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Abstract

The TPTP (Thousands of Problems for Theorem Provers) World is a well established infrastruc-

ture for Automated Theorem Proving (ATP). In the context of the TPTP World, the TPTP Process

Instruction (TPI) language provides capabilities to input, output, and organize logical formulae, and

to control the execution of ATP systems. This paper reviews the TPI language, describes a shell

interpreter for the language, and demonstrates how useful they can be in theorem proving.

1 Introduction

The TPTP World [5] is a well established infrastructure that supports research, development,
and deployment of Automated Theorem Proving (ATP) systems. The TPTP World is based
on the Thousands of Problems for Theorem Provers (TPTP) problem library, and includes
the TPTP language, the SZS ontologies, the Thousands of Solutions from Theorem Provers
(TSTP) solution library, various tools associated with the libraries, and the CADE ATP Sys-
tem Competition (CASC). Originally the TPTP supported only first-order problems in clause
normal form (CNF). Over the years support for full first-order form (FOF), typed first-order
form (TFF), and typed higher-order form (THF), have been added.

Most input languages for ATP systems, including the existing TPTP language, are designed
primarily to write the logical formulae that are input to and output from ATP systems’ rea-
soning processes. There is minimal or no support for controlling the processing of the logical
formulae: tasks such as incrementally adding and deleting formulae, controlling ATP systems’
reasoning processes, and interacting with non-logical data. Various approaches have been used
to overcome this weakness. A direct approach is for ATP systems to support their own system
specific commands that control their processing. One well known first-order ATP system that
uses this approach is Otter [3]. Another approach is to provide programmatic APIs to ATP
systems. MiniSAT [2] is a well known ATP system for propositional logic that offers an API. A
third approach is to provide a command language designed to be used in conjunction with an
existing language for writing logical formulae. The TPTP Process Instruction (TPI) language
[6] and the SMT command language [1] are examples.

The TPI language provides command and control instructions for manipulating logical for-
mulae in the context of the TPTP World. The TPI language makes it easy(er) for ATP users
to specify their problems, process the logical formulae, and report results, in a fully automatic
way. This paper reviews the TPI language, describes an interpreter for the language, and
demonstrates how useful they can be in theorem proving.

2 The TPI Language

The TPI language provides commands to input, output, and organize logical formulae, and to
control the execution of ATP systems. TPI commands can be input to an ATP system, or
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can be input to an interpreter that has no reasoning capabilities and instead invokes external
ATP systems. In either case a system that can process TPI commands is referred to as a TPI
system. A TPI system is capable of inputing and storing logical formulae, and manipulating
those formulae according to subsequent TPI commands.

The logical formulae that have been input and stored by a TPI system belong to one or
more named groups. All formulae belong to the group tpi, all premises (formulae with the
TPTP role axiom, hypothesis, definition, lemma, etc.) belong to the group tpi premises,
all conjectures and negated conjectures belong to the group tpi conjectures, and all for-
mulae can belong to multiple other user-defined groups. The TPI language provides commands
for manipulating groups. Logical formulae that have been input and stored are initially in an
active state. Formulae can be deactivated, placing them into an inactive state, so that they
do not appear to exist. Inactive formulae can be activated so that they are again used in
processing.

Two new TPTP interpreted functors have been defined for use with TPI commands:

• $getenv(Name) - Evaluates to the value of the environment variable Name. If Name is
not set it evaluates to an empty string.

• $getgroups(Group name,Group name,Group name ...) - Evaluates to the name of a
temporary file containing all the active formulae in the named groups. If a formulae is in
multiple of the groups, it appears in the file multiple times.

The following (slightly contrived) example illustrates some capabilities of the TPI language
described in Section 2.1, and illustrates the TPI command form that is accepted by the TPI
command interpreter described in Section 3. Commands 1 and 4 create a group for the axioms
input by commands 2 and 3. The conjecture is input by command 5. Command 6 invokes
the iProver ATP system in the background, to check that the axioms are Satisfiable. While
command 6 is running, command 7 deactivates the axioms so that command 8 can use the E

ATP system to try prove that the conjecture is a tautology. The result of command 8 is written
out by command 9. Command 10 reactivates the axioms so that command 11 can try prove
that the conjecture is a Theorem the axioms. Command 12 waits until the iProver system
finishes execution, after which command 13 outputs the results. Command 14 ends execution.

1 tpi start group axioms

2 tpi input formula ’fof(ax,axiom,r).’

3 tpi input formula ’fof(ax2,axiom,r => s).’

4 tpi end group axioms

5 tpi input formula ’fof(conj,conjecture,s).’

6 tpi execute async SZS ASYNC = ’iprover 30 $getgroups(axioms)’

7 tpi deactivate group axioms

8 tpi execute SZS = ’eprover --cpu-limit=30 --tstp-format $getgroups(tpi)’

9 tpi write ’Conjecture alone: ’ & ’$getenv(SZS)’

10 tpi activate group axioms

11 tpi execute SZS = ’eprover --cpu-limit=30 --tstp-format $getgroups(tpi)’

12 tpi waitenv SZS ASYNC

13 tpi write ’Axioms:’ & ’$getenv(SZS ASYNC)’ & ’ Proof:’ & ’$getenv(SZS)’

14 tpi exit

Script 1: Use of TPI Commands
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2.1 The TPI Commands

The TPI language provides command and control instructions for manipulating logical formulae.
In the following, the commands are grouped according to the type of function they perform.

Input and Output: input formula, input, output, delete

input formula inputs and stores a single logical formula. input inputs and stores all the
formulae in a named file. input can also put the formulae into a group. output outputs all the
stored formulae, or the formulae in a named group, to a file. If stdout is the output file name,
the formulae are output to the screen. delete removes a named formula from the store.

Formula Grouping: start group, end group, delete group

start group marks the start of a named group of logical formulae. All formulae that are
subsequently stored using the input formula or input commands belong to the group, until
a corresponding end group command is encountered. delete group removes all the formulae
that belong to a named group from the store.

Formula Manipulation: deactivate, activate, deactivate group,

activate group, set role

deactivate causes a named formula to become inactive, and activate causes a named formula
to become active. deactivate group deactivates all the formulae in a named group, and
activate group activates all the formulae in a named group. set role sets the role [5] of a
named formula to a given value, e.g. axiom, conjecture, lemma

Environment Variable Manipulation setenv, unsetenv, waitenv

setenv sets an environment variable to a given value. unsetenv deletes an environment variable
with a given name. waitenv waits for environment variables with given names to be set.

Execution execute, execute async, filter, generate

execute runs an ATP system (or anything!) in the foreground. An environment variable can be
provided to capture the SZS status [4] of the completed execution, e.g., Satisfiable or Theorem.
The logical formulae to be processed by the ATP system are selected using $getgroups() terms.
execute async runs like execute except that the ATP system is run in the background. filter
runs like execute, then deletes the formulae specified by the $getgroups() terms, and inputs
the formulae output by the ATP system. generate runs like execute, and inputs the formulae
output by the ATP system.

Utility Commands mktemp, write, assert, exit

mktemp creates a new temporary file and sets an environment variable to the file name. write
outputs data to stdout. assert checks the syntactic equality or inequality of two terms. If
the assertion fails, a message is provided and the exit command is executed. exit deletes any
files that were created using mktemp commands, and terminates any remaining processes that
were started using execute async commands.

3 The TPI Language Interpreter

A TPI language interpreter for executing TPI commands has been developed in perl. The
interpreter is a standalone program that recognizes commands of the following form:
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tpi command name command details

where tpi is the name of the interpreter. The interpreter can be executed from the user’s
command shell or from within a shell script, to execute one TPI command at a time. Shell
scripting with TPI commands provides a fully featured language for ATP processing.

Logical formulae that are input to the interpreter are stored in a text file called DB File. The
file provides persistent storage of the formulae between executions of the interpreter. The input
commands add formulae to the DB File, and the delete commands remove formulae from the
DB File. Groups are implemented by inserting comment lines %TPI start group: group name

and %TPI end group: group name before and after the formulae in the DB File. If the for-
mulae belonging to a group are not contiguous when being input, multiple %TPI start group

and %TPI end group comments are used. The role of a formulae is changed by an edit in the
DB File. Formulae are deactivated by commenting them out in the DB File, and reactivated
by uncommenting them.

The TPI language expects its environment variables to have the same properties as regular
command shell environment variables, i.e., to be global and persistent. However, as the TPI
interpreter executes as a sub-process of the user’s shell, the interpreter’s environment variables
are not passed back to the shell’s environment, i.e., they do not naturally persist. To provide
persistence of its environment variables, the interpreter saves/deletes its environment variables
in a file called ENV VARS whenever a setenv/unsetenv command is used. At the start of each
execution the interpreter augments the environment variables that it has inherited from its
parent process with the values stored in the file. If a conflict is detected, i.e., one of the parent’s
environment variables has the same name as a variable in the ENV VARS file, the parent’s variable
takes precedence and the new value is written to the ENV VARS file.

The execution commands are implemented by starting a new process for the ATP system,
and the resultant SZS value is extracted by parsing the stdout from the ATP system, expecting
the result to be output according to SZS conventions.

4 TPI Applications

4.1 The ATP Process

The ATP process illustrated in Figure 1 shows a comprehensive flow of ATP processing that
should be followed when trying to prove a theorem. It provides more structure and allows
for earlier error detection compared to giving the axioms and conjecture directly to a theorem
proving ATP system. The initial step is to convert the world knowledge of the domain in
question to axioms and a conjecture in a chosen logic, and writing them in TPTP syntax.
The ATP process then starts by checking the syntactic correctness of the formulae, and then
checking the axioms’ satisfiability. Establishing that the axioms are Satisfiable is a crucial step
in the process, because a proof that the conjecture is a Theorem of an Unsatisfiable set of
axioms can be found vacuously – this is typically not the user’s intention. If the syntax is
correct and the axioms are Satisfiable, then an attempt to find a proof can be performed. If a
proof cannot be found, then an attempt to prove that the conjecture is not a Theorem of the
axioms can be performed – if successful this provides useful feedback to the user.

Script 2 provides a tcsh script that uses TPI commands to implement this ATP process.
The axioms and conjecture are added using the input command (label A in Figure 1, line 1
in Script 2). Using the execute command, a syntax checker system is executed to check the
syntax of the formulae (label B, line 2). If the syntax checker returns a SyntaxError status
(label C, line 4), the user is informed using the write command and the process is terminated
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Figure 1: The ATP Process

using the exit command (lines 5-6).

Once the syntax of the formulae has been checked, the process moves on to checking the
satisfiability of the axioms. Using the execute command, a model finding ATP system like
iProver is executed to check if the axioms are Satisfiable (label D, line 8). If the ATP system
shows that the axioms are Satisfiable (label E, line 10), the process moves on to trying to prove
that the conjecture is a Theorem of the axioms (lines 11-32). Otherwise, if it shows that the
axioms are Unsatisfiable (label F, line 33), the user is informed using the write command and
the process is terminated using the exit command (lines 34-35). If the model finder cannot
reach a decision about the satisfiability of the axioms, a refutation finding ATP system like
E is executed using the execute command, to try to prove that the axioms are Unsatisfiable
(label G, line 37). If the ATP system shows that the axioms are Unsatisfiable (label H, line
39), the user is informed using the write command and the process is terminated using the
exit command (lines 40-41). If the system shows that the axioms are not Unsatisfiable, or if
a decision cannot be reached (line 42), the process again moves on to trying to prove that the
conjecture is a Theorem of the axioms (label E, line 43). (This is an optimistic approach that
assumes satisfiability of the axioms if nothing can be shown explicitly.)
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1 tpi input $1

2 tpi execute ’SZS Syntax’ = ’tptp4X -q3 -z $getgroups(tpi)’

3 set SyntaxResult = ‘tpi write ’$getenv(SZS Syntax)’‘

4 if ("$SyntaxResult" == "SyntaxError") then

5 echo "% Syntax Error!"

6 tpi exit

7 else

8 tpi execute ’SZS Satisfiability’ = ’iproveropt run sat.sh 300

$getgroups(tpi premises)’

9 set SatResult = ‘tpi write ’$getenv(SZS Satisfiability)’‘

10 if("$SatResult" == "Satisfiable") then

11 repeatedSection:

12 tpi execute ’SZS Proof’ = ’eprover --auto --cpu-limit=300

$getgroups(tpi)’

13 set ProofResult = ‘tpi write ’$getenv(SZS Proof)’‘

14 if("$ProofResult" == "Theorem") then

15 echo "% Proof Found!

16 tpi exit

17 else

18 if( "$ProofResult" == "CounterSatisfiable") then

19 echo "% No Proof!"

20 tpi exit

21 else

22 tpi execute ’SZS CSA AxConj’

= ’iproveropt run sat.sh 300 $getgroups(tpi)’

23 set CSAResultAxConj = ‘tpi write ’ $getenv(’SZS CSA AxConj’)’‘

24 if( "$CSAResultAxConj" == "CounterSatisfiable") then

25 echo "% No Proof!"

26 tpi exit

27 else if("$CSAResultAxConj" == "Theorem")

28 echo "% Proof Found!"

29 tpi exit

30 else

31 echo "% No Proof!"

32 tpi exit

33 else if("$SatResult" == "Unsatisfiable")

34 echo "% Axioms Unsatisfiable!"

35 tpi exit

36 else

37 tpi execute ’SZS Unsatisfiability’ = ’eprover --auto --cpu-limit=300

$getgroups(tpi premises)’

38 set UnsatResult = ‘tpi write ’$getenv(SZS Unsatisfiability)’‘

39 if("$UnsatResult" == "Unsatisfiable")

40 echo "% Axioms Unsatisfiable!"

41 tpi exit

42 else

43 goto repeatedSection

Script 2: tcsh Script Implementing the ATP Process
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Once the axioms have been found to be Satisfiable, or if it could not be shown that they are
Unsatisfiable, the process moves on to trying to prove that the conjecture is a Theorem of the
axioms. Using the execute command, a theorem proving ATP system like E is executed on
the formulae (label E, line 12). If a proof is found (label I, line 14), a Theorem status is output
using the write command, and the process ends using the exit command (lines 15-16). If the
ATP system shows that the axioms and conjecture are CounterSatisfiable, i.e., the conjecture is
not a Theorem of the axioms (label J, line 18), the user is informed using the write command
and the process is terminated using the exit command (lines 19-20). If a decision cannot
be reached (label K, line 21), the process moves on to trying to prove that the axioms and
conjecture are CounterSatisfiable (lines 22-32).

Using the execute command, a countermodel finding ATP system like iProver is executed
to try to prove that the axioms and conjecture are CounterSatisfiable (line 22). If the ATP
system shows that the axioms and conjecture are CounterSatisfiable (label L, line 24), the user
is informed using the write command and the process is terminated using the exit command
(lines 25-26). If a proof of the conjecture is found (label M, line 27), a Theorem status is
output using the write command, and the process ends using the exit command (lines 28-29).
Otherwise, if a decision cannot be reached (label N, line 30), the user is informed using the
write command and the process is terminated using the exit command (lines 31-32).

4.2 Shortest Time to Solve an ATP Problem

An ATP system usually accepts a command line flag that specifies the maximum time the
system can use on a problem. Many ATP systems employ strategy scheduling [7], which slices
this time among different search strategies, and tries to solve the problem by trying each of
the strategies ith its time slice, until one solves the problem or all have failed. Providing a
strategy scheduling ATP system with less time may result in the system solving the problem
in less time. Figure 2 illustrates how this can occur, using the strategy scheduling approach
introduced in version 1.8 of the E ATP system. E’s strategy scheduling chooses four strategies.
One eighth of the overall time limit is given to each of the first two (weakest) strategies, one
quarter to the third strategy, and one half to the last (strongest) strategy. In the example the
overall time limit is 120s. The first three strategies fail to solve the problem in their allocated
time slices, but the fourth strategy succeeds using 25s of its 60s slice. A total of 85s is used by
the four strategies. If the time limit is then halved to 60s, a solution is found using a total of
55s is used. If the time limit is halved again, no solution is found because the fourth strategy is
allocated only 15s. The time limit can then be increased again, here to 45s – half way between
the successful 60s limit and the unsuccessful 30s limit, but again no solution is found because
the fourth strategy is allocated only 22.5s. Increasing the limit again to half way between the
successful 60s limit and the unsuccessful 45s limit produces a solution.

Script 3 provides a tcsh script that uses TPI commands to implement this “binary search”
for a minimal time limit. The script starts by collecting information needed from the user:
the name of the problem file, the overall time limit, and a constant value Epsilon whose use
will be explained shortly (lines 1-3). The E ATP system is then executed using the execute

command, bounded by the overall time limit to try to solve the given problem (line 4). If it
times out (line 6), the algorithm halts (line 7). Otherwise, two variables are initialized (lines
9-10): the LowerBound variable that holds the last reported time limit at which the given ATP
system timed out when trying to solve the problem, and the Upperbound variable that holds
the last reported time limit at which the given ATP system solved the problem. Then, while
the difference between the UpperBound and LowerBound is greater than Epsilon (line 11), the
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Figure 2: Strategy Scheduling Example

time limit is set to be midway between the LowerBound and UpperBound (line 12), and the ATP
system is executed again, bounded by the new time limit (line 13). If the ATP system solves
the problem (line 15), the UpperBound is set to the time limit (line 16). If the ATP system
times out (line 17), the LowerBound is set to the time limit (line 18). This process is repeated
until the difference between UpperBound and LowerBound becomes smaller than Epsilon (line
11). Upon exiting the loop the UpperBound is the time limit at which the system last solved
the problem.

5 Conclusion

This paper has described the TPI language, introduced a shell interpreter for it, and demon-
strated how useful they can be in theorem proving. The TPI language provides command
and control instructions for manipulating logical formulae, and makes it possible to use ATP
systems in a fully automated manner. Future work on the interpreter will focus on making it
available to more ATP system developers and users, as they could benefit from the standard
interface the TPI language provides for dealing with ATP systems.
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1 set Problem = $1

2 set TimeLimit = $2

3 set Epsilon = $3

4 tpi execute -q2 ’SZSSchedule’ = "eprover --cpu-limit=$TimeLimit $Problem"’’

5 set ProofResult = ‘tpi write ’$getenv(SZSSchedule)’‘

6 if ("$ProofResult" == "Timeout")

7 echo "Problem could not be solved in the time provided!"

8 else

9 set LowerBound = 0

10 set UpperBound = $TimeLimit

11 while (($UpperBound - $LowerBound) > $Epsilon)

12 @ TimeLimit = ($UpperBound + $LowerBound) / 2

13 tpi execute -q2 ’SZSSchedule’ = "eprover --cpu-limit=$TimeLimit

$Problem"

14 set ProofResult = ‘tpi write ’$getenv(SZSSchedule)’‘

15 if ("$ProofResult" == "Theorem")

16 set UpperBound = $TimeLimit

17 if ("$ProofResult" == "Timeout")

18 set LowerBound = $TimeLimit

19 end

20 echo "Final time limit is: $UpperBound"

Script 3: tcsh Script to find the Minimal Time to Solve an ATP Problem
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