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Abstract

Many strategies have been exploited for the task of feature selection, in an effort to identify more
compact and better quality feature subsets. Such techniques typically involve the use of an individual
feature significance evaluation, or a measurement of feature subset consistency, that work together
with a search algorithm in order to determine a quality subset. Feature selection ensemble aims to
combine the outputs of multiple feature selectors, thereby producing a more robust result for the
subsequent classifier learning tasks. In this paper, three novel implementations of the feature selec-
tion ensemble concept are introduced, generalising the ensemble approach so that it can be used in
conjunction with many subset evaluation techniques, and search algorithms. A recently developed
heuristic algorithm: harmony search is employed to demonstrate the approaches. Results of exper-
imental comparative studies are reported in order to highlight the benefits of the present work. The
paper ends with a proposal to extend the application of feature selection ensemble to aiding the de-
velopment of biped robots (inspired by the authors’ involvement in the joint celebration of Olympic
and the centenary of the birth of Alan Turing).

1 Introduction
The main aim of feature selection (FS) is to discover a minimal feature subset from a problem domain
while retaining a suitably high accuracy in representing the original data [9]. Practical problems which
arise when analysing data in real-world applications are often related to the number of features (so-
called “curse-of-dimensionality” [2]), and the inability to identify and extract patterns or rules due to
high inter-dependency amongst a large number of individual features. Human evaluation and subsequent
pattern identification is also limited when considering such datasets [58]. Techniques to perform tasks
such as text processing, data classification and systems control [32, 38, 46, 47] can benefit greatly from
FS, once the noisy, irrelevant, redundant or misleading features are removed [22].

Given a dataset with N features, the task of FS can be seen as a search for an “optimal” feature
subset through the competing 2N candidate subsets. Optimality of subsets is subjective, depending on
the problem at hand, and a subset that is selected as optimal using one particular evaluation function
may not be equivalent to that of a subset selected by another. Various evaluation techniques have been
developed in the literature to judge the quality of the discovered feature subsets. Several techniques rank
the features based on certain importance measures, for example, information gain, chi-square analysis
[62], symmetrical uncertainty measure [45], and the RELIEF algorithm [25]. This category also includes
an approach that exploits the Good-Turing frequency estimation [43] that was originally developed by
Alan Turing and his colleagues to aid the decryption of German communications during the Second
World War. It works on the basis of estimating the number of times a certain feature would have
occurred in a dataset if the dataset was perfectly representative of the problem domain.

Recent trends in developing feature selection methods focus on evaluating a given feature subset as
a whole instead of measuring on an individual feature basis. This forms an alternative approach to the
aforementioned. Popular methods include the fuzzy-rough feature selection [21, 23, 33], probabilistic
consistency based feature selection [10], and correlation-based feature subset selection [16]. These
techniques together with individual feature-based methods are often collectively classified as the filter
based approach. Such an approach is usually used as a preprocessing step and is independent of any
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learning algorithm that may be subsequently employed. Wrapper methods [19, 24] in contrast to the
filter techniques are often used in conjunction with a learning or data mining algorithm, where the
learning algorithm forms part of the feature validation process. The generalised wrapper algorithm
is similar to the filter approach apart from the fact that a learning algorithm is employed in place of
an evaluation metric as used in the strict filter methods. Note that hybrid algorithms [63] exist which
attempt to combine the benefits provided by both types of approach.

Many of the existing mechanisms for feature selection follow the general principle of supervised
learning, be they filter or wrapper based approaches. As such, they work by relying on identified cor-
relations between class or decision labels and the underlying feature values [29]. However, in many
real-world applications, the thorough interpretation of a large data may become infeasible and hence,
the amount of labelled training samples is often limited. This makes unsupervised feature selection
algorithms [4, 5, 30], and semi-unsupervised learning [31] techniques potentially beneficial and desir-
able [15]. The resulting techniques base their judgements on particular characteristics of data values,
typically captured by entropy [8], data reliability [5] or locality preserving ability [61].

Independent of the learning mechanism, a common issue that all FS methods need to address is
how they search for an “optimal” feature subset. To this end, an exhaustive method may be used,
however it is often impractical for most datasets. Alternatively, hill-climbing based approaches have
been exploited where features are added or removed one at a time until there is no further improvement
to the current candidate solution. Unfortunately, these approaches may lead to the discovery of sub-
optimal subsets, both in terms of the evaluation score and the subset size. Other algorithms therefore
adopt random search or heuristic strategies in an attempt to avoid such short-comings. These include
nature inspired heuristics such as genetic algorithms (GA) [57], genetic programming [40], and particle
swarm optimisation (PSO) [54].

Harmony search (HS) [14, 27] is a relatively new meta-heuristic algorithm that mimics the impro-
visation process of music players. The HS algorithm has been very successful in a wide variety of
engineering optimisation problems [13, 52] and machine learning tasks [35, 37]. It has demonstrated
several advantages over traditional optimisation techniques. HS imposes only limited mathematical
requirements and is not sensitive to its initial parameter settings. New potential solution vector is gener-
ated after considering all existing vectors. The base algorithm has been improved by methods that adapt
its parameters during the search process [7, 34]. Taking advantages of the resulting powerful search
methods, an FS algorithm based on HS has recently been developed [11]. Although the performance of
this new development is promising, it merely contributes to the family of FS techniques as yet another
single method that produces a single feature subset of features when presented with a training dataset.
The performance of such techniques may vary significantly over different problem domains.

“Feature selection ensemble” (FSE) is an ensemble-based method that aims to construct a group
of feature subsets, and then produce an aggregated result out of the group. In so doing, the perfor-
mance variance of obtaining a single result from a single approach can be reduced. It is also intuitively
appealing that the combination of multiple subsets may remove less important features, resulting in a
compact, robust, and efficient solution. Ensembles of feature ranking techniques have been studied in
the literature for the purpose of text classification [41] and software defect prediction [53], they work by
combining the ranking scores or exploring the rank ordering of the features. Additionally, feature redun-
dancy elimination has been achieved by the used of tree-based classifiers ensembles [50]. A number of
terms similar to FSE have been introduced in the literature to represent a variety of different meanings,
most of which refer to classifier ensembles built upon feature subsets (e.g. [42]).

In this paper, three novel approaches that implement the (FSE) concept are proposed. These in-
clude: 1) building ensembles using stochastic search algorithms, 2) generating diversity by partitioning
the training data, and 3) constructing ensembles by mixing various different FS approaches. A prelimi-
nary, agreement threshold based approach for subset aggregation is also proposed, which may simulate

290



Feature Selection Ensemble Shen, Diao and Su

the popular “majority voting” scheme [48] often adopted by various ensemble approaches to classi-
fier learning. The proposed methods are more flexible than the existing techniques, allowing feature
subset evaluators to be used in conjunction with feature ranking. The stochastic search based, and the
data partition based methods are able to spawn ensembles from just a single FS algorithm, which may
potentially reduce the need to configure multiple base feature selectors.

The remainder of this paper is structured as follows. Section 2 describes how FS may be modelled
as an optimisation task solvable by HS, and details the approaches developed to tackle such a problem.
A feature evaluation metric that makes use of data reliability measures is introduced in section 3, which
also serves to provide an overview of how unsupervised data analysis techniques can be employed to
tackle FS tasks. The three proposed implementations of the FSE concept are explained in section 4,
where illustrative flow charts and pseudo codes of the algorithms are provided to aid understanding. In
addition, this section outlines a complexity analysis of the proposed implementations. Section 5 presents
the experimentation carried out on real-world problem cases [1]. A discussion is also given in this
section that attempts to empirically identify important characteristics of the presented methods. Finally,
section 6 concludes the paper and proposes further research in the area. It also addresses a different
application domain of FS from that of pattern classification, proposing the use of the FSE techniques to
support the development of biped robots (which is inspired by the authors’ involvement in the upcoming
joint celebration of 2012 London Olympic and the centenary of the birth of Alan Turing).

2 Feature Selection with Harmony Search

2.1 Key Concepts

Harmony Search (HS) [27] mimics the improvisation process of musicians, during which, each musician
plays a note for finding a best harmony all together. The basic concepts of HS and application of such
concepts in performing optimisation are outlined below, together with an introduction to the dynamic
parameter control involved in HS.

The key concepts of HS are musicians, notes, harmonies and harmony memory (HM). In most
optimisation problems solvable by HS, the musicians are the decision variables of a certain function
being optimised. The notes played by the musicians are the values each decision variable can take.
The harmony contains the notes played by all musicians, or an emerging solution vector containing the
values for each decision attribute. The harmony memory contains harmonies played by the musicians,
or a storage place for potential solution vectors. A more concrete representation of harmony memory is
a two dimensional matrix, where the rows contain harmonies (solution vectors) with the number of rows
being predefined and bounded by the harmony memory size. Each column is dedicated to one musician,
and the entire column stores all the notes played by the musician in all saved harmonies, referred to as
the working note domain for each musician in this paper.

Harmony Search for FS(HSFS) [11] treats musicians as independent experts, and each musician can
vote for one feature to be included in the feature subset when improvising a new harmony. The harmony
is then the combined vote from all musicians, indicating which features are being nominated. The entire
pool of original features forms the range of notes available to the musicians. Multiple musicians are
allowed to choose the same feature, and they may opt to choose no feature at all. For example, the
harmony {A,−,B,B,C,−} translates into feature subset {A,B,C}, − here represents a null note.

2.2 Iteration Steps

HS can be divided into two core phases, initialisation and iteration, as illustrated in Fig 1.
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Figure 1: Illustration of Harmony Search

• Initialise Problem Domain The parameters of HS are assigned according to the problem, includ-
ing: size of harmony memory, number of musicians, max iteration, and the harmony memory
considering rate (HMCR). The harmony memory of size m is initialised by random generation.
This provides each musician a working note domain of m values, which may include identical
notes, and nulls. A new harmony is produced by each musician randomly choosing one feature
from their note domain. The new harmony is then evaluated using the given cost function. It
is used to replace the worst harmony in the harmony memory if a better score is achieved, or
discarded otherwise.

• Improvise New Harmony A new value is chosen randomly by each musician out of their note
domain, and together forms a new harmony. The HMCR parameter, ranging from 0 to 1, is
the rate of choosing one value from the historical notes stored in the harmony memory. With
(1 − HMCR) set to be the rate of randomly selecting one value from the range of all possible
notes of the corresponding variable. If HMCR is set low, the musicians will constantly explore
other areas of the solution space, and a higher HMCR will restrict the musicians to historical
choices. The other dynamic parameter: pitch adjustment rate (PAR) is not employed for the
purpose of FS[11], because no general dependency exists between neighbouring features, where
the original intention of PAR is to adjust to neighbouring values to refine solution quality.

• Update Harmony Memory If the new harmony is better than the worst harmony in the harmony
memory, judged by the objective function, the new harmony is then included in harmony memory
and the existing worst harmony is removed. The algorithm continues to iterate until the maximum
number of iterations has been reached.

• Parameter Control To improve HS and eliminate the drawbacks lying with the use of fixed pa-
rameter values, a dynamic parameter adjustment scheme [11] was proposed to modify parameter
values at run time. Parameters are gradually varied through a process of: initial solution space ex-
ploration, intermediate solution refinement, and fine tuning optimal solution towards termination.

3 Data Reliability Based Feature Selection
Data-oriented operators such as the dependent ordered weighted averaging (DOWA) utilise centralised
data structures to generate reliable weights [59, 60] for aggregating information. An efficient nearest-
neighbour-based method for the assessment of data reliability or relevance has been proposed [5] in
which the local data structure that represents a strong agreement of consensus on information can be
explored. This reliability measure is effective to discriminate the weight of different input arguments;
and the local neighbouring context which has previously been realised as a closest cluster is replaced by
a set of K nearest neighbours.
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More formally, given a collection of data arguments A = {a1, · · · , aL}, let NK
ai

be a set of K
nearest neighbours of an argument ai, where NK

ai
⊂ A, nj ∈ NK

ai
, nj 6= ai, j = 1, · · · ,K. The

reliability measure RK
ai
∈ [0, 1], i = 1, · · · , L can be computed such that:

RK
ai

= 1−
DK

ai

Dmax
, DK

ai
=

1

K

∑
∀nj∈NK

ai

|ai − nj | (1)

where Dmax = maxap,aq∈A,ap 6=aq
|ap − aq|.

The nearest-neighbour-based method presents two main advantages. First, the otherwise high com-
putational cost required by conventional approaches to cluster-based measuring of data reliability is
reduced. Both time and space complexity decrease, from O(L3) to O(L2) and O(L2) to O(L), re-
spectively. Second, the nature of the distributed approach to clustering is not only preserved but also
reinforced such that arguments very far from the global centre can be considered reliable if they are
close to members of their local neighbour sets. Figure 2 illustrates this approach where arguments a1

and a2 are considered reliable given their local neighbour sets Na1 and Na2 . This technique can be

Figure 2: Different local neighbouring sets Na1
and Na2

, (a) K = 1 and (b) K = 3.

applied to perform unsupervised feature selection. In particular, the reliability measure can be regarded
as the discriminant factor to justifying the relevance of each data feature. Its result reflects the intu-
ition that a feature is considered reliable (or relevant) if its values are tightly grouped together (i.e.,
possessing a rigid value pattern). In essence, with a data set of N samples X = {x1, · · · , xN}, and M
features F = {f1, · · · , fM}, the reliability FRr of feature fr, r = 1, · · · ,M , can be determined by
estimating the accumulative reliability measures generated for each of its value fir, i = 1, · · · , N . The
computation process for this involves the following two steps:

Step 1. Acquire the reliability measure RK
fir

of each feature value fir, i = 1, · · · , N according to
Eqn. 1, using the set of K nearest neighbours.

Step 2. Calculate the accumulative reliability FRr of feature fr, r = 1, · · · ,M , by combining
the reliability measures of all its values, i.e., FRr =

∑N
i=1R

K
fir

.

From this, the original features can be ranked in accordance with their reliability degrees. The higher
the reliability is, the more relevant the feature becomes. Similar to the work of [17, 18, 44], a sim-
ple threshold-based feature selection method can then be established as follows: A feature fr ∈ F ,
r = 1, · · · ,M , is selected only if its corresponding reliability FRr exceeds a given threshold. Such
a discriminating limit may be subjectively provided. However, a predefined threshold may not be ef-
fective for a variety of data with different characteristics. It is better to learn this from the underlying
data set. Empirically, the threshold can be set as the average reliability of all features FRaverage =
1
M

∑M
r=1 FRr, over the training data available.

Summarising the above, a heuristic selection procedure as shown in Fig. 3 can be employed to
justify the content of the reduced feature set B ⊆ F , where B is first initialised to the full feature set F ,
and a feature fr is dropped from B if FRr < FRaverage.
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F , the original feature set, F = (f1, · · · , fM );
fi, the data feature, i = 1, · · · ,M ;
B, the reduced feature set;
FRi, the reliability of feature i, i = 1, · · · ,M ;
FR = {FRi, · · · , FRM}, the set of feature reliability;
FRaverage, the average reliability of all features;

(1) B ← F

(2) FRaverage =
1
M

M∑
i=1

FRi

(3) for fi ∈ F
(4) if FRi < FRaverage

(5) B ← B − fi
(6) return B

Figure 3: Pseudo Code of ReduceFeatureSet(F ,FR)

4 Feature Selection Ensemble
In this section, the proposed implementations of the FSE concept are specified, with the aid of illustra-
tive flow charts and pseudo codes. In the context of FS, an information system is a couple (X,F ), where
X = {x1, · · · , xN} and F = {f1, · · · , fM} are finite, non-empty sets of objects and features, respec-
tively. Features can be either qualitative (discrete-valued) or quantitative (real-valued). Here, a feature
subset B ⊆ F is represented by a binary string b of length M , bi = 1 if fi ∈ B, bi = 0 otherwise. An
FSE can therefore be represented by a set of such binary strings, E = {b1, · · · , bK}, where K denotes
the size of the ensemble. The finally selected feature subset by the FSE is the outcome of aggregating
the elements of E, which is denoted by b∗ hereafter. The general notations used in the pseudo codes are
provided in Table. 4.

Table 1: Notations Used in Pseudo Codes

HS the stochastic search algorithm S the search algorithm
eval the feature selection algorithm X the set of training objects
b a feature subset b∗ ensemble output
E the feature selection ensemble K the desired ensemble size

P = {p1, · · · , pK} the set of data partitions rand the pseudo random generator
{eval1, · · · , evalY } the set of Y feature evaluators i = 1, · · · , Y index of the feature evaluator

4.1 Ensemble Construction
4.1.1 Single Algorithm with Stochastic Search

Many of the existing nature-inspired heuristics, such as GA, PSO, and HS, share many commonalities,
most notably the ability to generate multiple, good quality solutions. However, the search results ob-
tained by them, even with an identical subset evaluation method, can be different. Sometimes, such
differences may be rather distinct, even when the selection process is performed on the same training
data. Thus, an FSE can be constructed.

As illustrated in Fig. 4, the stochastic algorithm searches for feature subsets until the targeted
number of subsets K is satisfied. This implementation is very simple in concept, requiring only one
evaluator and one search technique, therefore the effort spent in configuring the necessary components
is minimal. However, for datasets with fewer features, the number of “optimal” subsets may be generally
small, as compared to larger, more complex datasets. Thus, the diversity within the FSE may also be
low. Furthermore, evaluators that rely on feature ranking are not applicable to this implementation, as
stochastic search methods require the evaluation to be performed on the discovered subset as a whole,
rather than selecting top most features from an ordered list.
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(1) while (|E| < K)
(2) b := HS(X, eval)
(3) E.add(b)
(4) b∗ = aggregate(E)
(5) return b∗

Figure 4: Flow Chart and Pseudo Code for Single Algorithm with Stochastic Search

4.1.2 Single Algorithm with Partitioned Training Data

An alternative approach for creating a diverse FSE is to use data partitioning, where the training data is
divided into a number of different chunks, and FS is then carried out on each individual partition. This
is illustrated in Fig. 5. As the training instances employed by different FS algorithms are different, it

(1) P := stratify(X,K)
(2) for (i = 1 to K)
(3) b := S(pi, eval)
(4) E.add(b)
(5) b∗ = aggregate(E)
(6) return b∗

Figure 5: Flow Chart and Pseudo Code for Single Algorithm with Partitioned Training Data

is expected that various features subsets may be found by these algorithms. In order to maintain class
balance, and to ensure minority classes are sufficiently represented in each data partition, techniques
such as the stratified cross validation [39] may be employed. Of course, this approach to implementing
FSE may be less effective for datasets with limited training objects, since most FS evaluators require a
sufficient amount of data objects in order to determine the meaningful features. As a result, the number
of data partitions is often restricted, which then puts constraint on the ensemble size K.

4.1.3 Mixture of Algorithms

By employing multiple FS algorithms, the ensemble diversity can be naturally obtained from the dif-
ferences in opinions reached by the evaluators themselves. The ensemble construction process may be
further randomised by the use of a pseudo random generator, as illustrated in Fig. 6, so that the available
FS algorithms are randomly selected when forming the ensemble. This randomised approach may be

(1) while (|E| < K)
(2) i := rand(Y )
(3) b := S(X, evali)
(4) E.add(b)
(5) b∗ = aggregate(E)
(6) return b∗

Figure 6: Flow Chart and Pseudo Code for Mixture of Algorithms

beneficial when the available feature selectors are fewer than the desired number of ensemble compo-
nents, where certain selectors are expected to be used multiple times. Although many problems may
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require such applications, due to the high diversity in the underlying FS components, their complex-
ity and integration may affect the overall run-time efficiency. Also, as multiple evaluators and search
algorithms are being used simultaneously, finding an optimal parameter settings for the ensemble may
become challenging.

4.2 Decision Aggregation
One of the commonly used approaches for dealing with classifier ensembles is majority voting, where
the most agreed class label is selected as the final ensemble prediction. Similarly, a majority voting
scheme with threshold may be adopted for FSE. Using the notations introduced earlier, for a given en-
semble E, the decisions of the ensemble components can be organised in a K ×M boolean decision
matrix D, where K is the size of the ensemble, and M is the total number of features. In this repre-
sentation, the horizontal row Di denotes the feature subset bi, and the binary cell value Dij indicates
whether fj ∈ bi.

Borrowing the terminology of ensemble classifier learning, the ensemble agreement γj for the fea-
ture fj can therefore be calculated by: γj =

ΣDij

K . A agreement threshold α, 0 < α ≤ 1, can
then be defined to control the number of features being included in the final result b∗, such that:
b∗j = 1, if γj > α. From this, the common majority (more than half) vote can be assimilated by
setting α = 0.5. The value α may be adjusted according to the problem at hand, if the amount of
agreement is very high (which also indicates poor ensemble diversity), a higher α value can be used to
control the size of the resultant feature subset. Alternatively, if a highly diverse FSE is obtained, there
may exist no feature with γj > 0.5, to combat this, it may be necessary to employ a lowered α value.

4.3 Complexity Analysis
Preliminary complexity analysis has been performed on the ensemble construction approaches, and the
aggregation method. As the ensemble procedure depends largely on the training (Ot), solution search
(Os), and evaluation (Oe) complexity of the employed feature evaluators, the overall complexity of an
FSE is also relative to Ot, Os, and Oe. For a given feature evaluator, using HS as an example, the
complexity of the subset search process Os = Oe × Imax depends on Oe and the maximum number of
iteration Imax: The total complexity of training and obtaining the solution for a single feature selector
is therefore Ot +Os.

For ensembles constructed using a stochastic search method, the training complexity is Ot, as only
a single algorithm is involved which needs training only once. The ensemble search complexity is
Os × K, where K is the ensemble size. The total complexity is therefore Ot + Os × K. For data-
partition based ensembles, the evaluators need to be re-trained for every data partition, resulting in a
training complexity ofOt×K for these components, whilst having the sameOs×K search complexity
as stochastic ensembles. The total complexity is then (Ot +Os)×K. For ensembles generated from a
mixture of algorithms, the training complexity is based on the number of available evaluators

∑Y
i=1Oti ,

where Y is the number of evaluators. The search complexity is
∑K

i=1Osi , where:

Osi =

{
Oei × Imax for subset evaluators
O(N) for feature rankers (2)

and N is the number of features. The feature ranking approaches simply pick out the best features at
O(N) complexity, while subset evaluators need to perform a search on the solution space. The final
complexity of the mixture approach is therefore

∑Y
i=1Oti +

∑K
i=1Osi . For decision aggregation,

O(N × K) is required for computing ensemble agreement, while the features above threshold can be
found with no extra cost.
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In summary, the proposed ensemble structures are simple and efficient, imposing a worst caseO(K)
complexity, linear to the ensemble size. This may be further improved by attempting to integrate the
process of ensemble construction with the search process, so that Os can be reduced.

5 Experimentation and Discussion

5.1 Experiment Rationale and Setup
The classification algorithms adopted in the experiments include the decision tree based C4.5 algorithm
[56], the rule based Ripper algorithm [56], and the vaguely quantified fuzzy-rough nearest neighbour
[20], covering rather different underlying techniques. With such use of the various classifiers, a more
comprehensive understanding of the resulting feature subset quality can be reached.

A number of subset evaluators are used in the experiments, including the data reliability [5] based
feature selection (DRFS) that was introduced in section 3, the correlation-based feature subset selection
(CFS) [16], the probabilistic consistency based feature selection (PCFS) [10], and the subset evaluation
method based on fuzzy-rough set theory (FRFS) [23]. A number of feature ranking based methods are
also employed in the mixture of algorithms implementation, which will be introduced in detail in its
dedicated section (5.2.3).

The classification outcomes of the three proposed FSE implementations are compared against the
averaged performance of the ensemble component feature selectors in section 5.2. The purpose is to
determine whether the ensemble methods present advantages over single feature selectors in terms of
classification accuracy, and subset size. The classification accuracies using the original datasets without
feature selection are also included. Comparative studies between the three FSE implementations are
further made in section 5.3, where the performance of the ensembles are averaged across different
classifiers, thereby providing a higher level view of the characteristics of these approaches.

In total 12 real-valued UCI benchmark datasets [1] are used to demonstrate the capabilities of the
approaches, a number of which are reasonably high in dimension and hence, present challenges to
feature selection. A summary of the characteristics of these datasets is given in Table 5.1, and the
parameter settings employed in the experiments are: memory size = 10 − 20, max iteration = 1000,
HMCR= 0.5 − 1. The ensemble size is set to 10. Stratified 10-fold cross-validation (10-FCV) is

Table 2: Dataset Properties
Dataset arrhythmia cleveland glass heart ionosphere libras olitos ozone secom sonar water3 wine

Features 280 14 10 14 35 91 26 73 591 61 39 14
Instances 452 297 214 270 230 360 120 2534 1567 208 390 178
Decisions 16 5 6 2 2 15 4 2 2 2 3 3

employed for data validation. In 10-FCV, a given dataset is partitioned into 10 subsets. Of these 10
subsets, 9 subsets are used to perform a training fold, where feature selection algorithms are used to
select the feature subsets. A single subset is retained as the testing data, so that the performance of a
classifier learner is checked while using the selected feature subsets. This cross-validation process is
then repeated 10 times (the number of folds). The advantage of 10-FCV over random sub-sampling
is that all objects are used for both training and testing, and each object is used for testing only once
per fold. The stratification of the data prior to its division into different folds ensures that each class
label has equal representation in all folds (as far as possible), thereby helping to alleviate bias/variance
problems [3]. In the experiment, 10-FCV is performed 5 times in order to lessen the impact of random
factors within the heuristic algorithms, these 10 × 5 sets of evaluations are then aggregated to produce
the final experimental outcomes.
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5.2 Classification Results
5.2.1 Single Algorithm with Stochastic Search

Table 3: Classification Accuracy Result Comparison1,2 of the Stochastic Search Implementation
FRFS

b∗ Accuracy bi Avg Accuracy Full Accuracy

Dataset C4.5 Ripper VQNN b∗ Size C4.5 Ripper VQNN bi Avg Size C4.5 Ripper VQNN Full Size

cleveland 53.61% 54.43% 51.80% 7 53.12% 53.54% 51.95% 7 51.85% 53.89% 53.91% 14
glass 66.30% 67.77% 64.46% 6 66.30% 67.75% 64.46% 6 67.71% 64.96% 66.75% 10
heart 77.89% 74.15% 76.89% 6 77.99% 74.59% 76.50% 7 78.52% 79.26% 76.30% 14

ionosphere 87.13% 87.83% 83.48% 10.2 86.17% 86.50% 81.05% 9 85.65% 83.48% 83.91% 35
olitos 62.83% 61.33% 62.33% 6.2 60.25% 60.37% 61.55% 6 58.33% 69.17% 74.17% 26
sonar 72.77% 74.69% 78.45% 18.4 72.64% 73.04% 77.73% 16.2 72.62% 76.95% 76.50% 61

water3 78.46% 80.72% 79.13% 10.2 78.18% 79.51% 78.92% 9 79.74% 82.56% 82.31% 39
wine 89.15% 89.56% 92.10% 4.4 89.52% 88.41% 91.26% 4.6 93.82% 88.79% 94.38% 14

CFS

b∗ Accuracy bi Avg Accuracy Full Accuracy

Dataset C4.5 Ripper VQNN b∗ Size C4.5 Ripper VQNN bi Avg Size C4.5 Ripper VQNN Full Size

arrhythmia 67.44% 70.46% 64.48% 145 66.54% 70.88% 63.18% 152.4 65.06% 70.02% 61.72% 280
cleveland 55.54% 54.89% 54.59% 6 55.67% 54.91% 54.38% 6 51.85% 53.89% 53.91% 14

glass 73.35% 67.77% 70.43% 6 73.35% 67.77% 70.43% 6 67.71% 64.96% 66.75% 10
heart 81.11% 81.85% 76.59% 6 81.04% 81.95% 76.74% 6 78.52% 79.26% 76.30% 14

ionosphere 84.78% 87.04% 81.57% 12 84.87% 86.43% 81.84% 12.8 85.65% 83.48% 83.91% 35
libras 71.54% 56.06% 69.83% 49 71.11% 56.06% 69.48% 50 70.28% 54.56% 71.11% 91
olitos 61.00% 66.17% 77.33% 13.8 60.93% 66.77% 77.72% 14 58.33% 69.17% 74.17% 26
ozone 93.34% 93.27% 93.69% 33 93.34% 93.25% 93.69% 35 92.62% 93.17% 93.69% 73
secom 90.50% 92.56% 93.36% 273 90.18% 92.49% 93.36% 328.4 88.96% 92.79% 93.36% 591
sonar 74.10% 78.88% 81.76% 20 73.81% 76.01% 80.11% 23.6 72.62% 76.95% 76.50% 61

water3 83.54% 82.15% 86.97% 12 82.88% 82.47% 85.95% 13.8 79.74% 82.56% 82.31% 39
wine 93.82% 90.42% 95.52% 8 93.82% 90.32% 95.49% 8 93.82% 88.79% 94.38% 14

PCFS

b∗ Accuracy bi Avg Accuracy Full Accuracy

Dataset C4.5 Ripper VQNN b∗ Size C4.5 Ripper VQNN bi Avg Size C4.5 Ripper VQNN Full Size

arrhythmia 66.86% 70.24% 62.82% 135 66.10% 70.14% 62.06% 140 65.06% 70.02% 61.72% 280
cleveland 56.20% 54.89% 51.87% 7 56.14% 54.87% 51.89% 7 51.85% 53.89% 53.91% 14

glass 68.59% 64.34% 72.24% 6 68.44% 64.44% 72.18% 6 67.71% 64.96% 66.75% 10
heart 77.41% 80.74% 76.30% 9 77.41% 80.74% 76.29% 9 78.52% 79.26% 76.30% 14

ionosphere 87.04% 85.39% 80.61% 9.8 84.95% 85.02% 80.83% 10 85.65% 83.48% 83.91% 35
libras 67.22% 55.86% 69.11% 33 67.81% 55.61% 69.29% 44.6 70.28% 54.56% 71.11% 91
olitos 62.67% 66.67% 76.33% 8.8 63.27% 67.37% 75.42% 9 58.33% 69.17% 74.17% 26
ozone 93.06% 93.13% 93.69% 25 93.04% 93.03% 93.69% 28 92.62% 93.17% 93.69% 73
secom 90.47% 92.57% 93.36% 285 90.29% 92.46% 93.36% 321.8 88.96% 92.79% 93.36% 591
sonar 74.54% 77.23% 80.80% 17.2 73.24% 74.43% 79.27% 20.2 72.62% 76.95% 76.50% 61

water3 82.97% 81.38% 86.26% 10 82.36% 81.92% 85.02% 12 79.74% 82.56% 82.31% 39
wine 93.08% 91.71% 92.95% 3.4 93.22% 90.99% 93.05% 4 93.82% 88.79% 94.38% 14

1 Compared against the averaged ensemble accuracy, and full dataset accuracy using various classifiers.
2 Bold figures indicate statistically significant improvements over averaged ensemble performance.

The classification results are presented in Table 5.2.1. Paired t-test has been carried out to judge the
statistical significance of the findings, the figures highlighted in bold indicate superior results in com-
parison to the averaged performance of single feature selectors (ensemble components). As explained
previously in section 4.1.1, only the evaluators that judge the quality of a feature subset as a whole
(such as FRFS, CFS, and PCFS) can be used in the stochastic implementation. Because the source of
diversity arises from the randomised search results, a feature ranking based evaluator will always result
in the same feature subset across different runs.

For the ensembles constructed using the FRFS evaluator, significant improvements in terms of clas-
sification accuracy are reported for all datasets except the dataset glass, where the accuracy stays the
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same, possibly due to the low diversity. However, the ensemble aggregation also results in enlarged
feature subsets, although this may be considered as a worthy sacrifice for the improvements on classi-
fication accuracy. For the ensembles constructed using CFS, the most significant improvement can be
identified in the dataset sonar of 61 features. The ensemble manages to reduce the subset size, while
increasing the classification performance for all tested classifiers. Similar improvements can be seen
in the dataset water3, where both C4.5 and VQNN have increased accuracy. For the ensembles con-
structed using PCFS, classification improvements are most noticeable for the datasets ionosphere,
sonar, and water3. For dataset wine, the ensemble is able to reduce the averaged number of features
in the subset down to 3.4, from 14, while maintaining comparable and better classification results.

For the datasets cleveland, glass, and heart that contain fewer features, both the CFS and
PCFS ensembles result in no improvement in either classification accuracy or subset size. This agrees
with the original assumption that the stochastic implementation is less suitable in dealing with such
datasets. On the other hand, for the more complex datasets (most notably the arrhythmia dataset),
the ensemble output presents higher classification accuracy and lower feature subset size.

5.2.2 Single Algorithm with Partitioned Training Data

In this experiment, the newly introduced DRFS evaluator is used to demonstrate unsupervised, feature
ranking based FS performance, the previously used CFS and PCFS evaluators are also included. For
each dataset, the original training data is divided into K = 10 partitions to produce the desired number
of ensembles, subsets are then selected using the divided data.

For the ensembles constructed using DRFS, no major accuracy improvements are seen, expect for
the datasets olitos and sonar. This may be expected because DRFS is an unsupervised approach
that is typically used in clustering tasks and is generally difficult to compete against supervised methods
[4]. Nevertheless, its view of feature importance, when tested in a supervised manner, still show reason-
able, and for several datasets, competitive performance. Additionally, decrease in feature subset size is
reported for the datasets ionosphere and water3 when it is used.

For the ensembles constructed using CFS and PCFS, the most evident improvement is reflected by
the accuracy increase of the VQNN classifier, in 5/12 (for CFS), and 7/12 (for PCFS) datasets. A re-
duction in terms of subset size can also be observed across multiple datasets, whilst the most significant
reduction (of approximately 300 features) is reflected by the secom dataset. Note that for datasets with
much less training instances, such as olitos with 120 objects, the partition based approach does not
seem to bring forward as much benefits as it is applied to the other, larger datasets.

5.2.3 Mixture of Algorithms

For this experiment, a number of individual feature evaluators are considered, including several feature
ranking approaches including DRFS [4], information gain, chi-squared [62], RELIEF [25], and sym-
metrical uncertainty [45], in conjunction with several feature subset evaluators such as FRFS, CFS, and
PCFS. Together, a mixture of 8 different evaluation methods are employed (with their details omitted).
Since the desired ensemble size is 10, a pseudo random generator as described in section 4.1.3 is used
to ‘create’ the remaining ensemble components required.

The comparison on classification performance of the classifiers that utilise the subsets produced
by the ensembles is given in Table 5.2.3. The most interesting results are achieved for the datasets
arrhythmia, ionosphere, and water3, where all three tested classifiers have an improved per-
formance. The overall accuracy of C4.5 is improved for 6 out of 12 datasets, as compared to that of
VQNN (4/12 datasets) and Ripper (3/12 datasets). Note that the ensembles of mixed algorithms out per-
form the two single algorithm based implementations in several occasions, but the size of the selected
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Table 4: Classification Accuracy Result Comparison1,2 of the Data Partition Implementation
DRFS

b∗ Accuracy bi Avg Accuracy Full Accuracy

Dataset C4.5 Ripper VQNN b∗ Size C4.5 Ripper VQNN bi Avg Size C4.5 Ripper VQNN Full Size

cleveland 55.23% 55.66% 51.69% 8 55.38% 55.70% 51.91% 7 51.85% 50.48% 53.91% 14
glass 60.32% 61.06% 61.81% 3.8 62.47% 62.18% 61.52% 3 67.71% 69.18% 66.75% 10
heart 82.59% 80.00% 76.96% 7 82.31% 80.24% 77.36% 7 78.52% 80.37% 76.30% 14

ionosphere 85.91% 86.66% 77.65% 11 85.54% 86.63% 78.97% 12 85.65% 87.39% 83.91% 35
olitos 63.67% 62.87% 64.00% 9.8 63.52% 62.92% 63.42% 9.8 58.33% 69.17% 74.17% 26
sonar 76.71% 73.37% 76.72% 34.2 74.92% 74.23% 76.16% 33.6 72.62% 75.90% 76.50% 61

water3 80.15% 81.64% 82.67% 15.2 80.15% 80.70% 82.42% 16 79.74% 80.77% 82.31% 39
wine 84.94% 84.56% 83.01% 4.8 84.53% 85.70% 84.56% 4.8 93.82% 95.52% 94.38% 14

CFS

b∗ Accuracy bi Avg Accuracy Full Accuracy

Dataset C4.5 Ripper VQNN b∗ Size C4.5 Ripper VQNN bi Avg Size C4.5 Ripper VQNN Full Size

arrhythmia 67.56% 70.14% 64.60% 131.2 67.52% 70.03% 64.00% 152.4 65.06% 70.02% 61.72% 280
cleveland 55.74% 55.57% 55.19% 6.2 56.38% 55.39% 54.56% 6 51.85% 54.88% 53.91% 14

glass 72.22% 69.09% 69.15% 6 71.27% 68.66% 69.12% 5.8 67.71% 69.22% 66.75% 10
heart 81.04% 80.59% 77.19% 6 81.10% 80.35% 77.25% 6 78.52% 78.52% 76.30% 14

ionosphere 85.65% 85.91% 81.91% 12 85.28% 86.14% 81.93% 13 85.65% 85.48% 83.91% 35
libras 72.00% 55.78% 69.72% 49 72.11% 55.56% 69.28% 49.6 70.28% 54.56% 71.11% 91
olitos 62.83% 65.00% 79.67% 14 62.97% 66.82% 77.33% 13.8 58.33% 68.50% 74.17% 26
ozone 93.48% 93.32% 93.69% 32.6 93.16% 93.22% 93.69% 34.8 92.62% 93.17% 93.69% 73
secom 90.37% 92.49% 93.36% 293.4 90.09% 92.56% 93.36% 326.2 88.96% 92.72% 93.36% 591
sonar 72.78% 75.53% 77.92% 17.4 72.81% 74.71% 78.66% 23 72.62% 76.47% 76.50% 61

water3 83.28% 82.97% 86.92% 11.8 82.53% 82.31% 85.66% 14 79.74% 82.05% 82.31% 39
wine 94.05% 91.70% 94.27% 7.8 94.13% 92.64% 95.11% 7 93.82% 93.15% 94.38% 14

PCFS

b∗ Accuracy bi Avg Accuracy Full Accuracy

Dataset C4.5 Ripper VQNN b∗ Size C4.5 Ripper VQNN bi Avg Size C4.5 Ripper VQNN Full Size

arrhythmia 67.00% 70.33% 63.54% 135.6 66.85% 70.46% 62.05% 140.4 65.06% 70.02% 61.72% 280
cleveland 56.74% 55.55% 53.05% 6.2 56.50% 55.39% 52.52% 7 51.85% 54.62% 53.91% 14

glass 69.82% 68.13% 71.70% 6 69.36% 67.14% 71.30% 5 67.71% 66.00% 66.75% 10
heart 77.78% 79.11% 77.11% 9 77.94% 79.12% 76.51% 8 78.52% 80.59% 76.30% 14

ionosphere 85.91% 85.57% 80.17% 10.4 85.23% 84.67% 80.97% 10 85.65% 85.48% 83.91% 35
libras 68.78% 55.39% 68.91% 31.8 67.89% 55.55% 68.86% 34.6 70.28% 54.56% 71.11% 91
olitos 63.00% 65.67% 73.83% 8.2 63.50% 65.68% 73.32% 9 58.33% 69.00% 74.17% 26
ozone 93.11% 93.45% 93.69% 26 93.04% 92.99% 93.69% 27.8 92.62% 93.17% 93.69% 73
secom 90.32% 92.55% 93.36% 285.4 90.02% 92.46% 93.36% 321 88.96% 92.72% 93.36% 591
sonar 72.47% 75.30% 86.26% 17.8 72.83% 74.44% 85.20% 20 72.62% 77.13% 76.50% 61

water3 82.31% 82.72% 86.26% 10.2 81.83% 82.43% 85.02% 12 79.74% 81.18% 82.31% 39
wine 93.65% 90.94% 94.05% 3.4 93.49% 91.14% 93.83% 4 93.82% 93.40% 94.38% 14

1 Compared against the averaged ensemble accuracy, and full dataset accuracy using various classifiers.
2 Bold figures indicate statistically significant improvements over averaged ensemble performance.

subsets are also larger. This may be indicative that better quality feature subsets are selected by the
ensemble approach.

5.3 Comparison Between the Three Implementations

A graphical view of the classification results is shown in Fig. 7, detailing the average performance and
spread of the three FSE implementations, against the classification models built using the original, full
feature datasets. Note that the graphes do not represent a single distribution, but the results obtained
over different (base) classifiers that are used for each of the three types of implementation and also,
over multiple ensemble subsets that are provided by the CFS and PCFS evaluators for the stochastic and
partition based implementations. In Table 6, a more detailed comparison has been given in terms of the
average performance of the reported approaches. The use of averaged results is in order to give a fair
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Table 5: Classification Accuracy Result Comparison1,2 of the Mixture of Algorithms Implementation
b∗ Accuracy bi Avg Accuracy Full Accuracy

Dataset C4.5 Ripper VQNN b∗ Size C4.5 Ripper VQNN bi Avg Size C4.5 Ripper VQNN Full Size

arrhythmia 68.64% 70.46% 64.78% 132.4 68.01% 69.98% 63.61% 142.4 65.06% 70.28% 61.72% 280
cleveland 56.75% 55.42% 52.16% 7.8 56.27% 55.12% 52.60% 7 51.85% 53.89% 53.91% 14

glass 70.32% 63.65% 65.87% 6 69.58% 65.10% 67.54% 6 67.71% 64.96% 66.75% 10
heart 80.22% 78.74% 76.59% 8 80.40% 79.08% 76.73% 7.4 78.52% 79.26% 76.30% 14

ionosphere 86.26% 86.52% 84.17% 14.6 85.68% 85.65% 82.77% 15.6 85.65% 83.48% 83.91% 35
libras 68.48% 53.56% 64.33% 44.4 68.44% 53.54% 65.31% 44.2 70.28% 54.56% 71.11% 91
olitos 62.67% 67.33% 75.33% 13.2 63.00% 68.90% 76.37% 13 58.33% 69.17% 74.17% 26
ozone 92.74% 93.01% 93.69% 34.8 92.82% 93.00% 93.69% 35 92.62% 93.05% 93.69% 73
secom 89.85% 92.48% 93.36% 282 90.02% 92.49% 93.36% 306.2 88.96% 92.79% 93.36% 591
sonar 76.11% 77.03% 82.52% 26.2 75.95% 77.31% 80.42% 27.6 72.62% 76.95% 76.50% 61

water3 83.49% 82.67% 85.79% 17.2 82.86% 82.13% 85.30% 17.2 79.74% 82.56% 82.31% 39
wine 94.93% 94.16% 94.46% 7.6 94.23% 93.44% 94.46% 7.2 93.82% 88.79% 94.38% 14

1 Compared against the averaged ensemble accuracy, and full dataset accuracy using various classifiers.
2 Bold figures indicate statistically significant improvements over averaged ensemble performance.

Figure 7: Comparison of average classification accuracies (solid dots) and spreads of the three FSE im-
plementations for each dataset

comparison of the performance differences between the various implementations.
From these figures, it can be observed that the data partition based approach generally have a larger

spread than the stochastic approach, other than a few exceptions where the stochastic implementation
scores a very high maximum accuracy, such as olitos and sonar. It can be seen from this table that
the stochastic search implementation leads in terms of overall classification accuracy, achieving best
scores in 6/12 cases; whilst the mixture of algorithms implementation obtains best performance in 5/12
cases. The data-partition based implementation scores the highest only for the heart dataset. However,
its accuracy is still very competitive for the other datasets, with an overall accuracy of 77.33% and a mere
0.09% difference from the average score of the stochastic search. One conclusion that may be drawn
from these results is that the mixture of algorithms implementation appears to work best on datasets
with the least number of training objects, such as datasets olitos (120), wine (178), sonar (208).
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Table 6: Comparison1 of Averaged2 Classification Results of FSE implementations
Stochastic Partition Mixture Full

Dataset Acc Size Acc Size Acc Size Acc Size Instances Better with FSE

arrhythmia 67.20% 133.4 67.05% 140 67.96% 132.4 65.60% 280 452 X
cleveland 55.31% 6.2 54.66% 6.5 54.78% 7.8 53.46% 14 297 X

glass 70.02% 6 69.45% 6 66.61% 6 66.82% 10 214 X
heart 78.80% 7.5 79.00% 7.5 78.52% 8 78.47% 14 270 X

ionosphere 84.19% 11.2 84.41% 10.9 85.65% 14.6 85.01% 35 230 X
libras 65.10% 40.4 64.94% 41 62.12% 44.4 65.32% 91 360
olitos 68.33% 11.1 68.36% 11.3 68.44% 13.2 67.17% 26 120 X
ozone 93.46% 29.3 93.36% 29 93.15% 34.8 93.16% 73 2534 X
secom 92.72% 279 92.08% 289.4 91.90% 282 91.68% 591 1567 X
sonar 76.71% 17.6 77.89% 18.6 78.55% 26.2 75.42% 61 208 X

water3 84.08% 11 83.88% 11 83.98% 17.2 81.08% 39 390 X
wine 93.11% 5.6 92.92% 5.7 94.52% 7.6 93.87% 14 178 X

overall 77.42% 46.52 77.33% 48.08 77.18% 49.52 76.42% 104.00 - X
1 Bold figures indicate superior performance, ticked rows indicate the ensembles out perform accuracy obtained using

full features.
2 Averaged across multiple subset evaluators and all classifiers.

Further analysis into the implementations’ detailed characteristics remains active research, in the hope
that more behaviour patterns can be discovered in order to optimise the ensemble structure.

In terms of the size of a selected feature subset, the stochastic search implementation clearly shows
to be the best, leading in 9/12 datasets (including tied cases), whilst the mixture of algorithms results
in largest subsets overall. Note that for all the datasets tested, except libras, the use of FSE leads
to the improvement on the classifiers accuracy, while the number of features required to perform the
classification is also much reduced. This reflects that as a novel filter-based approach, FSE offers a
beneficial pre-processing step for the purpose of classification.

6 Conclusion
This paper has introduced three distinctive techniques in an effort to implement feature selection ensem-
ble (FSE), where the outcomes from multiple, different feature selection results are integrated together,
for the purpose of producing an aggregated feature subset that helps to perform the subsequent clas-
sification tasks. The key advantage of FSE is that the performance of the feature selection procedure
is no longer depended upon one selected subset, making this technique potentially more flexible and
robust in dealing with high dimensional and large datasets. For such datasets, multiple feature subsets
with equally highest attained scores may be discovered when judged by one single feature evaluator,
but not all may perform equally well in terms of classification. Two of the proposed implementations,
the stochastic search based and the data partition based, require the use of a single subset evaluation
algorithm; whilst the mixture of algorithms approach aims to produce the ensemble from distinctive
component feature selection methods.

Experimental comparative studies demonstrate that FSE significantly improves over single FS re-
sults. Indeed, all three implementations show strength in dealing with almost all datasets tested, gener-
ally resulting in an increase in classification accuracy, when compared against the classification models
built using the original, full feature datasets or feature subsets returned by component selectors. In par-
ticular, the stochastic search based approach appears to perform better than the rest, which may have
benefited from the quality search results ensured by HS. In depth analysis of the experimental findings,
as well as the employment of higher dimensional, larger sized datasets are necessary to better reveal the
characteristics of the proposed implementations.

Although promising, much can be done to further improve the potential of the present work. For
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example, currently, the size of ensemble needs to be predefined, instead of being self-adaptive. The
ensemble should be able to “recruit” or “fire” feature selectors according to the complexity of the data.
An extreme case for this would be the situation where the dataset contains only one optimal feature
subset. Such a case can be easily handled by a single evaluator, thereby eliminating the necessity of
using FSE (equivalently, shrinking the ensemble size to one). Additionally, it would be useful to inves-
tigate the combination of different ensemble implementations, realising ensemble of ensembles, where
certain components may also be dynamically modified during the feature selection process. Further-
more, FSE shares many similarities with classifier ensembles [12], such as the importance of ensemble
diversity [6, 49] and decision aggregation [48]. Methods developed for classifier ensembles may also be
adopted to handle FSE problems.

Last, but not least, it would be very important to examine how FSE may be applied to support
tasks other than classification, such as intelligent robotics and systems control. Of particular interest
to the authors is the potential application of FSE to the development of biped robots. The significant
advantage of biped robots is that they allow locomotion in natural terrain inaccessible to conventional
vehicles. Although the stable control of biped robots is much more challenging than that of multi-
legged robots, they have specific merits compared with the latter. For example, they can operate in
human environments more efficiently than other legged robots. Their particular footprint and aspect
ratio means they can also help or replace humans, even in difficult or dangerous tasks. The ability of
a humanoid robot carrying out a certain action with her hands while moving is of significant impact in
almost all aspects of life, be they engineering, medical, educational or social (– imagine a robot carrying
an Olympic torch while running).

There are many problems that have to be overcome before biped robots can be deployed in a natural
environment, however. For instance, simultaneous mapping and localisation has been recognised to be a
very important task for building such robots. Apart from the direct use of raw data or simple features as
geometric representations, recent techniques have tried to utilise different representations that capture
more context information, permitting an additional cognitive and reasoning mapping. Also, to help
vision-based robot positioning [55] and activity recognition [51] in the working environment, rich and
often non-independent features are necessary to be initially computed from sensory data, without prior
knowledge of which features would be critical to the problem at hand. This means that a large number of
features may result though not all are essential [26, 36]. Besides, the large amount of features generated
puts high computational demands on the robot control process [28]. Feature selection techniques can be
applied to address all these issues, pruning down the redundant, unessential features [22]. Thus, it is of
natural appeal to apply FSE to aiding in the development of biped robots.

As the concluding remark, it is interesting to note that the representative of the authors of this paper
is very much honoured to have been selected to carry the Olympic torch in memory of Alan Turing, for
the 2012 London Olympic torch relay. May future humanoid robots be able to participate in Olympic
torch relays, carrying the Olympic flame in celebration of Alan Turing’s life and scientific impact!
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unsupervised learning of conditional gaussian networks. Trans. Pattern Anal. Mach. Intell., 23(6):590–603,
June 2001.

[45] S. Senthamarai Kannan and N. Ramaraj. A novel hybrid feature selection via symmetrical uncertainty ranking
based local memetic search algorithm. Know.-Based Syst., 23(6):580–585, August 2010.

[46] Changjing Shang, Dave Barnes, and Qiang Shen. Facilitating efficient mars terrain image classification with
fuzzy-rough feature selection. Int. J. Hybrid Intell. Syst., 8(1):3–13, January 2011.

[47] Qiang Shen and Richard Jensen. Selecting informative features with fuzzy-rough sets and its application for
complex systems monitoring. Pattern Recognition, 37(7):1351–1363, 2004.
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