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Abstract

This report presents the results of a friendly competition for formal verification of
continuous and hybrid systems with artificial intelligence (AI) components. Specifically,
machine learning (ML) components in cyber-physical systems (CPS), such as feedforward
neural networks used as feedback controllers in closed-loop systems are considered, which
is a class of systems classically known as intelligent control systems, or in more modern
and specific terms, neural network control systems (NNCS). For future iterations, we more
broadly refer to this category as AI and NNCS (AINNCS). The friendly competition took
place as part of the workshop Applied Verification for Continuous and Hybrid Systems
(ARCH) in 2019. In the first edition of this AINNCS category at ARCH-COMP, three
tools have been applied to solve five different benchmark problems, (in alphabetical order):
NNV, Sherlock, and Verisig. This report is a snapshot of the current landscape of tools and
the types of benchmarks for which these tools are suited. Due to the diversity of problems
and that this is the first iteration of this category, we are not ranking tools in terms of
performance, yet the presented results probably provide the most complete assessment of
tools for the safety verification of NNCS.

G. Frehse and M. Althoff (eds.), ARCH19 (EPiC Series in Computing, vol. 61), pp. 103–119
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1 Introduction

Artificial Neural Networks have demonstrated an impressive ability to be used as frameworks
for solving complex problems in numerous application domains [27]. In fact, the success of these
models in contexts such as adaptive control, non-linear system identification [20], image and
pattern recognition, function approximation, and machine translation, has stimulated the cre-
ation of technologies that are directly impacting our everyday lives [23], and has led researchers
to believe that these models possess the power to revolutionize the development of robust and
intelligent systems in a diverse set of arenas [22].

Despite these achievements, there have been reservations in utilizing them within high as-
surance systems due to their susceptibility to unexpected and errant behavior caused by slight
perturbations in their inputs [17]. In a famous study by Chrisitian Szegedy et al. [24], the
authors demonstrated that by carefully applying a hardly perceptible modification to an input
image, one could cause a successfully trained neural network to produce an incorrect classifica-
tion. These inputs are known as adversarial examples, and their discovery has caused concern
over the safety, reliability, and security of neural network applications [27]. As a result, there
has been a large research impetus towards obtaining an explicit understanding of neural network
behavior.

Neural networks are often viewed as ”black boxes,” whose underlying operation is often
incomprehensible, and the last several years have witnessed a large number of promising verifi-
cation methods proposed towards reasoning about the correctness of their behavior. However,
it has been demonstrated that neural network verification is an NP-complete problem [16], and
while current state-of-the-art verification methods have been able to deal with small networks,
they are incapable of dealing with the complexity and scale of networks utilized in practice
([18, 13, 4]). Additionally, while in recent years there has been a large amount of work focused
on verifying pre-/post-conditions for neural networks in isolation, reasoning about the behavior
of neural network control systems remains a key challenge.

The following report aims to provide a survey of the landscape of the current capabilities
of verification tools for closed-loop systems with neural network controllers, as these systems
have displayed great utility as a means for learning control laws through techniques such as
reinforcement learning and data-driven predictive control [10]. Furthermore, this report aims
to provide readers with a perspective of the intellectual progression of this rapidly growing
field and stimulate the development of efficient and effective methods capable of being utilized
within real-life applications.

Disclaimer The presented report of the ARCH friendly competition for closed-loop sys-
tems with neural network controllers, termed in short AINNCS (Artificial Intelligence /
Neural Network Control Systems), aims to provide the landscape of the current capabil-
ities of verification tools for analyzing these systems that are classically known as intel-
ligent control systems. We would like to stress that each tool has unique strengths—not
all of the specificities can be highlighted within a single report. To reach a consensus in
what benchmarks are used, some compromises had to be made so that some tools may
benefit more from the presented choice than others. The obtained results have been ver-
ified by an independent repeatability evaluation. To establish further trustworthiness of
the results, the code with which the results have been obtained is publicly available at
gitlab.com/goranf/ARCH-COMP.

104

https://gitlab.com/goranf/ARCH-COMP


ARCH-COMP19 AINNCS Manzanas Lopez, Musau, Tran, Dutta, Carpenter, Ivanov, Johnson

Specifically, this report summarizes results obtained in the 2019 friendly competition of the
ARCH workshop1 for verifying hybrid systems with linear and non-linear continuous dynamics

ẋ(t) = f(x(t), u(t)),

where x(t),u(t) correspond to the states and inputs of the plant at time t, respectively. Partici-
pating tools are summarized in Sec. 2. Please, see [27] for further details on these and additional
tools. The results of our selected benchmark problems are shown in Sec. 3 and are obtained
on the tool developers’ own machines. Thus, one has to factor in the computational power of
the processors used, summarized in Appendix A, as well as the efficiency of the programming
language of the tools. The architecture of the closed-loop systems we will evaluate is depicted
in Figure 1.

Figure 1: Closed-loop architecture of the benchmarks to be verified.

The goal of the friendly competition is not to rank the results, but rather to present the
landscape of existing solutions in a breadth that is not possible with scientific publications in
classical venues. Such publications would typically require the presentation of novel techniques,
while this report showcases the current state-of-the-art tools. For all results reported by each
participant, we have run an independent repeatability evaluation.

The selection of the benchmarks has been conducted within the forum of the ARCH website
(cps-vo.org/group/ARCH), which is visible for registered users and registration is open for
anyone. All tools presented in this report use some form of reachability analysis. This, however,
is not a constraint set by the organizers of the friendly competition. We hope to encourage
further tool developers to showcase their results in future editions.

2 Participating Tools

We present a brief overview of all the participating tools in this friendly competition, which
are NNV, Verisig, and Sherlock. The tools participating in this AINNCS category Artificial
Intelligence / Neural Network Control Systems in Continuous and Hybrid Systems Plants are
introduced subsequently in alphabetical order.

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH
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NNV NNV (Neural Network Verification Tool) [29, 28, 26, 30, 25] is a Matlab based toolbox
that implements reachability-analysis methods for neural network verification with a particu-
lar focus on applications of closed-loop neural network control systems in autonomous cyber-
physical systems. NNV uses a star-set based algorithm that allows for a layer-by-layer com-
putation of the exact reachable set for feed-forward deep neural networks. The star-set based
algorithm is naturally parallelizeable which allowed NNV to be designed to perform efficiently
on multi-core platforms. Additionally, in the event that a particular safety property is vio-
lated, NNV can be usd to construct and visualize the complete set of counterexample inputs
for a neural network. Using NNV in combination with HyST [6, 5] CORA[1, 2, 3] allows for
the verification of closed-loop neural network control systems. NNV along with the relevant
experiments and related publications are available at https://github.com/verivital/nnv.

Sherlock Sherlock, [12] is a tool for range analysis for deep feedforward neural networks.
Sherlock uses an interleaving of gradient based local search technique, and mixed integer lin-
ear programming based global optimization solver to solve an optimization problem, for range
analysis. Sherlock can be used to verify properties about closed loop systems, with deep neu-
ral networks as controllers as well [11]. This can be accomplished using ideas like template
polyhedra and acceleration of reach set computation explained in [11]. In, [10], the authors
extended Sherlock to generate polynomial rules to characterize the local behavior of the net-
work in a formally sound way. This enabled the computation of reach sets, for plants modelled
as an ODE, and a neural network as the controller. The tool is available for download at
https://github.com/souradeep-111/sherlock.

Verisig Verisig [14] is a tool for verifying safety properties of closed-loop hybrid systems with
deep neural network (DNN) components. Verisig supports sigmoid and tanh-based networks
and exploits the fact that the sigmoid (and the tanh) is the solution to a quadratic differential
equation, which allows us to transform the neural network into an equivalent hybrid system. By
composing the network’s hybrid system with the plant’s, Verisig transforms the problem into
a hybrid system verification problem which can be solved using state-of-the-art reachability
tools. Specifically, Verisig uses Flow* [9] to solve the resulting hybrid system reachability
problem. Verisig is available at https://verisig.org, and the code can be found at https:

//github.com/verisig.

3 Benchmarks

For the 2019 edition, we selected 5 benchmarks for this new category. These 5 benchmarks
include a cart pole (inverted pendulum), an Adaptive Cruise Control (ACC) system, a TORA
and several others, which are introduced subsequently in no particular order and can be found
and downloaded online2 or in the AINNCS category repeatability evaluation repository3.

3.1 Non-linear Cart-Pole

This benchmark is obtained from the OpenAI gym [8], and corresponds to the version of the
cart-pole introduced by Barto, Sutton, and Anderson [7]. Although the overall scheme of this
system is very similar to the inverted pendulum, which also consists of a pendulum attached to
a cart, this variation of the system is unique in that the dynamic equations used to represent

2https://github.com/verivital/ARCH-COMP19-AINNCS
3https://gitlab.com/goranf/ARCH-COMP/tree/master/2019/AINNCS
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it are more complex. Moreover, in this case, we represent the dynamics of the system as a set
of non-linear differential equations and alter the controller structure in addition to the initial
states and constraints. The dynamics of the cart-pole system are described as follows

ẍ =
u+mlω2 sin(θ)

mt
−
ml(g sin(θ)− cos(θ))(u+mlω
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mt

)

l( 4
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(1)

where u ∈ {−10, 10} is the input force, which either pushes the cart left or right, g = 9.8 is
gravity, m = 0.1 is the pole’s mass, l = 0.5 is half the pole’s length, mt = 1.1 is the total mass,
x is the position of the cart, θ is the angle of the pendulum with respect to the positive y-axis,
v = ẋ is the linear velocity of the cart, and ω = θ̇ is the angular velocity of the pendulum. The
controller has four inputs (x, ẋ, θ, θ̇), four layers with [24, 48, 12, 2] neurons respectively, and
two outputs. The two outputs are then compared, and the input sent to the plant depends on
which output index has the greatest value. Thus, as an example if output1 > output2 then the
input force supplied to the plant is 10. However if output1 < output2 then the input supplied
to the plant is -10.

Specifications For this benchmark, the verification objective is to demonstrate that the pole
will eventually reach the upward position and that it will remain there. In other words, the
goal is to achieve a value of θ = 0 and stay there. Some other specifications to be met are, for
at least 12 seconds, x ∈ [-2.4,2.4] and θ ∈ [-15,15] degrees. The initial conditions for all state
variables were chosen uniformly at random between [-0.05, 0.05].

3.2 Adaptive Cruise Controller (ACC)

The Adaptive Cruise Control (ACC) System simulates a system that tracks a set velocity and
maintains a safe distance from a lead vehicle by adjusting the longitudinal acceleration of an
ego vehicle. The neural network computes optimal control actions while satisfying safe distance,
velocity, and acceleration constraints using model predictive control (MPC) [21]. For this case
study, the ego car is set to travel at a set speed Vset = 30 and maintains a safe distance Dsafe

from the lead car. The car’s dynamics are described as follows:

ẋlead(t) = vlead(t), v̇lead(t) = γlead(t), γ̇lead(t) = −2γlead(t) + 2alead − uv2lead(t),

ẋego(t) = vego(t), v̇ego(t) = γego(t), γ̇ego(t) = −2γego(t) + 2aego − uv2ego(t),
(2)

where xi is the position, vi is the velocity, γi is the acceleration of the car, ai is the acceleration
control input applied to the car, and u = 0.0001 is the friction control where i ∈ {ego, lead}.
For this benchmark we have developed four neural network controllers with 3, 5, 7, and 10
hidden layers of 20 neurons each. All of them have the same number of inputs (vset, Tgap, vego,
Drel, vrel), and one output (aego).

Specifications The verification objective of this system is that given a scenario where both
cars are driving safely, the lead car suddenly slows down with alead = -2. We want to check
whether there is a collision in the following 5 seconds. Formally, this safety specification of
the system can be expressed as Drel = xlead - xego ≥ Dsafe, where Dsafe = Ddefault + Tgap ×
vego, and Tgap = 1.4 seconds and Ddefault = 10. The initial conditions are: xlead(0) ∈ [90,110],
vlead(0) ∈ [32,32.2], γlead(0) = γego(0) = 0, vego(0) ∈ [30, 30.2], xego ∈ [10,11].
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3.3 Sherlock-Benchmark-7

This benchmark was first proposed in [31]. The authors originally designed a discontinuous
sliding mode controller for this system in [31]. The model is a 3 dimensional system, given by
the following equations:

ẋ1 = x33 − x2 + w, ẋ2 = x3, ẋ3 = u, (3)

where w is a bounded error in the range [−0.01, 0.01]. A neural network controller was trained
for this system, using a model predictive controller as a demonstrator. The trained network had
2 hidden layers, with 300 neurons in the first layer, and 200 in the second layer. The sampling
time for this controller was 0.5s.

Specification The verification problem here is that of target reachability. For an initial set
of, x1 ∈ [0.35, 0.45], x2 ∈ [0.45, 0.55], x3 ∈ [0.25, 0, 35], it is required to prove that the system
converges to x ∈ [−0.032, 0.032]3, within 2s.

3.4 Sherlock-Benchmark-9 (TORA)

This benchmark is that of a TORA (translational oscillations by a rotational actuator) [10, 15].
The model is that of a cart attached to a wall with a spring, and is free to move an friction-less
surface. The cart itself has a weight attached to an arm inside it, which is free to rotate about
an axis. This serves as the control input, in order to stabilize the cart at x = 0. The model is
4 dimensional system, given by the following equations :

ẋ1 = x2, ẋ2 = −x1 + 0.1sin(x3), ẋ3 = x4, ẋ4 = u, (4)

where w is a bounded error in the range [−0.01, 0.01]. A neural network controller was trained
for this system, using data-driven model predictive controller proposed in [11]. The trained
network had 3 hidden layers, with 100 neurons in each layer making a total of 300 neurons.
The sampling time for this controller was 1s.

Specification The verification problem here is that of safety. For an initial set of, x1 ∈
[0.6, 0.7], x2 ∈ [−0.7,−0.6], x3 ∈ [−0.4,−0.3], x4 ∈ [0.5, 0.6], it is required to prove that the
system stays within the box x ∈ [−1, 1]3, for a time window of 20s.

3.5 Sherlock-Benchmark-10 (Unicycle Car Model)

This benchmark is that of a unicycle model of a car [10]. It models the dynamics of a car
involving 4 variables, specifically the x and y coordinates on a 2 dimensional plane, as well as
velocity magnitude (speed) and steering angle.

ẋ1 = x4cos(x3), ẋ2 = x4sin(x3), ẋ3 = u2, ẋ4 = u1 + w, (5)

where w is a bounded error in the range [−1e − 4, 1e − 4]. A neural network controller was
trained for this system, using a model predictive controller as a ”demonstrator” or ”teacher”.
The trained network has 1 hidden layer, with 500 neurons. The sampling time for this controller
was 0.2s.

Specification The verification problem here is that of reachability. For an initial set of ,
x1 ∈ [9.5, 9.55], x2 ∈ [−4.5,−4.45], x3 ∈ [2.1, 2.11], x4 ∈ [1.5, 1.51], it is required to prove that
the system reaches the set x1 ∈ [−0.6, 0.6], x2 ∈ [−0.2, 0.2], x3 ∈ [−0.06, 0.06], x4 ∈ [−0.3, 0.3]
within a time window of 10s.
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4 Verification Results

For each of the three participating tools, we aim to evaluate the verification results on all
proposed benchmarks and the output reachable sets are shown.

4.1 NNV

We introduce the results of all the benchmarks proposed utilizing NNV.

4.1.1 Cartpole

There are currently no results for this benchmark due to the hybrid (bang-bang) nature of the
neural network controller.

4.1.2 ACC

In the case of the ACC benchmark, we present the results using the neural network controller
with 101 neurons (5-by-20) with ReLU activation functions, and we use a time horizon of 5
seconds, as shown in Figure 2.

Figure 2: NNV. Reachability analysis results of the ACC benchmark using a controller with
5 hidden layers (ReLU) of 20 neurons each.
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4.1.3 Sherlock-Benchmark-7

There are currently no results for this benchmark. When evaluating NNV on this benchmark,
CORA runs out of memory when calculating the reachable set of the plant, regardless of the
number of control steps we evaluate it on. This occurs due to a seemingly infinite recursion
when attempting to split initial states to yield more precise calculations, so it is the result of
overapproximation error growth relative to the error bound parameters used.

4.1.4 Sherlock-Benchmark-9

This benchmark has been evaluated for 2 different number of control steps 10 and 20.

Figure 3: NNV. Reachability analysis results of benchmark 7. The graph on the left shows
the reachable set for 10 control steps. The figure in the right corresponds to 20 steps.

4.1.5 Sherlock-Benchmark-10

There are currently no results for this benchmark. This arose as this benchmark has multiple
control inputs, and a tool implementation of the version of NNV evaluated did not allow for
more than one control input, although this has been generalized following the competition.

4.2 Sherlock

This section presents the analysis results on the benchmarks with Sherlock. All experiments
for Sherlock were run on an Intel Core i5 2.5GHz machine, with 8GB RAM, running Ubuntu
16.04 LTS.
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Figure 4: Sherlock. Reach sets of the ACC benchmark as obtained from Sherlock, along with
100 randomly chosen trajectories

4.2.1 ACC

The reach sets for this example has been shown in Fig 4. The initial sets shown in the figure
correspond to xlead(0) ∈ [90, 91], xego(0) ∈ [10, 11], vlead(0) ∈ [32,32.2], γlead(0) = γego(0) = 0,
vego(0) ∈ [30, 30.2]. The Sherlock could successfully verify the safety of this controller over a
bounded time horizon of 5s, for the full range. The initial set for xlead in the original benchmark
could be broken up into, smaller sub-intervals, and then verified individually. The computation
of reach sets took less to 4s to complete. A degree 1 polynomial was enough to approximate
the neural network, with a maximum error of 0.12. The percentage of time spent was 66.65% ,
and 29.23% in Sherlock and Flow* respectively.

4.2.2 Cartpole

There are currently no results for this benchmark.

4.2.3 Sherlock-Benchmark-7

The reach sets for this example are shown in Fig 5. The Sherlock could successfully verify the
safety of this controller over a bounded time horizon of 2s. A degree 2 polynomial was enough
to approximate the neural network, with a maximum error of 0.09. The percentage of time
spent was 95.7% , and 2.6% in Sherlock and Flow* respectively. The total execution time of
the reachability computation was 41s.
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Figure 5: Sherlock Reach sets of Benchmark 7 and 9 (left to right) from Sherlock along with
100 trajectories with randomly chosen initial points

Figure 6: Sherlock Reach sets of Benchmark 10 from Sherlock along with 100 trajectories with
randomly chosen initial points

4.2.4 Sherlock-Benchmark-9

The reach sets for this example are shown in Fig 5. Sherlock could successfully verify the safety
of this controller over a bounded time horizon of 20s. A degree 2 polynomial was enough to
approximate the neural network, with a maximum error of 0.06. The percentage of time spent
was 88.1% , and 8.8% in Sherlock and Flow* respectively. The total execution time of the
reachability computation was 19.2s.

4.2.5 Sherlock-Benchmark-10

The reach sets for this example are shown in Fig 6. Sherlock could successfully verify the safety
of this controller over a bounded time horizon of 10s. A degree 2 polynomial was enough to
approximate the neural network, with a maximum error of 0.03. The percentage of time spent
was 1.8% , and 97.3% in Sherlock and Flow* respectively. The total execution time of the
reachability computation was 329.3s.
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Figure 7: Verisig Reachable sets for vego and vlead for the initial condition considered by
Verisig.

4.3 Verisig

This section describes the Verisig results on the ACC and Cartpole benchmarks. Note that
Verisig does not support ReLUs, so all networks considered in this section have tanh activation
functions that were retrained with source data.

4.3.1 ACC

In the ACC example, we verified safety for the initial condition xlead(0) ∈ [90, 91], xego(0) ∈
[10, 10.5], vlead(0) ∈ [32,32.05], γlead(0) = γego(0) = 0, vego(0) ∈ [30, 30.05]. The rest of initial
condition could be verified by gridding it up into pieces of similar size and verifying for each
one. The reachable sets for the two velocities are shown in Figure 7. Note that Verisig used a
tanh-based neural network (with three hidden layers and 20 neurons per layer), so the results
are slightly different from the other tools’.

4.3.2 Cartpole

Since the controller in the Cartpole example is effectively a bang-bang controller, computing
the reachable sets for this problem requires enumerating an exponentially increasing (with the
length of the scenario) number of paths. Thus, we could not verify the system for the entire
duration of the scenario (4s). At the same, we are able to verify safety for 0.5s. Specifically, we
consider the initial set

x(0) ∈ [0, 0.01]× v(0) ∈ [0, 0.01]× θ(0) ∈ [−0.05, 0.05]× ω(0) ∈ [−0.05, 0.05],

i.e., this is the entire initial range for θ and ω and a subset of the range for x and v. The rest
of the initial set could be verified in a similar fashion.
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Figure 8: Verisig Histogram of the verifica-
tion runtimes over 100 instances on the Cart-
pole example.

Figure 9: Verisig Reachable sets for θ for
the initial condition x(0), v(0), θ(0), ω(0) ∈
[0, 0.01].

To verify the above initial set, we split it into 100 subsets (we divide the ω and θ intervals
into 10 subintervals each) and verify for each one. The average runtime over the 100 instances
is about 947s. A histogram with the runtimes over the 100 instances is shown in Figure 8.
Finally, Figure 9 shows the reachable sets for one of those instances – note that the branching
introduces multiple different (possibly spurious) paths with small uncertainty each.

Note that we used a tanh-based DNN with two hidden layers with 48 and 24 neurons per
layer, respectively.

4.3.3 Sherlock-Benchmark-7

There are currently no results for this benchmark.

4.3.4 Sherlock-Benchmark-9

There are currently no results for this benchmark.

4.3.5 Sherlock-Benchmark-10

There are currently no results for this benchmark.

5 Category Status and Challenges

In the first iteration of the AINNCS category at ARCH-COMP, the three tools NNV, Sherlock,
and Verisig successfully analyzed different aspects of the five benchmark problems. In spite
of some success analyzing the benchmarks, the primary outcome of this first iteration of the
AINNCS category are challenges that arose in the competition that we discuss next.
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Hybrid dynamics: The cartpole benchmark was included in part because its bang-bang
controller induces a form of hybrid dynamics, either a maximum or minimum control signal is
applied to the plant. This example was challenging for all tools, and as such, a primary result of
the competition is that there do not currently exist any feasible methods for analyzing hybrid
systems composed with neural network controllers. For tools that were able to model this,
specifically Verisig, issues arose including a blow-up of possible paths in the bounded model
checking. As such, approaches effective for handling hybrid dynamics need to be integrated
into the approaches for analyzing these systems.

Activation function types: For the set of benchmarks proposed, all the neural network
controllers contain only ReLU and linear activation functions4. In the future, we will add other
nonlinear activation functions such as tanh and sigmoid for a more thorough comparison, as
Verisig can only deal with these type of smooth functions, and NNV and Sherlock can only
effectively analyze plants with ReLU and linear functions (at the time this report was written),
although NNV has preliminary support for these nonlinear activations.

Neural network architectures and parameterization: When we compare the neural
network architectures presented in this work with some of the networks that can be analyzed in
absence of the plant, these are fairly simple, in the sense none of the networks have more than a
thousand neurons, neither they exceed 5 hidden layers in their architecture. Also, the maximum
number of inputs and outputs of the controllers are 5 (ACC) and 2 (Sherlock-Benchmark-10
and Cart-pole), respectively. One of the main challenges in this aspect is to analyze larger
networks and more complex plants in the same NNCS, as their complexity grows very quickly
when the plants are highly nonlinear with multiple inputs and outputs, as well as when the
number of neurons and/or layers in the controllers increase.

Additionally, the verification results presented assumed the neural networks are fixed. How-
ever, as illustrated in part with Verisig’s retraining of networks to utilize other activation func-
tions beyond ReLUs, many different architectures and parameterization of the neural network
controllers could be considered. For instance, for a fixed plant, a controller could be trained
with different numbers of layers, neurons, etc. as well as activation function types, which would
allow for evaluating scalability against a fixed plant, focusing more on the neural network as-
pects. In any event, there are state-space explosion and scalability issues to address in both
the neural network controllers and plant analysis.

Time horizons: All the competition tools performed bounded (finite) time horizon reach-
ability analysis, also known as bounded model checking. This was accomplished up to some
pre-specified number of control periods k with some pre-specified sampling period for the con-
tinuous dynamics’ evolution. Alternative approaches for performing unbounded (infinite) time
horizon verification exist, such as those building on barrier certificates, a form of continuous
analog of the classical inductive invariance proof rule. The existing methods could incorporate
invariance checks on the computed reachable states to attempt to determine if the reachabil-
ity analysis reaches a fixed-point (if the reachability analysis terminates, which for the class of
systems considered, is not guaranteed as the reachability analysis with nonlinear plants is unde-
cidable). However, no current methods evaluated in the competition utilize this approach, and
this is a promising avenue for future work to provide guarantees beyond finite time horizons.

4Except for the ACC case evaluated by Verisig.
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Model formats: We present the closed-loop simulations as Simulink files, where the con-
troller is a feedforward neural network Simulink Block, and the plant dynamics are defined
as a Stateflow model. We also provide them separately, having the dynamics of the plants as
SpaceEx models and MATLAB functions, and the neural networks in ONNX format5 and .mat
format6. One of the hopes of this competition and the NNCS benchmark proposal [19] is to
unify all the formats currently used in the neural network community. This is where ONNX
takes an important role, since it already supports multiple frameworks like TensorFlow, Caffe2,
MATLAB, and more.

6 Conclusion and Outlook

This report presents the results on the first ARCH friendly competition for closed-loop systems
with neural network controllers. In the first edition of this category three tools were applied to
attempt to solve five different benchmark problems, namely NNV, Sherlock, and Verisig. The
problems elucidated in this paper are challenging and diverse the presented results probably
provide the most complete assessment of tools for the safety verification in AINNCS. We note
that each tool has unique strengths and that not all of the specificities can be highlighted within
a single report. However the report provides a good overview of the intellectual progression
of this rapidly growing field and it is our hope to stimulate the development of efficient and
effective methods capable of being utilized within real-world applications.

We would also like to encourage other tool developers to consider participating next year.
All authors agree that although the participation consumes time, we have gained unique insights
that will allow us to improve in the next iteration. Particularly those items listed in the status
and challenges section. Information about the competition in 2020 will be announced on the
ARCH website. The reports of other categories can be found in the proceedings and on the
ARCH website: cps-vo.org/group/ARCH.
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A Specification of Used Machines

A.1 Mnnv

• Processor: Intel Core i7-7820HQ CPU @ 2.90GHz x 4

5Open Neural Network Exchange: https://github.com/onnx/onnx
6Direct input format used by NNV without transformation.
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• Memory: 32 GB

• Average CPU Mark on www.cpubenchmark.net: 9409 (full), 2070 (single thread)

A.2 MSherlock

• Processor: Intel Core i5 @ 2.5GHz

• Memory: 8 GB

A.3 MV erisig

• Processor: Intel Core i7-7820HQ CPU @ 2.90GHz x 4

• Memory: 8 GB

• Average CPU Mark on www.cpubenchmark.net: 9409 (full), 2070 (single thread)
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