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Abstract 

Artificial Intelligence is set to encompass additional decision space that has traditionally been 

the purview of humans. However, this decision space remains contested. Incongruencies 

between artificial intelligence and human rationalization processes introduce uncertainties in 

human decision-making, which require new conceptualizations that capture these distinct 

types of uncertainties. Hence, developing new ways to model human and artificial intelligence 

interactions are necessary to account for such uncertainties and improve situation awareness 

and decision-making. In this paper, we outline current conceptualizations of human and 

machine rationalities. Next, we offer the concept of rational prediction deviations (via quantum 

probability theory) for capturing uncertainty in situational awareness. Lastly, we propose a 

human-in-the-loop construct to explicate how applications of quantum probability theory in 

decision science can ameliorate situation awareness models by providing a novel way to 

capture distinct dynamics of decision making.  
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1  INTRODUCTION 
Information is a critical input to situational awareness and decision-making [1]. However, 

contemporary decision-makers are faced with two significant issues that encumber information 

processing for attaining/improving/sharing situational awareness: (1) making sense of the significant 

amount of data and (2) servicing additional informational requirements that are difficult to obtain due 

to a lack or shortage of resources. Recently, adopting artificial intelligence (AI)-based support tools is 

the solution to overcome these challenges. Augmented by several technologies such as large storage 

and processing power found in cloud computing (e.g., large quantities of graphics processing units), AI 

is promising to ameliorate information processing and situational awareness [2]. While state-of-the-art 

AI achievements show a great deal of promise, they do raise concerns for how to engineer AI into the 

human decision-making processes and augment situation management.  
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The structure of the paper is as follows. First, we review human and machine rationalities followed 

by common conceptions of human decision-making supported by automated decision aids. Next, we 

discuss quantum models of cognition and how they can potentially improve outcomes by better 

modeling uncertainty and order effects within human-AI decision-making constructs and conclude by 

outlining future research. 

 

2   AI ASPIRATIONS: DECISION SPACE 
AI is becoming more integrated into decision-making processes. In return, humans are 

increasingly disconnected spatially and temporally from what goes into algorithmic decision-making 

[3], which introduces new challenges to situation management, e.g., comprehending AI logics [4]. 

While automated decision-making may reduce human workload since the essence of decision-making 

entails the choice amongst differing options, automation may also inadvertently increase uncertainty 

[5], which can be characterized as strategic uncertainty. Hertwig et al. [6] define strategic uncertainty 

as “uncertainty about the actions of others in interactive situations” (p. 369). In managing interactive 

situations, actions of others may be difficult to understand or may unintentionally constrain decision 

options. For instance, if humans sense no degrees of freedom in choosing amongst alternatives, then 

choice may be an illusion. In such cases, humans may begin to sense a degree of arbitrariness or 

randomness in decision-making [7].  

 

2.1  Human and Machine Rationalities 
The logic of machines and humans have been characterized in separate ways. Machines’ logic 

(e.g., AI) are considered a type of formal rationalization that follows strict procedures by avoiding 

arbitrariness or situational idiosyncrasies [8]. Such logic is deterministic since the same inputs will 

always produce the same outputs, given models are not updated. This gives machine logics consistency, 

reliability, and stability with little to no variance in outcomes. While such regularity is needed in many 

different contexts, it is not always optimal in situations requiring the application of nuanced judgment 

and ordering of strategic-level goals. 

Conversely, human rationality is different. For instance, it is well-established that human 

rationality is limited and often exhibits biases [9]–[11]. Human rationality has also been characterized 

as normative or substantive [8]. Substantive rationality entails reasonableness of evidence [12]. The 

most distinctive aspect of substantive rationality is the notion that it contains the possibilities of 

counterfactual reasoning or what the world ‘could be’ [13]. This aspect of counterfactual rationality is 

something AI cannot perform [14], which makes human rationality the sine qua non for higher decision 

quality. Undoubtedly, AI can augment human rationality by allowing cognitive offload of certain tasks 

or by enhancing our computational abilities [15]. Although humans and AI rationalities can complement 

each other [16], the challenge is how to manage situations in which these two types of rationalities 

become incongruent.  

 With AI on the ascendency in many areas, situation management will face challenges for how to 

integrate humans and AI systems reciprocally. For the near future, human interventions will be critical 

to sensing the strategic environment and deciding how and when to update algorithmic systems, 

otherwise, the risk of algorithmic mismatch will increase and invite disaster [17]. Having incongruent 

perspectives between AI and humans is often situational. Such new conceptualizations and engineering 

require efforts that are situationally relevant, such as humans-in-the-loop with AI. While most final 

decisions will rest with humans, both theoretical and empirical research demonstrates that humans can 

be influenced by AI advice by experiencing inflated uncertainty [18], [19]. Therefore, understanding 

human conformity to AI advice is necessary for developing and engineering new human-in-the-loop 

(HITL) concepts.  
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2.2  Conformity to Machine Logics 
Human conformity to the other-than-self, such as society, culture, or human peers is well-

established within literature. More recently, scholars have wanted to know if technologies could have 

similar influences on human conformity. In early research, for instance, Meehl [20] showed that people 

prefer human-derived decisions, rather than results from a statistical model, despite models 

outperforming human capabilities [21]. These earlier studies demonstrated that algorithms regularly 

outperformed human experts, on average, by about ten percent [22]–[24]. On the other hand, a study by 

Logg et al. [25] found that over the course of six experiments, people adhered more to algorithmic 

advice than human advice and that forecasting experts relied less on algorithmic advice, which hurt 

their overall performance.  

Biased algorithms also pose numerous problems for perpetuating human proclivities to use AI 

recommendations inappropriately. For instance, workers can be misled by an AI’s erroneous 

recommendation even when its results are clearly incorrect [26]. Also, users may tend to heavily 

conform to AI advice even after considering that advice as incorrect [27]. Similarly, people supported 

by AI-powered decision support systems often accept an algorithm’s incorrect suggestions [28]. For 

these reasons, AI and algorithmic technologies have the potential to influence human behaviors in ways 

that skew irrational decisions – e.g., interference effects, which may result in suboptimal outcomes and 

automation bias.  

 

2.3  Human vs. Machine Performance 
Humans and machines both have strengths and weaknesses [29]–[32]. One of the first lists put 

forward was the framework of Machines-Are-Better-At and Humans-Are-Better-At (MABA-HABA) 

[33], [34]. The Fitts’ List was developed at a time when a demarcation between human and machine 

tasks were more distinct [35], [36]. Newer AI-based systems are better at mimicking humans in the 

cognitive domain [36], which can add additional complexities to decision-making or augmenting 

situational awareness. For example, AI is classifying images previously performed by humans, but there 

still exists little understanding on how AI makes such classification decisions [37]. However, concerns 

have been raised that such algorithmic systems are easily duped by slight modifications [38]. 

Understanding how humans make sense of AI outputs is therefore necessary to explicate their role 

situationally in HITL systems.  

 

2.4  Human-in-the-Loop Decision Making 
AI is already supporting human decision-making in many ways and gradually taking over more 

decision space [39]. In the evolution from “tool” to “partner” and now to “leading” status, the 

conceptual coverage of human-computer interaction research [30] requires further conceptual work to 

map out and improve decision and information sciences. For example, critical to adopting AI into the 

decision-making processes is understanding the distinct roles humans can have within a HITL system 

to provide additional insights into situational decision-making. Crootof et al. [41] define a HITL as “an 

individual who is involved in a single, particular decision made in conjunction with an algorithm” (p. 

12). Crootof et al. [41] also identified nine distinct roles a human can fulfill for a HITL system provided 

in Table 1. While such roles can specify oversight to algorithmic decisions, system performance and 

abilities of individual humans may further determine when, where, and how people are situationally 

incorporated into a HITL system. 
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Human Roles Reason for adding a Human-in-the-Loop 

1. Corrective Roles Improve system performance, including error, situational, and bias 

correction 

2. Reliance Roles Act as a failure mode or alternatively stop the whole system from 

working under an emergency 

3. Justificatory Roles Increase the system’s legitimacy by providing reasoning for 

decisions 

4. Dignitary Roles Protect the dignity of the humans affected by the decision 

5. Accountability Roles Allocate liability or censure 

6. Stand-in Roles Act as proof that something has been done or stand in for other 

humans and human values 

7. Friction Roles Slow the pace of automated decision-making 

8. Warm Body Roles Preserve human jobs 

9. Interface Roles Link the systems to human users 

Table 1 – HITL Roles. Adapted from [41]. 

 

2.5  OODA Loop 
  In this paper, we use the observe, orient, decide, and act loop (OODA loop) as a general model 

for explicating human and AI decision-making. The OODA loop has both a rich history of use and is 

embedded in the psyche in areas from business to the military [42], [43]. The OODA loop provides an 

easy and understandable relationship between sensing and acting in any demanding environment [44]. 

Moreover, the OODA loop is the model observers refer to when discussing automation with humans 

“in-the-loop,” “on-the-loop,” or “out-of-the-loop” [45].  

 The OODA loop consists of four major components. Figure 1 provides a representation of the 

OODA loop as depicted by its creator, U.S. Air Force Colonel John Boyd. The observation step consists 

of an agent sensing and taking in information from the environment. This may consist of computerized 

sensors that generate output or ordinary human sense perceptions. Subsequent to observation is the 

orientation step where informational content is either pulled or pushed from sensors. The orientation 

step (i.e., orient) provides the key to understanding human information processing in decision-making 

and is considered the most critical component of the OODA loop [43]. Orientation contains the five 

components of genetic heritage, cultural traditions, previous experiences, new information, and 

analysis/synthesis interconnected to form a fully connected graph structure [46]. The output of the 

orientation step feeds forward and generates one or more courses of action or decisions that may be 

viewed as hypotheses in the mind of the agent. The decision step consists of deciding amongst two or 

more of the generated hypotheses. In the last step, decisions are acted upon, and the results are fed back 

into the observation step for evaluation and combined with the latest information for the process to 

iterate.  

The five components of the orient phase and their interactions are challenging to operationalize. 

However, the quirks of the orientation step can be modeled with respect to a subsequent path to the act 

step, shown in Figure 1. These two paths are synonymous with Kahneman's [21] dual process theory of 

cognition [47]. As [47] points out, the implicit guidance path of the OODA loop is equivalent to 

Kahneman's [10] System-1, which consists of fast, intuitive decision making. The implicit guidance and 

control path goes directly to the act step of OODA loop because an observation matches a known 

heuristic for taking an action. The OODA loop also accommodates a System-2 approach which consists 

of a slower, more deliberate decision-making process. Implicit guidance accentuates OODA loop, in 

return, it demystifies linearly depicted decision processes in situational awareness model put forth by 

Endsley [48]. 

 The OODA loop also contains several sources of feedback. These feedback loops supply 

information for the observation step of OODA loop. These nested loops can consist of varying time 
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horizons and various levels of analysis. For instance, the two feedback loops that stem from the act step 

implies both an immediate action that can be observed and more holistic feedback within the larger 

environment. As a result, these feedback loops are combined with new information for the process to 

cycle again. 

 
Figure 1 – John Boyd’s OODA Loop. Adapted from [43]. 

 

2.6  The Orientation Step 
Orientation step not only influences all other steps in the OODA loop, but also is an interactive 

process that additionally influences the character of future orientation [43]. In its current 

conceptualization, the OODA loop is agnostic to the inputs it receives, whether it originates from 

computer systems, direct observation, or another human agent. However, it has been shown empirically 

that people perceive information from AI differently [49]–[56]. Combined with tendencies to 

anthropomorphize computers in general [57], and AI systems particularly [58], humans may treat AI as 

more intelligent, which could lead to suboptimal decision outcomes.  

The orientation step of the OODA loop is also a black-box process. This is problematic for at least 

three reasons. First, Boyd never provided justification or a clear explanation for choosing the five 

components that make up the orientation step. Moreover, it is unclear how such factors are weighted 

within a decision-making process. Second, it is unclear why the five components are depicted in a fully 

connected graph structure. While fully connecting all five components of the orient step in a complete 

graph may convey the notion of complexity, there exists no justification for this or supporting evidence 

in other bodies of research. Third, the orientation step, as currently conceptualized, does not indicate 

where one should begin the orientation step. For instance, what would determine first starting at the 

component of ‘genetic heritage’ over ‘new information,’ then subsequently moving to one of the other 

four components? In other words, what in the orient process triggers the recognition of affordances in 

the current situation [59]?  

The current conceptualization of the orientation step in the OODA loop is inadequate for 

understanding HITL processes when it comes to humans and AI decision-making. To make the 

orientation step more applicable to decision processes that involve AI, it is necessary to ameliorate the 

relation between the orientation step and act step with a higher level of abstraction and analysis. Rather 

than prescribing specific components to the orientation step, abstracting to a higher level can accentuate 

the characteristic of orientation step in two ways. First, it can provide a more generalized level of 

analysis that is not constrained by Boyd’s five components of the orient step, which currently lack 

justification. Second, abstracting to a higher level of analysis can provide a more tractable set of 

concepts for integrating human and machine intelligence. A tractable set of concepts includes only the 
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perspectives necessary to form the full space of decision alternatives while also accounting for distinct 

types of uncertainty. In particular, including uncertainty within the orientation step, entails the concept 

of rational prediction deviation for reconciling human and AI situational awareness.  

 

2.7  Rational Prediction Processes 
To understand the concept of a rational prediction deviation, we start with a short scenario. 

Suppose, for instance, a vehicle equipped with AI-driving assistance exhibits an action that is 

incongruent to a human’s intention or expectations that results in the human experiencing uncertainty 

(e.g., unexpected acceleration, braking, or steering correction). This uncertainty can be understood as a 

dichotomy of reference frames; these reference frames are classified as observer and participant frames. 

From the participant’s reference frame, AI accesses more information, and a human can reduce this 

uncertainty by accessing the information in the environment either by pulling information or having AI 

push this information. This type of uncertainty is known as epistemic uncertainty, which is reducible 

by accessing more information from the environment. The second type of uncertainty is associated with 

the observer’s reference frame. In this case, the human agent knows everything about the system, yet, 

knowing more does not reduce this type of uncertainty, which is called ontic uncertainty [60]. This type 

of uncertainty introduces what we call a rational prediction deviation between the human and AI-driver 

assistant. This deviation is observed when the human cannot process multiple perspectives associated 

to the event simultaneously [61].   

Next, suppose before receiving any information from another information processing agent (e.g., 

AI), the human agent has his/her own perspective concerning the phenomenon in a situation. For 

simplicity, this perspective involves two decision outcomes, A and B; the human agent is 

probabilistically closer to deciding A (𝑃𝑟𝑜𝑏(𝐴) ≫ 𝑃𝑟𝑜𝑏(𝐵)). Subsequently, the human agent receives 

conflicting information about the phenomenon in question from an AI. This information is categorized 

as conflicting information because AI recommends “B,” while the human 𝑃𝑟𝑜𝑏(𝐴) ≫ 𝑃𝑟𝑜𝑏(𝐵). As a 

result, the received information introduces a difference in rational prediction, or rational prediction 

deviation, because the two perspectives cannot be processed simultaneously [61], [62]. Yet, if two 

perspectives can be processed simultaneously, it means that 𝑝𝑟𝑜𝑏(𝐴 ∩ 𝐵) = 𝑝𝑟𝑜𝑏(𝐵 ∩ 𝐴) is held true 

and perspectives are called compatible (e.g., obeys the commutative property). If the two perspectives 

cannot be processed simultaneously, 𝑝𝑟𝑜𝑏(𝐴 ∩ 𝐵) ≠ 𝑝𝑟𝑜𝑏(𝐵 ∩ 𝐴) is not held true (e.g., 

noncommutative), then the perspectives are identified as incompatible, which gives rise to what we term 

as a rational prediction deviation.  

When perspectives are incompatible, three outcomes are observed: (1) a joint probability 

distribution cannot be formed; (2) non-negligible systemic order effects are observed; and (3) a violation 

of the law of the total probability occurs. However, critical to the modeling of a cognitive phenomenon 

is that the axioms of classical probability theory (CPT) do not support incompatible perspectives (i.e., 

prob(A ∩ B) ≠ prob(B ∩ A)) and a different system of probability must be used to model such 

cognitive phenomena [63].  

One approach that has sought to address uncertainty with evidence accumulation models is 

Dempster-Shafer Theory (DST). DST operates on a mathematical property of conjunctive pooled 

evidence [64]. An assumption also built into DST is based on an independence of sources of such 

evidence [64]. However, modeling evidence accumulation in DST does not account for interaction and 

context effects when information is received in a particular order (e.g., being notified of a win before a 

loss). Additionally, DST models do not consider uncertainty inherent in the mind of a decision-maker, 

but only the environment. Models such as DST do consider aleatory uncertainty, but do not effectively 

model this uncertainty that is experienced by a decision-maker. An effective way of modeling aleatory 

uncertainty is taking into account ontic type of uncertainty, which is rather a more accurate 

determination of the source of aleatory uncertainty because it typifies the stochastic interactions and 
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incompatibilities that may arise from different states of the world [65]. To address the shortcomings of 

DST, we offer to improve models with the quantum models of cognition for decision-making. 

 

3  QUANTUM MODELS OF COGNITION FOR DECISION-MAKING 
The application of quantum probability theory (QPT) axioms provides a novel ontology for 

decision-making concepts for several reasons. First, the concept of measuring a system recognizes that 

observations change the system [66]. Second, QPT axioms are applicable to decision science because, 

contrary to conventional wisdom, judgments “create” rather than records what existed before a 

judgement [62]. Third, research has consistently demonstrated violations of CPT in human judgment 

and decision choices. As a result, violations of CPT make it difficult for developing combinations of 

HITL-AI systems because incongruencies will eventually emerge and give rise to uncertainty, which 

may result in poor decision-making. Equally important, assuming the generalization of one probabilistic 

model, may result in oversight and incompleteness in AI decision support for situational awareness. To 

move towards improving decision-making quality with AI, we must understand how violations of CPT 

are situationally manifested. For this, we turn to a discussion on several examples that show violations 

of classical probability in HITL-AI systems.  

 It is conjectured that QPT can help improve HITL-AI outcomes by anticipating situational 

dynamics that can induce interference effects that arise through human and machine interactions within 

decision-making. The combination of different outcomes due to the nature of different probabilities 

brought about by interference effects can prevent understanding potential emergent behaviors [68]. 

Therefore, to leverage the advantage of QPT, incompatibility of different perspectives must be 

ascertained [69].  

One way to visualize the incompatibility of different perspectives in QPT is to use a Hilbert space. 

Hilbert spaces provide a geometric visualization to study both judgment and decision-making [70]. A 

Hilbert space is an N-dimensional vector space and the state vector, |𝑆⟩ is projected on to orthogonal 

basis vectors, A and B, that represent mutually exclusive choices (e.g., yes/no, true/false, buy/sell).  

Furthermore, additional perspectives can be overlayed and rotationally offset from one another to 

represent different perspectives (i.e., Human, AI) as shown in Figure 2. Figure 2 demonstrates the 

different results one obtains depending on the order perspectives are taken. The difference between 

Figure 2(a) and Figure 2(b) displays graphically how commutativity is not obeyed in QPT, which is 

indicative of order effects and thus demonstrated by the differences in the lengths of the green 

projection. The QPT approach can therefore mathematically model situations in which incongruent 

perspectives can reveal different outcomes when the order of perspectives engenders different contexts 

to each other in information processing.  
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Figure 2 - Order Effects as demonstrated with QPT. The probabilistic difference between two situations is the difference between 

the length of square of the green bar in (a) and (b); this is conceptualized as a rational prediction deviation. Adapted from [69]. 

 

In QPT, events are represented as subspaces in Hilbert space. For example, in Figure 2, a system, 

S, is represented with the bases, |𝑋1⟩ and |𝑋2⟩, which are the subspaces of a two-dimensional Hilbert 

space. The cognitive system |𝑆⟩ is represented as the superposition of the subspaces |𝑋1⟩ and |𝑋2⟩, |𝑆⟩ =
 𝑎|𝑋1⟩ + 𝑏|𝑋2⟩, in this equation, “a” and “b” symbolize the primitive amplitude, which is represented 

with complex numbers, which form the foundation of the probability calculation within QPT. The 

probability of an event, |𝑋1⟩, is calculated by projecting the cognitive state vector |S⟩  on the subspace 
|𝑋1⟩ (i.e., dashed lines). A projection operator can be written as 𝑃𝑋1

= |𝑋1⟩⟨𝑋1|. If 𝑃𝑋1
 operates on a 

superposition vector 𝑃𝑋1
|𝑆⟩ = |𝑋1⟩⟨𝑋1|(𝑎|𝑋1⟩ + 𝑏|𝑋2⟩) = ⟨𝑋1|𝑎|𝑋1⟩|𝑋1⟩, the inner product is 

⟨𝑋1|𝑋2⟩ = 0 because of orthogonality; the probability of event A is calculated as 𝑝(𝑋1) =
|⟨𝑋1|𝑎|𝑋1⟩|2 = 𝑎2. 

In real decision-making environments, decision makers may not explicitly question whether they 

trust information from an AI agent. However, the order in which information is received sets the context 

for subsequent information processing. For instance, while making decisions, decision makers receive 

information (from an AI or human) concerning the phenomenon of interest. After receiving information, 

the decision maker rationalizes the source of the information. In this rationalization process there are 

two scenarios. In the first scenario, the self, and the other (e.g., AI) perspectives (𝑃) are commutative, 

which means (𝑃𝑆𝑒𝑙𝑓𝑃𝐴𝐼) − (𝑃𝐴𝐼𝑃𝑆𝑒𝑙𝑓) =  0 or close to zero. In this type of situation, there is no 

negligible conflict between the two perspectives for decision-makers. In the second scenario, the self 

and the AI perspective are incompatible when taken in different order. This means that (𝑃𝑆𝑒𝑙𝑓𝑃𝐴𝐼) −

(𝑃𝐴𝐼𝑃𝑆𝑒𝑙𝑓) ≠  0. In this situation, depending on magnitude of the conflict between two perspectives, a 

decision maker experiences a rational prediction deviation, which means (𝑃𝑆𝑒𝑙𝑓𝑃𝐴𝐼) − (𝑃𝐴𝐼𝑃𝑆𝑒𝑙𝑓) >  0. 

Rational prediction deviations may be resolved through a number of different ways. Combinations of 

inquiring how AI justifies its decision(s) or searching out additional information can resolve such 

incongruencies. This does not mean that a rational prediction deviation must go to zero to decide. 

Decision makers will likely have different thresholds depending on their experience, context, and the 

nature of the decision (e.g., high-risk vs. low-risk scenarios). 

In the case of having a single perspective, the state of the human can remain at this state and update 

his/her probability values concerning the two possible outcomes. When the decision process involves 

multiple perspectives to represent an other-than-self – in this case of an AI’s perspective – the system 

state can start alternating between two different perspectives as shown in Figure 2. Modeling the 

situation shown in Figure 2 can result in extreme subjective predictions if the perspectives are 

incompatible, which can result in complex situations [61]. For these reasons, order effects can be more 
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generalized in QPT. In the case of human systems, an initial judgment generates the context for 

subsequent decisions or categorizations, thus potentially making events non-commutative. 

If humans can access the same phenomenon, he/she may be able to resolve the incongruent 

perspectives problem. However, when a human does not have direct observation of a particular 

phenomenon and relies on only an AI assessment and recommendation, it places the human in the AI 

loop. Figure 3 shows A HITL construct where the human does not have access to the phenomenon and 

is put in the AI decision-making loop for one or more of the nine reasons by Crootof et al. [41]. In these 

types of situations, interactions with an AI may introduce an ontic type of uncertainty while attempting 

to reduce epistemic uncertainty (e.g., accessing more information from the environment). More 

importantly, the human can be directed to a specific decision via these interactions [19]. 

 

 
Figure 3 - Multiple Loops. The human agent has no access to the phenomenon and is reliant upon an AI’s assessment and 

recommendation. 

 

This lack of epistemic transparency prevents the human agent from fully grasping AI 

recommendations and decisions. More importantly, the axioms that are used to build AI systems may 

not be held true in complex situations, in which the violations of the law of total probability can be 

observed [18]. Consequently, an AI system, that is built with the axioms of CPT, may not be able to 

form a joint probability between its own perspective and the human perspective. Russell [71] 

characterizes this situation as, “rationality for two,” which becomes impossible with each agent trying 

to second guess the other. When AI advice is incorrect, probabilistically a human agent perceives this 

answer by representing it with a particular perspective. As a result, decision-making with AI calls for 

modeling approaches that can capture not only uncertainties, but how to better engineer human and AI 

interactions to improve shared situational awareness. The following provides an example based on 

recent empirical findings. 

As decision-making becomes increasingly supported by AI-based decision aids, the HITL could 

become subject to a number of different incompatible events as seen in Figure 4. These effects, 

suggested in the research, include order effects and concept categorization [9], [62], [72], [73]. These 

can generally be classified as interference effects. Cognitive processes can give rise to interference 

effects when attempting to process events that results in incompatible cognitive 

representation/perspectives [61], [74]. For instance, AI may provide annotated images or video as an 

input to the HITL process for building situation awareness. However, if a human screener understands 

the object to be of a different nature (e.g., AI says, “school bus;” human says, “military transport”), a 

human can experience an interference effect, because of these incompatible perspectives, a human 
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(depending on the mental variety of the individual) may not process both perspectives (human’s and 

AI’s perspectives) simultaneously. In complex situations, these types of events may further be 

exacerbated by a host of additional inputs to situation awareness and decision-making. 

 

 
Figure 4 – Incompatible events in complex situations 

 

In such cases, classical modeling techniques, such as Markov evidence accumulation models, 

require modeling the human’s uncertainty with a definite state at any given time. However, such 

modeling of uncertainty does not truly capture a human’s vacillation within their mind. Moreover, 

asking a question about a state can induce or create a definite state where none existed before [62]. 

Therefore, situation awareness techniques such as the Situation Awareness Global Assessment 

Technique (SAGAT) [75] can create states that may not have previously existed, as opposed to 

recording the awareness; as a result, in situations involving interference effects, the awareness between 

the two decision makers, can be significantly different. 

Recent research has captured oscillatory behaviors in participant choices over time. Research 

performed by Kvam et al., [60], suggests that human behaviors can be dampened or bolstered in two-

stage decision processes. However, conventional models can fail to capture such behaviors in a 

comprehensive way. An experiment that closely followed [60], suggests similar results when decision-

making was supported by AI. The experiment outlined in [76] (forthcoming) elicited oscillatory 

behavior and a bolstering effect in the choice condition (explicitly agree/disagree with AI) over the no-

choice condition (not eliciting whether agree/disagree with AI)  shown in Figure 5. 
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Figure 5 – Delegation strength over time intervals 

 

 These demonstrated behaviors pose issues for modeling human decision-making supported by 

AI, but this is not all. In the same experiment by [76], violations of total probability were observed   

with various threshold values of delegation [77] (forthcoming). Table 2 shows the violation of total 

probability, which cannot be captured  with CPT.  As a result, in these types of situations, the models 

of situation awareness and decision-making require techniques that can capture these behaviors in 

order to engineer human and AI interactions in a comprehensive way. 

 

 
 

Table 2 – Violations of total probability 

 

4  DISCUSSION 
In this paper, we discussed the different considerations for how human and AI situation awareness 

and decision making is conceptualized within HITL constructs. If AI takes over additional 

awareness/decision space as projected in the literature and media, researchers will need to carefully 

consider how humans and AI are integrated for improving situational awareness and decision-making.  

Significant work lies ahead for developing HITL-AI systems. How to incorporate humans into AI-

augmented situational awareness and decision-making will take on many different forms. It is clear 

from the research that humans and AI systems will continue to engage in shared decision-making [78], 

[79]; the questions will be what decisions are ceded to AI and how will organizations align their 

different rationalities. However, using QPT in the design of HITL-AI systems also opens the door for 
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reevaluating previous research. For instance, earlier research such as the belief-adjustment model [80] 

that found order effects due to recency bias or weighting information based on temporal arrival, could 

be revaluated with QPT. Without capturing the correct dynamics, HITL-AI systems will exacerbate 

decision cycles as engineers attempt to reconcile human and AI rationalities. Future research will need 

to address how HITL-AI systems operate as time pressures increase and what may be done to improve 

decision-making in high-tempo and ethically significant operations with comprehensive frameworks. 

 

5  SUMMARY 
QPT and similar efforts to formulate a concept of Quantum Decision Theory, have provided novel 

results that can better model uncertainty and human decision-making behaviors. Applying QPT to 

human and machine situational awareness models is still at a nascent stage of development at the 

human-machine dyad level [68], [81]. In short, QPT modelling can ameliorate interactions by providing 

a novel way to capture diverse types of uncertainty within human-AI decision systems and therefore, 

advance human-machine engineering efforts for improving decision-making and situation awareness.  
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