
Engineering
EPiC Series in Engineering

Volume 2, 2018, Pages 111–117

SUMO 2018- Simulating Autonomous
and Intermodal Transport Systems

Road network extraction with OSMNx and SUMOPy

A. E. Dingil1, J. Schweizer, F. Rupi2, and Z. Stasiskiene1

1 Institute of Environmental Engineering Engineering Faculty, Kaunas University of
Technology/Lithuania
ali.dingil@ktu.edu

2 Dept. of Civil, Environmental, Chemical and Materials Engineering (DICAM) - University of
Bologna, Italy joerg.schweizer@unibo.it

Abstract

The microsimulation of larger cities would be of a considerable gain for urban planning.
However, compared with traditional traffic flow assignment models, transport networks
suitable for microsimulations require a large amount of data (connectivity, properties,
road/rail signaling, etc.). One persistent problem with microsimulation models has been
that the creation of large urban networks is very resource consuming. Therefore, it would
be of considerable value if the modeling process of microsimulation networks could be
largely automated.

SUMO is one of the most versatile, open source mobility simulators with the capability
of modeling virtually all urban transport systems, including roads, rail and even water-
ways. Openstreetmap (OSM) is an open and feature-rich editable map of the world that is
potentially the best data-source for creating micro-simulation networks. But OSM data is
incomplete, imprecise and imperfect as it is edited by volunteer laymen, and it has many
descriptive, but ambiguous attributes that leave ample room for interpretation.

The present work proposes an alternative method to import OSM data into SUMO
with the goal to generate a functioning SUMO microsimulation network that is as close
as possible to reality, while overcoming some of the deficiencies buried in OSM data. For
this purpose, a recent software package, called OSMNx is used, which generates a directed
graph (as networkx graph object) from OSM data, by resolving many topological issues.
Both, OSMnx and networkx are Python packages. Within the SUMOPy framework, the
following additional software is developed: (i) a converter from networkx graph to a SUMO
network; the conversion is performed by processing additional information from the original
OSM data; (ii) a realistic traffic light system generator for major intersections.

It is shown that the software converts even complex junctions correctly into a SUMO
network. However, the creation of efficient traffic light systems (a prerequisite for simulat-
ing a larger urban area) turns out to be problematic as deficient information from OSM is
difficult to replace by heuristic methods.

1 Introduction

The conversion of Openstreetmap (OSM) data into a transport network suitable for micro-
simulations is an ongoing challenge, as OSM data is imperfect in many ways:

E. Wießner, L. Lücken, R. Hilbrich, Y.-P. Flötteröd, J. Erdmann, L. Bieker-Walz and M. Behrisch (eds.),
SUMO2018 (EPiC Series in Engineering, vol. 2), pp. 111–117



Road network extraction with OSMNx and SUMOPy Dingil, Schweizer, Rupi and Stasiskiene

• The network is incomplete; complete missing ways cannot been tracked, but often it is
possible to complete the missing data by inference and consistency checks from other data
(for example if a road is marked as one-way, but the power line for the trolley bus are
marked as both-ways).

• The network is imprecise, in particular the connectivity of ways: if ways that are joined
in reality do not have a common node in OSM; often intersections, with a complex cluster
of inter-connected roads, footpaths, tramsways and bike-ways, are not correctly modeled;
as a consequence the correct clustering of nodes is a challenging task.

• Ambiguity: the OSM definitions are ambiguous, in particular with the description of lane
properties (access, speed, etc); newer OSM tags have been introduced to remove this
ambiguity, but they require more efforts and are not in widespread use.

• Errors: there are errors within the way- and node attributes; some can be found by
identifying contradictions, others are more difficult to identify (for example if a bikeway
is declared as a lane but is is also modeled a separated way).

As a result of these imperfections, most microsimulation networks imported from OSM need to
be corrected and completed manually, which has been repeatedly reported as time consuming
activity [2].

One of the biggest challenges is the creation of a 3D-planar network from OSM information.
The correct representation of OSM network topology may fail in 3D planar networks in a cities
such as Tokyo, Los Angeles, Beijing with numerous grade-separated expressways, bridges, and
tunnels. Network topology problems related to 3D-planar network analyses have been studied
to create an Arcgis tool to overcome overlapping of passes, bridges, tunnels over highways that
were previously counted as intersections [3].

Another problem with dense European medieval cities such as Bologna and Porto is that
the the network conversion tends to underestimates the lengths of edges, and overestimates the
number of nodes [1].

This paper describes a new method to overcome the aforementioned problems, by fully
exploiting the features of a specialized OSM conversion software, called OSMnx.

2 OSMnx method to convert OSM data to a SUMO net-
work

The main idea is to exploit the OSMnx which is a python module in order to create a transport
graph. OSMnx’s main features are:

• network extraction/cleanup/simplification and node clustering,

• OSM to JSON extraction and conversion,

• node elevation determination via Google API.

The complete method for importing OSM and for generating a correct SUMO network [4]
involves a chain of external software packages and additional processes, which are illustrated
in Fig. 1. All steps are available as a unique script in the SUMOPy package as a part of the
SUMO distribution [5].

The principal steps shall be briefly explained, while some more details on the SUMOPy
processes are given in the subsections below. The OSMnx software package converts OSM

112



Road network extraction with OSMNx and SUMOPy Dingil, Schweizer, Rupi and Stasiskiene

OSMNnx
(python module)

(SUMOPy)

Networkx
converter

Netconvert
(SUMO)

TLS generator
(SUMOPy)

Netconvert
(SUMO)

DiGraph

OSM net

(json file)

(networkx object)

SUMO net

(xml file)

OSM

(xml file)

Figure 1: Scheme of OSMNx-SUMO import process.

data into a directed networkx graph object. Networkx is a python module specialized on graph
analysis. OSMnx produces also a JSON database where features of all relevant OSM objects are
stored. Based on the networkx graph and the JSON database the networkx converter translates
the networkx graph into a raw SUMO network. The raw SUMO network is then completed
and connected with the standard SUMO netconvert tool. In a final step, traffic light systems
are created for the major junctions.

2.1 Networkx converter

The OSMNx package converts OSM data to a networkx DiGraph object, and the Networkx
converter generates a raw sumo net from the networkx DiGraph. This graph represents the
transport network with edges, nodes and some attributes. OSMNx produces also a JSON file
containing all OSM attributes of ways and nodes of the converted area. The nodes and edges
of the DiGraph retained an OSM ID with which it is possible to associate an edge or node
with their respective attribute in the JSON database. However, the edges of the DiGraph
and their respective orientation still correspond to the ones in OSM. This means an additional
interpretation process is needed to match the refined lane-by-lane structure which is required
by the SUMO network. In particular the Networkx converter needs to perform the following
tasks:

• completion of opposite edges. OSMNx does not always create a two-way connection, where

113



Road network extraction with OSMNx and SUMOPy Dingil, Schweizer, Rupi and Stasiskiene

needed. For example if the OSM way attribute says oneway = yes then only one edge
is created, even though another attribute of the same way states cycleway=opposite; in
this case the converter needs to create an edge with bicycle access to be created in the
opposite direction.

• lane guessing: OSMNx does not create lanes with distinct properties; the converter needs
to be guessed the number of lanes in both directions from the OSM edge attributes in the
JSON database. OSM has 2 different lane-schemes: Either lanes are given explicitly, or
they must be guessed from the attributes concerning bikeways, footpath, lanes in opposite
direction etc.

• lane and edge attributes: SUMO needs to know specific attributes for edge and for each
lane (for example access rights); again the converter guesses these attributes from the
OSM database.

In practice, these tasks have been performed in the following steps:

1. A hierarchy of object classes have been developed, one class for each OSM highway type.
The classes have methods to interpret highway-type specific OSM ways, such as the
oneway/twoway estimation, the lane number estimation, the lane attribute guessing edge
priority guessing, etc.

2. For each OSM way in the JSON data base, a way-object of the corresponding highway
class is instantiated and the respective OSM attributes are interpreted.

3. footpaths-type ways are united with road or bikeways running in parallel; this turned out
to be a good measure to simplify intersections

4. The edges of the DiGraph are read and combined with the interpretation of the respective
way-objects; a raw SUMO graph with the correct edges, lanes, nodes and runarounds is
created.

After the Lat/Lon coordinates have been translated into a (guessed) local coordinate system,
a netconvert run has completed the connectors and estimated traffic light. However, traffic light
systems for major intersection have been created in a separated step, as explained below.

2.2 Traffic light system generator for large/complex road junctions

A main flaw of OSM data is the insufficient information on traffic lights. This means a lot of
heuristic methods are needed to identify where exactly traffic lights are located, which nodes
and turns they control and finally which traffic light program is necessary to cope with the
traffic. Note that for the latter task, there are optimization tools available in the SUMO
package, but they need the routes of a hypothetical traffic in order to run. In SUMO, a traffic
light system (TLS) essentially control the access to so called “connectors”; A connector links
an incoming and an outgoing lane of a node; In this way left, right turns and straight direction
can be controlled independently. A problem with big TLS is that several nodes are involved
and the control between the connectors of these nodes must be coordinated, in a sense that
phase duration and start time of the phases must create green waves all through the TLS in
certain directions. The problem is even more complicated, as some (minor) internal nodes of
the TLS are not controlled, but conflicts are prevented by controlling connectors of upstream
nodes.

114



Road network extraction with OSMNx and SUMOPy Dingil, Schweizer, Rupi and Stasiskiene

The principle steps of the TLS generator for an entire network are as follows: In an initial
step, all major routes of the network are identified. A “major route” is a sequence of successive
edges which all satisfy the “major route criteria” (for example priority greater 7 or more than 2
lanes or speeds greater 90km/h). Then,“seed nodes” are determined, where major routes cross;
seed nodes are the nodes around which the major traffic light system are constructed:

1. Node identification: identify the node cluster of this traffic light system, by building a set
of all nodes that are reachable from the seed node. There is a forward and a backward
tree search to identify all nodes within a predefined distance from the seed node.

2. For all nodes, the connectors with respective conflicting connectors are identified; a con-
flicting connector is a connector that geometrically intersects another connector.

3. All routes that potentially cross the traffic-light system are generated; their route length
is also determined;

4. For all crossing routes, the set of used connectors and the set of their respective conflicting
connectors is identified.

5. For each crossing route, the conflicting connectors are used to create a phase (a phase
where all conflicting connectors become red); if a conflicting connector is in a TLS-internal
node, then all upstream connectors of the conflicting connector turn red, while the original
conflicting connector remains unused (and will be removed later). This process is used for
all routes, starting with the major routes; An preliminary phase duration is determined
for each crossing route, which is at this stage simply the length of the route. (the final
duration will be scaled during the last step); The simplistic assumption behind this idea
is that the traffic volumes of a route are proportional to its length.

6. the phases of routes that use the same conflicting connectors (or compatible conflicting
connectors) are merged; this set is to reduce the number of phases;

7. connectors which are always green and unused connectors of internal nodes are removed

8. Yellow phases of a predefined length are inserted in between each of the previously gen-
erated phases. All red phases can be inserted on demand.

9. All preliminary phase durations are scaled to meet a predefined cycle time; in addition a
minimum phase time can be defined in order to prevent too short phases.

This traffic light generation procedure is not optimum, but is needed to define the structure
(connectors) of the TLS, and the basic signal phases which can be optimized in a successive
step.

3 Network examples

The ultimate goal of the present work is to obtain a functioning microsimulation out of OSM
data. A functioning network could be verified for example by comparing flows, velocities and
delays of simulated and observed vehicles at important junctions of the network. As a first
attempt to validate the OSM import results we compared a network with the native SUMO
OSM importer, the OSMNx importer and a satellite picture of an example intersection (Porta
San Vitale, Bologna), see Fig. 2. Looking at the topology, there are only few differences

115



Road network extraction with OSMNx and SUMOPy Dingil, Schweizer, Rupi and Stasiskiene

(a) (b) (c)

Figure 2: Imported networks from (a) native SUMO-OSM import, (b) OSMNx import and
(c) satellite image.

(a) (b)

Figure 3: Generation of traffic light systems. TLS in two different phases.

between native OSM import and OSMnx import. It appears that the OSMnx import has a few
less edges, node and connectors. Some edge in the native import are overlapping. There seems
also a difference in interpreting OSM attributes: for example on some edges the native import
shows a lane with general access and with segregated footpath whereas OSMnx import shows
a footpath with segregated bike lane. It needs to be studied in more detail whether, such small
differences have significant effects when simulating the network.

Comparing both, imported networks with the satellite image there are some dis-alignments
of the pedestrian and cyclist network. In particular the footpath is often missing or too much
in the imported networks. But the footpath is often not well modeled in the OSM data and in
the absents of information, the interpretation remains difficult.

The placement of a TLS and the respective signal generation has been tested for various
complex intersections. The TLS in Fig. 3, shown in two different phases demonstrates how the
phases are synchronized in order to create a stream in the principle direction. Note that there
are many connectors from internal nodes swiched off (light blue color). These connectors are
“protected” by the controlled connectors at the entrance of the traffic light system. Removing
TLS controlled connectors from the internal of the TLS is essential: With internal traffic lights,
vehicles which entered the intersection could get stuck at a red signal inside before leaving and
thus blocking other vehicles.

116



Road network extraction with OSMNx and SUMOPy Dingil, Schweizer, Rupi and Stasiskiene

4 Conclusions

The present work has proposed an alternative method to import OSM data into SUMO with
the goal to generate a functioning SUMO microsimulation network that is as close as possible
to reality, while overcoming some of the deficiencies buried in OSM data. For this purpose, a
recent software package, called OSMNx has been used, which generates a directed graph (as
networkx graph object) from OSM data. Within the SUMOPy framework, additional software
has been developed: (i) to convert the networkx graph into a SUMO network while processing
additional information from the original OSM data given in JSON format; (ii) to create realistic
traffic light systems at major intersections.

An example has been shown that the import method shows some improvements over the
native SUMO-OSM import in terms of net-topology.

A big issue is the TLS generator at major junctions, as without a well calibrated TLS the
circulation in bigger cities will brake down. Some heuristic methods have been proposed on how
to solve such problem. However, the traffic light phases still need to be optimized in order be
able to deal with realistic traffic scenarios. The validation of the network with observed traffic
flows at bottleneck junctions is certainly one of the next steps to undertake.

References

[1] J. BOEING. Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex
street networks. Computers, Environment and Urban Systems, 65:126–139, 2017.

[2] L. Codeca, R. Frank, S. Faye, and T. Engel. Luxembourg sumo traffic (lust) scenario: Traffic
demand evaluation. IEEE Intelligent Transportation Systems Magazine, 9(2):52–63, Summer 2017.

[3] A. KARDUNI and A. KARDUNI S. DERRIBLE. A protocol to convert spatial polyline data to
network formats and applications to world urban road networks. Scientific Data, 3(160046), 2016.

[4] Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura Bieker. Recent development and
applications of SUMO - Simulation of Urban MObility. International Journal On Advances in
Systems and Measurements, 5(3&4):128–138, December 2012.

[5] J. Schweizer. Sumopy wiki, 2016. http://www.sumo.dlr.de/wiki/Contributed/SUMOPy.

117


	Introduction
	OSMnx method to convert OSM data to a SUMO network
	Networkx converter
	Traffic light system generator for large/complex road junctions

	Network examples
	Conclusions

