a semantical foundation for combined quantified temporal dynamic formulas, we intro-
duce a hybrid trace semantics for QdMTL. We prove that QdMTL is a conservative extension
of QdL: for non-temporal specifications, trace semantics is equivalent to the non-temporal
transition semantics of QdL [22, 23].

As a means for verification, we introduce a sequent calculus for QdMTL that successively
reduces temporal statements about traces of quantified hybrid programs to non-temporal QdL
formulas. In this way, we make the intuition formally precise that metric temporal properties
can be checked by augmenting proofs with appropriate assertions about intermediate states.
Like in [22, 23], our calculus works compositionally. It decomposes correctness statements
about quantified hybrid programs structurally into corresponding statements about its parts
by symbolic transformation.

Our approach combines the advantages of QdL in reasoning about the behaviour of opera-
tional distributed hybrid system models with those of metric temporal logic to verify temporal
statements about traces. Our first contribution is the logic QdMTL, which provides a coher-
ent foundation for reasoning about the metric temporal behaviour of operational models of
distributed hybrid systems. The main contribution is our calculus for deductively verifying
temporal statements about distributed hybrid systems, which is a complete axiomatization
relative to non-temporal QdL.

2 Related Work

Multi-party distributed control has been suggested for car control [15] and air traffic control [7].
Due to limits in verification technology, no formal analysis of metric temporal statements about
the distributed hybrid dynamics has been possible for these systems yet. Analysis results include
discrete message handling [15] or collision avoidance for two participants [7].

The importance of understanding dynamic/reconfigurable distributed hybrid systems was
recognized in modeling languages SHIFT [6] and R-Charon [17]. They focused on simulation/-
compilation [6] or the development of a semantics [17], so that no verification is possible yet.

A variety of simulation-based approaches, like [10, 11, 18, 20, 27], have been proposed for
the verification or falsification of metric temporal logic properties in hybrid systems, which,
however, cannot be used to verify temporal properties in distributed hybrid systems.

18

QdMTL: A Logic for Verifying Distributed Hybrid Systems P. Hou and Y. Chen

Our approach is completely different. It is based on first-order structures and dynamic
logic. We focus on developing a logic that supports metric temporal, generic temporal, and
non-temporal statements about distributed hybrid dynamics and is amenable to automated
theorem proving in the logic itself.

Based on [25], Beckert and Schlager [3] added separate trace modalities to dynamic logic
and presented a relatively complete calculus. Their approach only handles discrete state spaces
and conventional temporal modalities. In contrast, QdMTL works for hybrid programs with
continuous and structural/dimensional dynamics and metric temporal quantifiers.

Davoren and Nerode [5] extended the propositional modal µ-calculus with a semantics in
hybrid systems and examine topological aspects. In [4], Davoren et al. gave a semantics in terms
of general flow systems for a generalisation of CTL∗ [9]. In both cases, the authors of [5] and [4]
provided Hilbert-style calculi to prove formulas that are valid for all systems simultaneously
using abstract actions.

The strength of our logic primarily is that it is a first-order quantified dynamic logic: it
handles actual quantified hybrid programs rather than only abstract actions of unknown ef-
fect. Our calculus directly supports verification of quantified hybrid programs with first-order
definable flows and structures.

3 Syntax of Quantified Differential Metric Temporal Dy-
namic Logic

As a formal logic for verifying metric temporal specifications of distributed hybrid systems,
we introduce quantified differential metric temporal dynamic logic (QdMTL). QdMTL extends
dynamic logic for reasoning about system runs [13] with many-sorted first-order logic for rea-
soning about all (∀i :A φ) or some (∃i :A φ) objects of a sort A, e.g., the sort of all aircraft,
and three other concepts:

Quantified hybrid programs. The behavior of distributed hybrid systems can be described by
quantified hybrid programs [22, 23], which generalize regular programs from dynamic logic [13]
to distributed hybrid changes. The distinguishing feature of quantified hybrid programs is
that they provide uniform discrete transitions, continuous evolutions, and structural/dimen-
sion changes along quantified assignments and quantified differential equations, which can be
combined by regular control operations.

Modal operators. Modalities of dynamic logic express statements about all possible behavior
([α]π) of a system α, or about the existence of a trace (〈α〉π), satisfying condition π. Unlike
in standard dynamic logic, α is a model of a distributed hybrid system. We use quantified
hybrid programs to describe α as in [22, 23]. Yet, unlike in standard dynamic logic [13] or
quantified differential dynamic logic (QdL) [22, 23], π is a trace formula in QdMTL, and π can
refer to every state that occur during an arbitrary time interval of a trace using metric temporal
operators.

Metric temporal operators. For QdMTL, the metric temporal trace formula 2I φ expresses that
the formula φ holds all along the time interval I of a trace selected by [α] or 〈α〉. For instance,
the state formula 〈α〉2I φ says that the state formula φ holds at every state within the time
interval I of at least one trace of α. Dually, the trace formula 3I φ expresses that φ holds at
some point during the time interval I of such a trace . It can occur in a state formula 〈α〉3I φ
to express that there is such a state in the time interval I of some trace of α, or as [α]3I φ to
say that along each trace there is a state within the time interval I satisfying φ. In this paper,

19

QdMTL: A Logic for Verifying Distributed Hybrid Systems P. Hou and Y. Chen

the primary focus of attention is on homogeneous combination of path and trace quantifiers
like [α]2I φ or 〈α〉3I φ.

3.1 Quantified Hybrid Programs

We let R (resp. R≥0, N) denote the set of reals (resp. non-negative reals, non-negative integers).
An interval of R (resp. R≥0, N) is a convex subset of R (resp. R≥0, N). QdMTL supports
a (finite) number of object sorts, e.g., the sort of all aircraft, or the sort of all cars. For
continuous quantities of distributed hybrid systems like positions or velocities, we add the sort
R for real numbers. Terms of QdMTL are built from a set of (sorted) function/variable symbols
as in many-sorted first-order logic. For representing appearance and disappearance of objects
while running quantified hybrid programs, we use an existence function symbol E(·) that has
value E(o) = 1 if object o exists, and has value E(o) = 0 when object o disappears or has not
been created yet. We use 0, 1, +, −, ·, /with the usual notation and fixed semantics for real
arithmetic. For n ≥ 0 we abbreviate f(s1, . . . , sn) by f(s) using vectorial notation and we use
s = t for element-wise equality.

As a system model for distributed hybrid systems, QdMTL uses quantified hybrid programs
(QHP) [22, 23]. The quantified hybrid programs occurring in dynamic modalities of QdMTL
are regular programs from dynamic logic [13] to which quantified assignments and quantified
differential equation systems for distributed hybrid dynamics are added. QHPs are defined by
the following grammar (α, β are QHPs, θ a term, i a variable of sort A, f is a function symbol,
s is a vector of terms with sorts compatible to f , and χ is a formula of first-order logic):

α, β ::= ∀i :A f(s) := θ | ∀i :A f(s)′ = θ & χ | ?χ | α ∪ β | α;β | α∗

The effect of quantified assignment ∀i : A f(s) := θ is an instantaneous discrete jump
assigning θ to f(s) simultaneously for all objects i of sort A. The quantified hybrid program
∀i :C a(i) := a(i) + 1, for example, expresses that all cars i of sort C simultaneously increase
their acceleration a(i). The effect of quantified differential equation ∀i :A f(s)′ = θ & χ is a
continuous evolution where, for all objects i of sort A, all differential equations f(s)′ = θ hold
and formula χ holds throughout the evolution (the state remains in the region described by
χ). The dynamics of QHPs changes the interpretation of terms over time: f(s)′ is intended
to denote the derivative of the interpretation of the term f(s) over time during continuous
evolution, not the derivative of f(s) by its argument s. For f(s)′ to be defined, we assume
f is an R-valued function symbol. For simplicity, we assume that f does not occur in s. In
most quantified assignments/differential equations s is just i. For instance, the following QHP
expresses that all cars i of sort C drive by ∀i : C x(i)′′ = a(i) such that their position x(i)
changes continuously according to their respective acceleration a(i). Time itself is implicit. If
a clock variable c is needed in a QHP, it can be axiomatized by c′ = 1, which is equivalent to
∀i :A c′ = 1 where i does not occur in c. For such vacuous quantification (i does not occur
anywhere), we may omit ∀i :A from assignments and differential equations.

The effect of test ?χ is a skip (i.e., no change) if formula χ is true in the current state and
abort (blocking the system run by a failed assertion), otherwise. Nondeterministic choice α∪β is
for alternatives in the behavior of the distributed hybrid system. In the sequential composition
α;β, QHP β starts after α finishes (β never starts if α continues indefinitely). Nondeterministic
repetition α∗ repeats α an arbitrary number of times, possibly zero times.

Structural dynamics of distributed hybrid systems corresponds to quantified assignments
to function terms and we model the appearance of new participants in the distributed hybrid
system, e.g., new aircraft appearing into the local flight scenario, by a program n := new A
(see [22, 23] for details).

20

QdMTL: A Logic for Verifying Distributed Hybrid Systems P. Hou and Y. Chen

3.2 State and Trace Formulas

The formulas of QdMTL are defined similarly to first-order dynamic logic plus many-sorted
first-order logic. However, the modalities [α] and 〈α〉 accept trace formulas that refer to the
temporal behavior of all states within a time interval I along a trace. Inspired by CTL and
CTL∗ [8, 9], we distinguish between state formulas, which are true or false in states, and trace
formulas, which are true or false for system traces.

The state formulas of QdMTL are defined by the following grammar (φ, ψ are state formulas,
π is a trace formula, θ1, θ2 are terms of the same sort, i is a variable of sort A, and α is a QHP):

φ, ψ ::= θ1 = θ2 | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | ∀i :A φ | ∃i :A φ | [α]π | 〈α〉π

We use standard abbreviations to define ≤, >,<,∨,→. Sorts A 6= R have no ordering and only
θ1 = θ2 is allowed. For sort R, we abbreviate ∀x :R φ by ∀xφ.

The trace formulas of QdMTL are defined by the following grammar (π is a trace formula,
φ is a state formula, and I is an interval of R≥0):

π ::= φ | 2I φ | 3I φ

We omit the time constraint on temporal operators 2 and 3 when [0,+∞) is assumed. Thus
the metric temporal operators 2 and 3 coincide with the conventional always and eventually
temporal operators of CTL.

Formulas with only conventional temporal operators 2 and 3, i.e., metric temporal opera-
tors 2[0,+∞) and 3[0,+∞), are called non-metric temporal formulas. Formulas without metric
temporal operators 2I and 3I are called non-temporal QdL formulas [22, 23]. Unlike in CTL,
state formulas are true on a trace if they hold for the last state of a trace, not for the first.
Thus, [α]φ expresses that φ is true at the end of each trace of α. In contrast, [α]2I φ ex-
presses that φ is true all along all states within I of every trace of α. This combination gives a
smooth embedding of non-temporal QdL into QdMTL and makes it possible to define a com-
positional calculus. Like CTL, QdMTL allows nesting with a branching time semantics [8],
e.g., [α]2[0,4) ((∀i : C x(i) ≥ 5) → 〈β〉3(2,3] (∀i : C x(i) ≤ 1)). In the following, all formu-
las and terms have to be well-typed. For short notation, we allow conditional terms of the
form if φ then θ1 else θ2 fi (where θ1 and θ2 have the same sort). This term evaluates to θ1 if
the formula φ is true and to θ2 otherwise. We consider formulas with conditional terms as
abbreviations, e.g., ψ(if φ then θ1 else θ2) for (φ→ ψ(θ1)) ∧ (¬φ→ ψ(θ2)).

Example 1. Let C be the sort of all cars. By x(i), we denote the position of car i, by v(i) its
velocity and by a(i) its acceleration. Then the QdMTL formula

(∀i :C x(i) ≥ 0)→ [∀i :C x(i)′ = v(i), v(i)′ = a(i) & v(i) ≥ 0]2[0,2] (∀i :C x(i) ≥ 0)

says that, if all cars start at a point to the right of the origin and we only allow them to evolve
as long as all of them have nonnegative velocity, then they will always stay up to the right of
the origin within 2 time units. In this case, the QHP just consists of a quantified differential
equation expressing that the position x(i) of car i evolves over time according to the velocity
v(i), which evolves according to its acceleration a(i). The constraint v(i) ≥ 0 expresses that
the cars never move backwards, which otherwise would happen eventually in the case of braking
a(i) < 0. This formula is indeed valid, and we would be able to use the techniques developed in
this paper to prove it.

21

QdMTL: A Logic for Verifying Distributed Hybrid Systems P. Hou and Y. Chen

4 Semantics of Quantified Differential Metric Temporal
Dynamic Logic

In standard dynamic logic [13] and the logic QdL [22, 23], modalities only refer to the final
states of system runs and the semantics is a reachability relation on states: State τ is reachable
from state σ using α if there is a run of α which terminates in τ when started in σ. For QdMTL,
however, formulas can refer to intermediate states in any time interval along runs as well. Thus,
the behavior of distributed hybrid systems is modeled in terms of hybrid traces. Hybrid traces
describe the evolution of system variables in every point of time. Such evolution is allowed to
have discontinuous points corresponding to changes caused by discrete jumps in state space and
continuous phases governed by different differential equations with different slopes.

4.1 Trace Semantics of Quantified Hybrid Programs

A state σ associates an infinite set σ(A) of objects with each sort A, and it associates a func-
tion σ(f) of appropriate type with each function symbol f , including E(·). For simplicity, σ
also associates a value σ(i) of appropriate type with each variable i. The interpretation of
0, 1,+,−, ·, / is that of real arithmetic. We assume constant domain for each sort A: all states
σ, τ share the same infinite domains σ(A) = τ(A). Sorts A 6= C are disjoint: σ(A) ∩ σ(C) = ∅.
The set of all states is denoted by S. The state σei agrees with σ except for the interpretation of
variable i, which is changed to e. In addition, we distinguish a state Λ to denote the failure of a
system run when it is aborted due to a test ?χ that yields false. In particular, Λ can only occur
at the end of an aborted system run and marks that there is no further extension. Given an
interval I of R and a real number t, we write I+ t and I− t for the intervals {t′ ∈ R | t′− t ∈ I}
and {t′ ∈ R | t′ + t ∈ I}, respectively, and we denote with le(I) and ue(I) the lower and upper
endpoints of I, respectively. Given an interval I = [t, t′] (resp. I = (t, t′], I = [t, t′), I = (t, t′),
I = [t,+∞), I = (t,+∞)) of R and a variable x of sort R, we write x ∈ I for the formula
x ≥ t ∧ x ≤ t′ (resp. x > t ∧ x ≤ t′, x ≥ t ∧ x < t′, x > t ∧ x < t′, x ≥ t, x > t).

Definition 2 (Hybrid Trace). A hybrid trace is either an infinite sequence 〈ν, I〉 = (〈ν0, I0〉,
〈ν1, I1〉, 〈ν2, I2〉, . . .) such that

• νi : [0, ri]→ S is a function with duration ri ∈ R≥0 for all i ∈ N,

• Ii is a closed interval of R≥0 (Ii = [t, t′] for some t, t′ ∈ R≥0 with t ≤ t′) for all i ∈ N,

• le(Ii) =
i−1∑
k=0

rk for all i > 0 and ue(Ii) =
i∑

k=0

rk for all i ∈ N,

• ue(Ii) = le(Ii+1) for all i ∈ N,

• the intervals cover R≥0 : every non-negative real belongs to some interval Ii (thus le(I0) =
0),

or a finite sequence 〈ν, I〉 = (〈ν0, I0〉, 〈ν1, I1〉, . . . , 〈νn, In〉) such that

• νi : [0, ri]→ S is a function with duration ri ∈ R≥0 for all 0 ≤ i ≤ n,

• Ii is an interval of R≥0 for all 0 ≤ i ≤ n,

• for all 0 ≤ i < n, Ii = [t, t′] for some t, t′ ∈ R≥0 with t ≤ t′,

• le(Ii) =
i−1∑
k=0

rk for all 0 < i ≤ n and ue(Ii) =
i∑

k=0

rk for all 0 ≤ i < n,

• ue(Ii) = le(Ii+1) for all 0 ≤ i < n,

22

QdMTL: A Logic for Verifying Distributed Hybrid Systems P. Hou and Y. Chen

• the intervals cover R≥0 : every non-negative real belongs to some interval Ii (thus le(I0) = 0
and In = [le(In),+∞)).

Further, for a state σ ∈ S, σ̂ : 0 7→ σ is the point flow at σ with duration 0. A hybrid trace
terminates if it is a finite sequence (〈ν0, I0〉, 〈ν1, I1〉, . . . , 〈νn, In〉) and νn(rn) 6= Λ. In that case,

the last state νn(rn) is denoted by last 〈ν, I〉 and the total duration
n∑
i=0

ri is denoted by D(〈ν, I〉).

The first state ν0(0) is denoted by first 〈ν, I〉. For a hybrid trace 〈ν, I〉 and a time point t ∈ R≥0,
the set of states of 〈ν, I〉 at t, denoted by 〈ν, I〉(t), is

{νk(ζ) | t ∈ Ik and le(Ik) + ζ = t} if 〈ν, I〉 is a finite hybrid trace (〈ν0, I0〉,

〈ν1, I1〉, . . . , 〈νn, In〉) and t ≤ D(〈ν, I〉)
{last 〈ν, I〉} if 〈ν, I〉 is a finite hybrid trace (〈ν0, I0〉,

〈ν1, I1〉, . . . , 〈νn, In〉) and t > D(〈ν, I〉)
{νk(ζ) | t ∈ Ik and le(Ik) + ζ = t} if 〈ν, I〉 is an infinite hybrid trace

Unlike in [1, 14], the definition of traces also admits finite traces of bounded duration, which
is necessary for compositionality of traces in α;β. The semantics of quantified hybrid programs
α as the set µ(α) of its possible traces depends on valuations σJ·K of formulas and terms at
intermediate states σ. The valuation of formulas will be defined in Definition 4. Especially,
we use σei J·K to denote the valuations of terms and formulas in state σei , i.e., in state σ with i
interpreted as e.

Definition 3 (Trace Semantics of Quantified Hybrid Programs). The trace semantics, µ(α),
of a quantified hybrid program α, is the set of all its possible hybrid traces and is defined
inductively as follows:

1. µ(∀i :A f(s) := θ) = {(〈σ̂, [0, 0]〉, 〈τ̂ , [0,+∞)〉) : σ ∈ S and state τ is identical to σ except
that at each position o of f : if σei JsK = o for some object e ∈ σ(A), then τ(f)(σei JsK) =
σei JθK.}

2. µ(∀i :A f(s)′ = θ & χ) = {(〈ϕ, [0,+∞)〉) : 0 ≤ r ∈ R and ϕ : [0, r] → S is a function
satisfying the following conditions. At each time t ∈ [0, r], state ϕ(t) is identical to ϕ(0),
except that at each position o of f : if σei JsK = o for some object e ∈ σ(A), then, at each
time ζ ∈ [0, r]:

• The differential equations hold and derivatives exist (trivial for r = 0) :

d(ϕ(t)
e
i Jf(s)K)
dt

(ζ) = (ϕ(ζ)
e
i JθK)

• The evolution domains is respected: ϕ(ζ)
e
i JχK = true.}

3. µ(?χ) = {(〈σ̂, [0,+∞)〉) : σJχK = true} ∪ {(〈σ̂, [0, 0]〉, 〈Λ̂, [0,+∞)〉) : σJχK = false}

4. µ(α ∪ β) = µ(α) ∪ µ(β)

5. µ(α;β) = {〈ν, I〉 ◦ 〈ς, J〉 : 〈ν, I〉 ∈ µ(α), 〈ς, J〉 ∈ µ(β) when 〈ν, I〉 ◦ 〈ς, J〉 is

23

QdMTL: A Logic for Verifying Distributed Hybrid Systems P. Hou and Y. Chen

defined}; the composition of 〈ν, I〉 and 〈ς, J〉, denoted by 〈ν, I〉 ◦ 〈ς, J〉, is

(〈ν0, I0〉, . . . , 〈νn, [le(In),D(〈ν, I〉)]〉, if 〈ν, I〉 = (〈ν0, I0〉, . . . , 〈νn, In〉)
〈ς0, J0 +D(〈ν, I〉)〉, . . . , 〈ςm, Jm +D(〈ν, I〉)〉) terminates at 〈νn, In〉, 〈ς, J〉 =

(〈ς0, J0〉, . . . , 〈ςm, Jm〉), and
last 〈ν, I〉 = first 〈ς, J〉

(〈ν0, I0〉, . . . , 〈νn, [le(In),D(〈ν, I〉)]〉, if 〈ν, I〉 = (〈ν0, I0〉, . . . , 〈νn, In〉)
〈ς0, J0 +D(〈ν, I〉)〉, 〈ς1, J1 +D(〈ν, I〉)〉, . . .) terminates at 〈νn, In〉, 〈ς, J〉 =

(〈ς0, J0〉, 〈ς1, J1〉, . . .), and
last 〈ν, I〉 = first 〈ς, J〉

〈ν, I〉 if 〈ν, I〉 does not terminate

not defined otherwise

6. µ(α∗) =
⋃
n∈N µ(αn), where αn+1 := (αn;α) for n ≥ 1, as well as α1 := α and α0 :=

(?true).

4.2 Valuation of State and Trace Formulas

Definition 4 (Valuation of Formulas). The valuation of state and trace formulas is defined
respectively. For state formulas, the valuation σJ·K with respect to state σ is defined as follows:

1. σJθ1 = θ2K = true iff σJθ1K = σJθ2K; accordingly for ≥.

2. σJφ ∧ ψK = true iff σJφK = true and σJψK = true; accordingly for ¬.

3. σJ∀i :A φK = true iff σei JφK = true for all objects e ∈ σ(A).

4. σJ∃i :A φK = true iff σei JφK = true for some object e ∈ σ(A).

5. σJ[α]πK = true iff for each hybrid trace 〈ν, I〉 ∈ µ(α) that starts in first 〈ν, I〉 = σ, if
〈ν, I〉JπK is defined, then 〈ν, I〉JπK = true.

6. σJ〈α〉πK = true iff there is a hybrid trace 〈ν, I〉 ∈ µ(α) starting in first 〈ν, I〉 = σ such that
〈ν, I〉JπK is defined and 〈ν, I〉JπK = true.

For trace formulas, the valuation 〈ν, I〉J·K with respect to hybrid trace 〈ν, I〉 is defined inductively
as follows:

1. If φ is a state formula, then 〈ν, I〉JφK = last 〈ν, I〉JφK if 〈ν, I〉 terminates, whereas 〈ν, I〉JφK
is not defined if 〈ν, I〉 does not terminate.

2. 〈ν, I〉J2I φK = true iff σJφK = true for every time point t ∈ I and every state σ ∈ 〈ν, I〉(t)
with σ 6= Λ.

3. 〈ν, I〉J3I φK = true iff σJφK = true for some time point t ∈ I and some state σ ∈ 〈ν, I〉(t)
with σ 6= Λ.

As usual, a (state) formula is valid if it is true in all states. Further for (state) formula φ
and state σ we write σ |= φ iff σJφK = true. We write σ 6|= φ iff σJφK = false. Likewise, for
trace formula π and hybrid trace 〈ν, I〉 we write 〈ν, I〉 |= π iff 〈ν, I〉JπK = true and 〈ν, I〉 6|= π
iff 〈ν, I〉JπK = false. In particular, we only write 〈ν, I〉 |= π or 〈ν, I〉 6|= π if 〈ν, I〉JπK is defined,
which it is not the case if π is a state formula and 〈ν, I〉 does not terminate.

24

QdMTL: A Logic for Verifying Distributed Hybrid Systems P. Hou and Y. Chen

4.3 Conservative Temporal Extension

The following result shows that the extension of QdMTL by metric temporal operators does
not change the meaning of non-temporal formulas. The trace semantics given in Definition 4
is equivalent to the final state reachability relation semantics [22, 23] for the sublogic QdL of
QdMTL.

Proposition 5. The logic QdMTL is a conservative extension of non-temporal QdL, i.e., the
set of valid QdL formulas is the same with respect to transition reachability semantics of QdL
as with respect to the trace semantics of QdMTL.

5 Proof Calculus for Metric Temporal Properties

In this section, we introduce a sequent calculus for verifying metric temporal specifications of
distributed hybrid systems in QdMTL. With the basic idea being to perform a symbolic decom-
position, the calculus transforms quantified hybrid programs successively into simpler logical
formulas describing their effects. Statements about the metric temporal behavior of a quantified
hybrid program are first converted to equivalent non-metric temporal statements without quan-
titative time constraints and then reduced to corresponding non-temporal statements about the
intermediate states.

5.1 Proof Rules

In Fig. 1, we present a proof calculus for QdMTL that inherits the proof rules of QdL from [22,
23] and adds new proof rules for metric temporal modalities. We use the sequent notation
informally for a systematic proof structure. A sequent is of the form Γ → ∆, where the
antecedent Γ and succedent ∆ are finite sets of formulas. The semantics of Γ → ∆ is that of
the formula

∧
φ∈Γ φ →

∨
ψ∈∆ ψ and will be treated as an abbreviation. As usual in sequent

calculus, the proof rules are applied backwards from the conclusion (goal below horizontal bar)
to the premises (subgoals above bar).

Definition 6. Let α be a quantified hybrid program and c a clock variable, i,e., a variable of
sort R changing with constant slope 1 (along quantified differential equation c′ = 1, which is
equivalent to ∀i :A c′ = 1 where i does not occur in c). Then α ⊕ c′ = 1 is defined inductively
as follows:

1. ∀i :A f(s) := θ ⊕ c′ = 1 := ∀i :A f(s) := θ

2. ∀i :A f(s)′ = θ & χ⊕ c′ = 1 := ∀i :A f(s)′ = θ, c′ = 1 & χ

3. ?χ⊕ c′ = 1 := ?χ

4. α ∪ β ⊕ c′ = 1 := α⊕ c′ = 1 ∪ β ⊕ c′ = 1

5. α;β ⊕ c′ = 1 := α⊕ c′ = 1; β ⊕ c′ = 1

6. α∗ ⊕ c′ = 1 := (α⊕ c′ = 1)
∗
.

Inherited Non-temporal Rules. The QdMTL calculus inherits the (non-temporal) QdL proof
rules. For propositional logic, standard rules ax–cut are listed in Fig. 1. Rules [;]–〈?〉 work
similar to those in [13]. Rules [′], 〈′〉 handle continuous evolutions for quantified differential
equations with first-order definable solutions. Rules [:=]–〈:∗〉 handle discrete changes for quan-
tified assignments. Axiom ex expresses that, for sort A 6= R, there always is a new object n that

25

QdMTL: A Logic for Verifying Distributed Hybrid Systems P. Hou and Y. Chen

(ax)
φ→ φ

(¬r)
φ→
→ ¬φ

(¬l)
→ φ

¬φ→
(∧r)

→ φ → ψ

→ φ ∧ ψ
(∧l)

φ, ψ →
φ ∧ ψ →

(cut)
→ φ φ→
→

([;])
[α][β]φ

[α; β]φ
(〈; 〉)

〈α〉〈β〉φ
〈α; β〉φ

([∪])
[α]φ ∧ [β]φ

[α ∪ β]φ
(〈∪〉)

〈α〉φ ∨ 〈β〉φ
〈α ∪ β〉φ

([?])
χ→ φ

[?χ]φ
(〈?〉)

χ ∧ φ
〈?χ〉φ

([′])
∀t ≥ 0((∀0 ≤ t̃ ≤ t[∀i :A S(t̃)]χ)→ [∀i :A S(t)]φ)

[∀i :A f(s)′ = θ & χ]φ
1 (〈′〉)

∃t ≥ 0((∀0 ≤ t̃ ≤ t〈∀i :A S(t̃)〉χ) ∧ 〈∀i :A S(t)〉φ)

〈∀i :A f(s)′ = θ & χ〉φ
1

([:=])
if ∃i :A s = [A]u then ∀i :A (s = [A]u→ φ(θ)) else φ(f([A]u)) fi

φ([∀i : A f(s) := θ]f(u))
2

(〈:=〉)
if ∃i :A s = 〈A〉u then ∃i :A (s = 〈A〉u ∧ φ(θ)) else φ(f(〈A〉u)) fi

φ(〈∀i :A f(s) := θ〉f(u))
2

(skip)
Υ([∀i :A f(s) := θ]u)

[∀i :A f(s) := θ]Υ(u)
3 ([:∗])

∀j :A φ(θ)

[∀j :A n := θ]φ(n)
(〈:∗〉)

∃j :A φ(θ)

〈∀j :A n := θ〉φ(n)
(ex)

true

∃n :A E(n) = 0

(∀r)
Γ→ φ(f(X1, . . . , Xn)),∆

Γ→ ∀xφ(x),∆
4 (∃r)

Γ→ φ(θ), ∃xφ(x),∆

Γ→ ∃xφ(x),∆
5 (∀l)

Γ, φ(θ), ∀xφ(x)→ ∆

Γ, ∀xφ(x)→ ∆
5 (∃l)

Γ, φ(f(X1, . . . , Xn))→ ∆

Γ, ∃xφ(x)→ ∆
4

(i∀)
QE(∀X,Y (if s = t then Φ(X)→ Ψ(X) else Φ(X)→ Ψ(Y) fi))

Φ(f(s))→ Ψ(f(t))
6 (i∃)

QE(∃X
∧

i(Φi → Ψi))

Φ1 → Ψ1 . . . Φn → Ψn

7

([]gen)
φ→ ψ

Γ, [α]φ→ [α]ψ,∆
(〈〉gen)

φ→ ψ

Γ, 〈α〉φ→ 〈α〉ψ,∆
(ind)

φ→ [α]φ

Γ, φ→ [α∗]φ,∆
(con)

v > 0 ∧ ϕ(v)→ 〈α〉ϕ(v − 1)

Γ, ∃v ϕ(v)→ 〈α∗〉∃v ≤ 0ϕ(v),∆
8

(DI)
χ→ [∀i :A f(s)′ := θ]D(φ)

φ→ [∀i :A f(s)′ = θ & χ]φ
9 (DC)

φ→ [∀i :A f(s)′ = θ & χ]ψ φ→ [∀i :A f(s)′ = θ & χ ∧ ψ]φ

φ→ [∀i :A f(s)′ = θ & χ]φ

([∪]2)
[α]2φ ∧ [β]2φ

[α ∪ β]2φ
10 (〈∪〉�)

〈α〉3φ ∨ 〈β〉3φ
〈α ∪ β〉3φ

11 ([;]2)
[α]2φ ∧ [α][β]2φ

[α; β]2φ
10

(〈; 〉�)
〈α〉3φ ∨ 〈α〉〈β〉3φ

〈α; β〉3φ
11 ([?]2)

φ

[?χ]2φ
10 (〈?〉�)

φ

〈?χ〉3φ
11

([′]2)
[∀i :A f(s)′ = θ & χ]φ

[∀i :A f(s)′ = θ & χ]2φ
10 (〈′〉�)

〈∀i :A f(s)′ = θ & χ〉φ
〈∀i :A f(s)′ = θ & χ〉3φ

11

([:=]2)
φ ∧ [∀i :A f(s) := θ]φ

[∀i :A f(s) := θ]2φ
10 (〈:=〉�)

φ ∨ 〈∀i :A f(s) := θ〉φ
〈∀i :A f(s) := θ〉3φ

11

([∗n]2)
[α;α∗]2φ

[α∗]2φ
10 (〈∗n〉�)

〈α;α∗〉3φ
〈α∗〉3φ

11 ([∗]2)
[α∗][α]2φ

[α∗]2φ
10 (〈∗〉�)

〈α∗〉〈α〉3φ
〈α∗〉3φ

11

([∪]2I)
[c := 0;α ∪ β ⊕ c′ = 1; c′ = 1]2(c ∈ I → φ)

[α ∪ β]2I φ
10 12 (〈∪〉3I)

〈c := 0;α ∪ β ⊕ c′ = 1; c′ = 1〉3(c ∈ I ∧ φ)

〈α ∪ β〉3I φ
11 12

([;]2I)
[c := 0;α; β ⊕ c′ = 1; c′ = 1]2(c ∈ I → φ)

[α; β]2I φ
10 12 ([;]3I)

〈c := 0;α; β ⊕ c′ = 1; c′ = 1〉3(c ∈ I ∧ φ)

〈α; β〉3I φ
11 12

([?]2I)
[c := 0; ?χ⊕ c′ = 1; c′ = 1]2(c ∈ I → φ)

[?χ]2I φ
10 12 (〈?〉3I)

〈c := 0; ?χ⊕ c′ = 1; c′ = 1〉3(c ∈ I ∧ φ)

〈?χ〉3I φ
11 12

([′]2I)
[c := 0; ∀i :A f(s)′ = θ & χ⊕ c′ = 1; c′ = 1]2(c ∈ I → φ)

[∀i :A f(s)′ = θ & χ]2I φ
10 12

(〈′〉3I)
〈c := 0; ∀i :A f(s)′ = θ & χ⊕ c′ = 1; c′ = 1〉3(c ∈ I ∧ φ)

〈∀i :A f(s)′ = θ & χ〉3I φ
11 12

([:=]2I)
[c := 0; ∀i :A f(s) := θ ⊕ c′ = 1; c′ = 1]2(c ∈ I → φ)

[∀i :A f(s) := θ]2I φ
10 12

(〈:=〉3I)
〈c := 0; ∀i :A f(s) := θ ⊕ c′ = 1; c′ = 1〉3(c ∈ I ∧ φ)

〈∀i :A f(s) := θ〉3I φ
11 12

([∗]2I)
[c := 0;α∗ ⊕ c′ = 1; c′ = 1]2(c ∈ I → φ)

[α∗]2I φ
10 12 (〈∗〉3I)

〈c := 0;α∗ ⊕ c′ = 1; c′ = 1〉3(c ∈ I ∧ φ)

〈α∗〉3I φ
11 12

1t, t̃ are new variables, ∀i : A S(t) is the quantified assignment ∀i : A f(s) := ys(t) with solutions ys(t) of the
(injective) differential equations and f(s) as initial values. See [22, 23] for the definition of a injective quantified
assignment or quantified differential equation.

2Occurrence f(u) in φ(f(u)) is not in scope of a modality (admissible substitution) and we abbreviate assignment
∀i :A f(s) := θ by A, which is assumed to be injective.

3f 6= Υ and the quantified assignment ∀i :A f(s) := θ is injective. The same rule applies for 〈∀i :A f(s) := θ〉
instead of [∀i :A f(s) := θ].

4f is a new (Skolem) function and X1, . . . , Xn are all free logical variables of ∀xφ(x).
5θ is an abbreviate term, often a new logical variable.
6X,Y are new variables of sort R. QE needs to be applicable in the premises.
7 Among all open branches, the free (existential) logical variable X of sort R only occurs in the branch Φi → Ψi.

QE needs to be defined for the formula in the premises, especially, no Skolem dependencies on X occur.
8 logical variable v does not occur in α.
9The operator D, as defined in [24], is used to computer syntactic total derivations of formulas algebraically.

10 2 is the abbreviation for the metric temporal modality 2[0,+∞).
11 3 is the abbreviation for the metric temporal modality 3[0,+∞).
12c is a new variable of sort R (clock variable).

Figure 1: Rule schemata of the proof calculus for QdMTL

26

QdMTL: A Logic for Verifying Distributed Hybrid Systems P. Hou and Y. Chen

has not been created yet (E(n) = 0), because domains are infinite. The quantifier rules ∀r–i∃
combine quantifier handling of many-sorted logic based on instantiation with theory reasoning
by quantifier elimination (QE) for the theory of reals. The global rules []gen, 〈〉gen are Gödel
generalization rules and ind is an induction schema for loops with inductive invariant φ [13].
Similarly, con generalizes Harel’s convergence rule [13] to the hybrid case with decreasing vari-
ant ϕ [21]. DI and DC are rules for quantified differential equations with quantified differential
invariants [24].

Metric Temporal Rules. The metric temporal rules [∪]2I–〈∗〉3I in Fig. 1 for the QdMTL calculus
convert metric temporal statements into equivalent non-metric temporal formulas. This con-
version is based on the idea of referring metric temporal constraints to the reading on clocks,
i.e. variables changing with constant slope 1 (along quantified differential equation c′ = 1).
Clocks are reset by the quantified assignment c := 0, which is equivalent to ∀i :A c := 0 where
i does not occur in c, before quantified hybrid programs start executing. They are used to keep
track of the progress of time advancing with constant slope 1.

Non-metric Temporal Rules. The non-metric temporal rules [∪]2–〈∗〉� in Fig. 1 for the QdMTL
calculus successively transform non-metric temporal specifications of quantified hybrid pro-
grams into non-temporal QdL formulas. The idea underlying this transformation is to decom-
pose quantified hybrid programs and recursively augment intermediate state transitions with
appropriate specifications.

Rule [∪]2 decomposes invariants of α ∪ β (i.e., [α ∪ β]2φ holds) into an invariant of α (i.e.,
[α]2φ) and an invariant of β (i.e., [β]2φ)). The QdL rule [∪] can actually be generalized to
apply to formulas of the form [α ∪ β]π where π is an arbitrary trace formula, and not just
a state formula as in QdL. Rule [;]2 decomposes invariants of α;β (i.e., [α;β]2φ holds) into
an invariant of α (i.e., [α]2φ) and an invariant of β that holds when β is started in any final
state of α (i.e., [α]([β]2φ)). Its difference with the QdL rule [;] thus is that the QdMTL rule
[;]2 also checks safety invariant φ at the symbolic states in between the execution of α and β,
and recursively so because of the temporal modality 2. Rule [:=]2 expresses that invariants
of quantified assignments need to hold before and after the discrete change (similarly for [?]2,
except that tests do not lead to a state change, so φ holding before the test is all there is to it).
Rule [′]2 can directly reduce invariants of continuous evolutions to non-temporal formulas as
restrictions of solutions of quantified differential equations are themselves solutions of different
duration and thus already included in the continuous evolutions of ∀i : A f(s)′ = θ. The
(optional) iteration rule [∗n]2 can partially unwind loops. It relies on rule [;]2. The dual rules
〈∪〉�, 〈; 〉�, 〈:=〉�, 〈?〉�, 〈′〉�, 〈∗n〉� work similarly.

Rules [∗]2 and 〈∗〉� actually define temporal properties of loops inductively. Rule [∗]2 ex-
presses that φ holds at all times during repetitions of α (i.e., [α∗]2φ) iff, after repeating α any
number of times, φ holds at all times during one execution of α (i.e., [α∗]([α]2φ)). Dually, 〈∗〉�
expresses that α holds at some time during repetitions of α (i.e., 〈α∗〉3φ) iff, after some number
of repetitions of α, formula φ holds at some point during one execution of α (i.e., 〈α∗〉(〈α〉3φ)).
In this context, the non-temporal modality 〈α∗〉 can be thought of as skipping over to the iter-
ation of α during which φ actually occurs, as expressed by the nested QdMTL formula 〈α〉3φ.
The inductive definition rules [∗]2 and 〈∗〉� completely reduce temporal properties of loops to
QdMTL properties of standard non-temporal QdL modalities such that standard induction
(ind) or convergence (con) rules, as listed in Fig. 1, can be used for the outer non-temporal
modality of the loop. Hence, after applying the inductive loop definition rules [∗]2 and 〈∗〉�, the
standard QdL loop invariant and variant rules can be used for verifying temporal properties of

27

QdMTL: A Logic for Verifying Distributed Hybrid Systems P. Hou and Y. Chen

loops without change, except that the postcondition contains temporal modalities.

5.2 Soundness and Completeness

Soundness. The following result shows that verification with the QdMTL calculus always
produces correct results about the metric temporal behavior of distributed hybrid systems, i.e.,
the QdMTL calculus is sound.

Theorem 7 (Soundness of QdMTL). The QdMTL calculus is sound, i.e., every QdMTL (state)
formula that can be proven is valid.

Incompleteness of QdMTL. In [22, 23] it has been shown that the verification problem for dis-
tributed hybrid systems has three independent sources of undecidability. Both the discrete and
continuous fragments of QdL are subject to Gödel’s incompleteness theorem. The fragment
with only structural and dimension-changing dynamics is not effective either, because it can
encode two-counter machines. Hence, QdL cannot be effectively axiomatizable. Since QdMTL
is a conservative extension of QdL, those results lift to QdMTL. Therefore, the discrete, con-
tinuous, and structural fragments of QdMTL, even if only containing non-temporal formulas
are non-axiomatizable. In particular, QdMTL is non-axiomatizable.

Relative Completeness. The QdL calculus has been proved to be complete relative to the
first-order logic of quantified differential equations (FOQD), i.e., first-order real arithmetic aug-
mented with formulas expressing properties of quantified differential equations, that is, QdL
formulas of the form [∀i : A f(s)′ = θ & χ]F with a first-order formula F [23]. Due to the
modular construction of the QdMTL calculus, we can lift the relative completeness result from
QdL to QdMTL. We essentially show that QdMTL is complete relative to QdL, which directly
implies that QdMTL is even complete relative to FOQD. Again, we restrict our attention to
homogeneous combinations of path and trace quantifiers like [α]2I φ or 〈α〉3I φ.

Theorem 8 (Relative Completeness of QdMTL). The QdMTL calculus in Fig. 1 is complete
relative to FOQD, i.e., every valid QdMTL formulas can be derived from FOQD tautologies.

This result shows that metric temporal, non-metric temporal, and non-temporal properties
of distributed hybrid systems can be proven to exactly the same extent to which properties
of quantified differential equations can be proven. It also gives a formal justification that the
QdMTL calculus reduces metric temporal properties to non-temporal QdL properties.

6 Conclusions and Future Work

For reasoning about distributed hybrid systems, we have introduced a metric temporal dynamic
logic, QdMTL, with modal path quantifiers over traces and metric temporal quantifiers along
the traces. It combines the capabilities of quantified differential dynamic logic to reason about
possible distributed hybrid system behavior with the power of metric temporal logic in reasoning
about the behavior along time intervals of traces. We have presented a proof calculus for
verifying metric temporal safety specifications of quantified hybrid programs in QdMTL, which,
to the best of our knowledge, is the first verification approach that can handle metric temporal
statements about distributed hybrid systems. Our sequent calculus for QdMTL is a completely
modular combination of metric temporal, non-metric temporal, and non-temporal reasoning.
Furthermore, We have proven our calculus to be a sound and complete axiomatization relative
to quantified differential equations.

28

QdMTL: A Logic for Verifying Distributed Hybrid Systems P. Hou and Y. Chen

We are currently extending a verification tool for distributed hybrid systems, which is an
automated theorem prover called KeYmaeraD [26], to cover the full QdMTL calculus. One di-
rection for future work is to extend QdMTL with parametric temporal operators [2] to formulate
the quantified differential parametric metric temporal dynamic logic (QdPMTL) for specifying
and verifying parametric temporal properties of distributed hybrid systems. We would also
like to symbolically synthesis parametric safety timing constraints using the QdPMTL calcu-
lus. Another direction is to move toward the deductive verification of temporal properties of
distributed stochastic hybrid systems.

References

[1] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking for real-time systems. In LICS, pages
414–425. IEEE Computer Society, 1990.

[2] R. Alur, K. Etessami, S. La Torre, and D. Peled. Parametric temporal logic for “model measuring”.
In J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors, ICALP, volume 1644 of LNCS,
pages 159–168. Springer, 1999.

[3] B. Beckert and S. Schlager. A sequent calculus for first-order dynamic logic with trace modalities.
In R. Goré, A. Leitsch, and T. Nipkow, editors, IJCAR, volume 4130 of LNCS, pages 626–641.
Springer, 2001.

[4] J. M. Davoren, V. Coulthard, N. Markey, and T. Moor. Non-deterministic temporal logics for
general flow systems. In R. Alur and G. J. Pappas, editors, HSCC, volume 2993 of LNCS, pages
280–295. Springer, 2004.

[5] J. M. Davoren and A. Nerode. Logics for hybrid systems. Proceedings of the IEEE, 88(7):985–1010,
July 2000.

[6] A. Deshpande, A. Göllü, and P. Varaiya. SHIFT: A formalism and a programming language for
dynamic networks of hybrid automata. In Hybrid Systems, pages 113–133, 1996.

[7] G. Dowek, C. Muñoz, and V. A. Carreño. Provably safe coordinated strategy for distributed
conflict resolution. In AIAA Proceedings, AIAA-2005-6047, pages 278–292, 2005.

[8] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize synchroniza-
tion skeletons. Sci. Comput. Program, 2(3):241–266, 1982.

[9] E. A. Emerson and J. Y. Halpern. “Sometimes” and “Not Never” revisited: on branching versus
linear time temporal logic. J. ACM, 33(1):151–178, 1986.

[10] G. Fainekos and A. Girardand G. J. Pappas. Temporal logic verification using simulation. In
E. Asarin and P. Bouyer, editors, FORMATS, volume 4202 of LNCS, pages 171–186. Springer,
2006.

[11] G. Fainekos and G. Pappas. Robustness of temporal logic specications for continuous-time signals.
Theoretical Computer Science, 410(42):4262–4291, 2009.

[12] T. Flaminio and E. B. P. Tiezzi. On metric temporal lukasiewicz logic. Electr. Notes Theor.
Comput. Sci., 246:71–85, 2009.

[13] D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. MIT Press, Cambridge, 2000.

[14] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time
systems. In LICS, pages 394–406. IEEE Computer Society, 1992.

[15] A. Hsu, F. Eskafi, S. Sachs, and P. Varaiya. Design of platoon maneuver protocols for IVHS.
Technical Report PATH Research Report UCB-ITS-PRR-91-6, UC Berkeley, 1991.

[16] R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255–299, 1990.

[17] F. Kratz, O. Sokolsky, G. J. Pappas, and I. Lee. R-Charon, a modeling language for reconfigurable
hybrid systems. In HSCC, pages 392–406, 2006.

29

QdMTL: A Logic for Verifying Distributed Hybrid Systems P. Hou and Y. Chen

[18] O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In Y. Lakhnech
and S. Yovine, editors, FORMATS-FTRTFT, volume 3253 of LNCS, pages 152–166. Springer,
2004.

[19] F. Montagna, G. Michele Pinna, and E. B. P. Tiezzi. A cut-free proof system for bounded metric
temporal logic over a dense time domain. Math. Log. Q., 46(2):171–182, 2000.

[20] E. Plaku, L. E. Kavraki, and M. Y. Vardi. Falsication of LTL safety properties in hybrid systems. In
S. Kowalewski and A. Philippou, editors, TACAS, volume 5505 of LNCS, pages 368–382. Springer,
2009.

[21] A. Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas., 41(2):143–189, 2008.

[22] A. Platzer. Quantified differential dynamic logic for distributed hybrid systems. In A. Dawar and
H. Veith, editors, CSL, volume 6247 of LNCS, pages 469–483. Springer, 2010.

[23] A. Platzer. Quantified differential dynamic logic for distributed hybrid systems. Technical Report
CMU-CS-10-126, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, May
2010.

[24] A. Platzer. Quantified differential invariants. In E. Frazzoli and R. Grosu, editors, HSCC, pages
63–72. ACM, 2011.

[25] V. R. Pratt. Process logic. In POPL, pages 93–100, 1979.

[26] D. W. Renshaw, S. M. Loos, and A. Platzer. Distributed theorem proving for distributed hybrid
systems. In S. Qin and Z. Qiu, editors, ICFEM, volume 6991 of LNCS, pages 356–371. Springer,
2011.

[27] S. Sankaranarayanan and G. Fainekos. Falsification of temporal properties of hybrid systems using
the cross-entropy method. In T. Dang and I. M. Mitchell, editors, HSCC, pages 125–134. ACM,
2012.

30

	Introduction
	Related Work
	Syntax of Quantified Differential Metric Temporal Dynamic Logic
	Quantified Hybrid Programs
	State and Trace Formulas

	Semantics of Quantified Differential Metric Temporal Dynamic Logic
	Trace Semantics of Quantified Hybrid Programs
	Valuation of State and Trace Formulas
	Conservative Temporal Extension

	Proof Calculus for Metric Temporal Properties
	Proof Rules
	Soundness and Completeness

	Conclusions and Future Work

