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Abstract

The field of numerical analysis has developed numerous benchmarks for evaluating differential and
algebraic equation solvers. In this paper, we describe a set of benchmarks commonly used in numeri-
cal analysis that may also be effective for evaluating continuous and hybrid systems reachability and
verification methods. Many of these examples are challenging and have highly nonlinear differential
equations and upwards of tens of dimensions (state variables). Additionally, many examples in numer-
ical analysis are originally encoded as differential algebraic equations (DAEs) with index greater than
one or as implicit differential equations (IDEs), which are challenging to model as hybrid automata. We
present executable models for ten benchmarks from a test set for initial value problems (IVPs) in the
SpaceEx format (allowing for nonlinear equations instead of restricting to affine) and illustrate their
conversion to several other formats (dReach, Flow*, and the MathWorks Simulink/Stateflow [SLSF])
using the HyST tool. For some instances, we present successful analysis results using dReach, Flow*,
and SLSF.
Category: academic Difficulty: low through challenge

1 Context and Origins
Verification and validation are important tasks that are applied broadly in many fields in recent
years such as embedded systems, power electronics, networked control systems, and aerospace
systems [4, 16, 17]. Many different verification methods and tools have been developed for
reachability analysis of hybrid systems [2, 3, 7, 14]. The challenges in verification of continuous
and hybrid systems are many, and include for example complex nonlinear dynamics, high-
dimensional state-spaces, and bounded vs. unbounded time. To evaluate novel verification
methods and tools, we need to evaluate and test them using a variety of diverse benchmarks,
that are ideally standardized. However, these benchmarks are not standardized, so it is difficult
to evaluate whether particular state representations (e.g., zonotopes [1], Taylor models [7],
support functions [13], polyhedra, hypercubes [5], symbolic/SMT formulas [14], etc.) and
verification techniques are superior for different classes of hybrid automata.

In this paper, we present a set of ten different, executable benchmarks to aid in the develop-
ment of a standardized set of benchmarks for the verification community to evaluate verification
methods and tools. These benchmarks are derived from a test set for initial value problem (IVP)
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solvers from numerical analysis [18,19], and include systems modeled by nonlinear ordinary dif-
ferential equations (ODEs) and differential-algebraic equations (DAEs). While some of these
benchmarks are standard and well-known in the hybrid systems verification community (e.g.,
the Van der Pol oscillator), the majority (to the best of the authors’ knowledge) have not pre-
viously been considered for benchmarking hybrid systems reachability tools, although similar
recent initiatives are ongoing [8]. This test set and others are used as standardized benchmarks
to compare IVP solvers and helped move numerical analysis into the mainstream [10, 11, 15],
and this was one of the original goals in developing standardized benchmarks: “The problems,
methods and comparison criteria are specified very carefully. One objective in doing so is to
provide a rigorous conceptual basis for comparing methods. Another is to provide a useful
standard for such comparisons” [15]. We then hope that the development of similar standard
benchmark sets for verification purposes will help move reachability analysis and verification
into industrial adoption.

The benchmarks are shown in Table 2.2 and come from a variety of fields, including biology,
environmental science, celestial mechanics, chemistry, and electronics. The benchmarks are
independent from a specific approach to evaluate reachability algorithms, as they have different
classes of nonlinear dynamics, dimensionality, etc. All the benchmarks are purely continuous,
and do not include any hybrid or switched behavior. Most of them contain highly stiff nonlinear
differential equations and a high number of state variables, which make them challenging to
analyze with existing techniques and tools, but they may serve as benchmarks to evaluate the
next generation of techniques and tools. All the benchmarks are IVPs and specify (1) the initial
conditions, (2) the ODEs or DAEs, (3) a final state, and (4) the time to reach the final state;
see Table A.1. For reachability analysis and safety verification, the final state—or actually a
neighborhood about the final state to avoid minor numerical issues—specifies the bad set of
states, and reachability from the initial state to the final state may be checked (either using
the time or not). All of benchmarks are first described in the input format for SpaceEx1, and
are then translated to other formats including dReach, Flow*, and Matlab Simulink/Stateflow
(SLSF) using the HyST model transformation tool [6]. To validate the conversion of the bench-
marks from their original descriptions (from the paper describing them [18] and some Fortran
code [19]) to hybrid automata, simulations in Matlab were conducted of equivalent continuous-
time SLSF charts (generated using HyST), and compared to existing simulation results [18,19].
Additionally, several benchmarks are analyzed using Flow* and dReach. The problems are di-
verse, with the number of state variables varying from two to twenty eight, so these benchmarks
may be useful to evaluate reachability algorithms, verification methods, and tools.

2 Brief Descriptions
For brevity, we do not describe in detail all the benchmarks in Table 2.2, but refer to their origins
and detailed mathematical definitions in [18, 19].2 We provide executable models (as SpaceEx
hybrid automata, SLSF, and the other formats supported by HyST) for all the benchmarks in
the supplementary material. In this section, we focus on presenting the Chemical Akzo Nobel
problem taken from the test set in [18,19] as it is a nonlinear DAE systems and is nontrivial to
model as hybrid automata.

1This allows for nonlinear functions, which may be specified and parsed by SpaceEx, but not analyzed as
only affine functions are supported.

2The executable models are included on the ARCH website and are also available online from the HyST
website at: http://verivital.com/hyst/.
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Chemical Akzo Nobel problem: This is a chemical process problem given by Akzo Nobel
(Central Research, Arnhem, Netherlands) where two species, FLB and ZHU, are mixed while
CO2 is continuously injected.

The mathematical description of the problem is a set of six non-linear DAEs of index
one, where xi, i ≤ 6 represent the concentrations of [FLB], [CO2], [FLBT ], [ZHU ], [ZLA],
[FLB.ZHU ], respectively:

M dx
dt = f (x) , x (0) = x0, x ∈ R6, 0 ≤ t ≤ 180,

M =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0


, f (x) =



−2r1 + r2 − r3 − r4

− 1
2r1 − r4 − 1

2r5 + Fin

r1 − r2 + r3

−r2 + r3 − 2r4

r2 − r3 + r5

Ksx1x4 − x6


,

where the ri and Fin are auxiliary variables defined as
r1 = k1 · x4

1 · x
1
2
2 , r2 = k2 · x3 · x4, r3 = k2

K · x1 · x5

r4 = k3 · x1 · x2
4, r5 = k4 · x2

6 · x
1
2
2 , Fin = klA ·

(
p(CO2)
H − x2

)
.

The values of the parameters k1, k2, k3, k4,K, klA, p(CO2) and H are presented in Table 2.1.
The problem is specified as a nonlinear DAE. However, most of verification tools support

only ODEs3. Thus, to model the chemical Akzo Nobel problem as a hybrid automaton, we
can convert the original DAEs to equivalent ODEs. There is a general solution to convert
linear DAEs to linear ODEs that can be easily modeled as a hybrid automaton. However, it
is generally more complicated for nonlinear DAEs. In this problem, it is simple to convert the
original DAEs to equivalent ODEs by taking the derivative of the sixth sub-equation to obtain
ẋ6 = Ks(x1ẋ4 + x4ẋ1). Table 2.2 gives a brief overview of all problems successfully converted
from the test set.

3 Simulations and Reachability Analysis
To validate all models in the test set, we first run simulation of the SLSF models in Matlab to
check if the systems behaviors and final solutions at the end of the running time are similar to
those in the original test set [18, 19]. The simulation is run using Matlab 2014a on a personal
computer with the following configuration: Intel (R) Core(TM) i7-2677M CPU at 1.80GHz,
4GB RAM, and 64-bit Window 7. A virtual machine running Ubuntu on the same computer

k1 = 18.7 k4 = 0.42 Ks = 115.83
k2 = 0.58 K = 34.4 p(CO2) = 0.9
k3 = 0.09 klA = 3.3 H = 737

Table 2.1: The values of the parameters in Akzo Nobel problem.
3The naive approach is to specify the algebraic constraint as the invariant, but this does not work for many

tools, e.g., Flow* and dReach, although this may be accommodated in SpaceEx using uncontrolled variables.
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No. Name Class n Field SpaceEx SLSF Flow* dReach

1 Hires NL ODE 8 Chemistry × + + +
2 Pollution NL ODE 20 Environment × + + +

3 Ring
modulator NL ODE 15 Electric × + + +

4 OREGO NL ODE 3 Chemistry × + + +
5 ROBER NL ODE 3 Chemistry × + + +
6 E5 NL ODE 4 Chemistry × + + +

7 Akzo
Nobel

NL DAE
index 1 6 Chemistry × + + +

8 VDPOL NL ODE 2 Electric × + + +

9 Small
Circuit

NL DAE
index 1 4 Electric × + + +

10 Pleiades NL ODE 28 Mechanics × + + +

Table 2.2: Overview of the benchmark problems, where NL is short for nonlinear, n is the
number of variables, × specifies that the model is incompatible with a particular tool at this
time (e.g., due to nonlinear dynamics), and + specifies that the model file successfully parses
and analysis starts (e.g., is executable). However, the large final time makes analysis of them
challenging in many cases (see Table A.1).
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Figure 3.1: SLSF simulations of the chemical Akzo Nobel problem.

with 1GB RAM was used for Flow* and dReach. All the models are executable, and most of
them are simulated with results similar to those in the original test set. However, some of them,
such as Ring Modulator and E5, cannot be completely simulated with the full running time
as the original test set due to the high stiffness of these systems. Since the solutions of stiff
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Figure 3.2: Analysis of the chemical Akzo Nobel problem in dReach showing the final state
(xβ) is reachable (modulo δ-decidability) from the initial state (xα) at time β.

differential equations can change on a very small time scale, it is hard to determine appropriate
values for relative and absolute tolerances even when using an appropriate stiff solver (we use
ode15s solver in Matlab Simulink). The second step for model validation is to analyze the
problems using the Flow* and dReach verification tools. Notice again that, because of the error
of numerical solvers, we cannot use the specific final solutions in the simulation step as a point
to check reachability. Instead, we use a hyper-rectangle around the final solution computed
numerically. An overview of the simulations and analysis results of the test set are shown
in Table 2.2. The executable model files and additional reachability and simulation results
from Matlab SLSF of all the problems are available in the supplementary materials. After
selecting appropriate parameters, all the benchmarks can be executed in Flow* and dReach.
However, some instances cannot fully be analyzed to show that the final state (Table A.1) is
reachable. This may be caused by some of the following reasons: (a) due to computational
processing and memory limits on the evaluation computer, the tools may run out of memory
or may not terminate with the parameters provided in a given time threshold, (b) the high
stiffness of some instances is a challenge, specifically to identify an appropriate time step size
that yields termination in a given time threshold, (c) the final time is very long in many cases,
or (d) we did not select ideal parameters. Next, we present some analysis for the Chemical
Akzo problem using dReach, which was successfully analyzed in both dReach and Flow* to
show that the final state is reachable at the final time.

Chemical Akzo Nobel problem: The chemical Akzo Nobel problem is first simulated
using Matlab SLSF. The behavior of the system is shown in Figure 3.1. Its analysis, shown
in Figure 3.2, is then done using dReach, where the final state is defined as the following:
∀xi ∈ xβ , i ≤ 6, then xi ∈ εi, εi ⊂ Υ, where Υ = 〈 [0.1, 0.12], [0.001, 0.0015], [0.14, 0.18],
[0.0003, 0.0004], [0.0015, 0.0019], [0.003, 0.006]〉 is an interval vector of variable values at the
final state.
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4 Key Observations

Converting the test set to hybrid automata input formats and validating the conversion high-
lighted several areas for improvement in existing tools and gave rise to several interesting
technical problems. First, the long running time of the examples was challenging for the tools,
as seen by the lack of many successful reachability analyses in Table 2.2. While parameter
tuning for each of tool may make analysis feasible, this requires significant manual effort.

DAE to ODE Conversion and Tool Semantics Differences. Is there a general solution
for modeling DAEs using hybrid automata? If this could be done, we could model many
problems in different fields such as mechanical, biochemical, and electrical engineering as hybrid
automata. The basic idea to do this is to convert the DAEs into ODEs and algebraic constraints
that can be described as the flows and invariants of a hybrid automaton. The SpaceEx modeling
language supports uncontrolled variables for modeling the algebraic variables and constraints,
and this means algebraic variables can take any value satisfying their constraints over the
evolution of the system (i.e., over the intervals of time defining trajectories).

Unfortunately, SpaceEx only supports hybrid systems with piecewise affine dynamic, mean-
while all the problems in the test set are nonlinear. In SpaceEx, one method is to model
semi-explicit linear DAEs in terms of hybrid input/output automata (HIOA) [9]. Other tools
like dReach and Flow* support reachability analysis for nonlinear hybrid systems. However,
it is still a challenge to analyze nonlinear DAEs using these tools, since they do not have the
above benefit in modeling uncontrolled variables like SpaceEx. These tools consider all variables
as controlled variables that have to be defined by ODEs in the flows component of the hybrid
automaton tuple. This means that modeling the algebraic constraint as an invariant is typically
infeasible. Thus, these tools do not support the capability of modeling DAEs directly (as they
do not support uncontrolled variables and some require a full assignment of the flows, e.g., every
variable must be associated with an explicit flow), so a conversion from DAEs to ODEs may be
necessary. Thus, in order to analyze nonlinear DAEs included in the test set using these tools,
we need to convert to equivalent ODEs. Moreover, this approach can totally be applied for
linear DAEs by taking the derivative of the linear constraints, but it is inapplicable in general
when the constraints of the DAEs are nonlinear. As a solution for this problem, the level set
method has been proposed to compute the reachable sets of hybrid systems with semi-explicit
index one DAEs [20].

Standardized Test Sets for Reachability Analysis. As in the simulation and numerical
analysis community [10, 11, 15], it is essential to build a standard test set for evaluating reach-
ability analysis methods and their implementations in software tools. The executable models
provided along with this paper may help researchers test and compare their methods to exist-
ing results effectively and quickly without incurring additional programming workload. This
may also help industrial adoption, as engineers can more easily evaluate and select a suitable
verification method for their class of problems. Though this benchmark starts with only some
ODE and DAE problems, it is still useful for testing and comparing verification methods be-
cause of the problems’ diversity, various number of variables, and long running time. While
all benchmarks in this paper are one location hybrid automaton models, there are many other
interesting hybrid systems benchmarks [8, 12], and standardizing a diverse set is critical.
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5 Outlook
Overall, these verification benchmarks represent a diverse set from easy through challenging and
may serve to develop a standard benchmark library to evaluate reachability and verification
methods for nonlinear dynamics. The benchmarks range in dimensionality, dynamics types,
and come from many different domains. The continuous and hybrid verification community
may use these benchmarks for comparing methods and tools. In ongoing and future work, we
intend to collect additional benchmarks [10,11,15], including ones originally encoded as DAEs
with index greater than one and IDEs listed in [18,19].
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A Appendix: Initial and Final States
Table A.1 shows, for each example, the initial conditions, final (or goal) states, and a specific time at which to
reach the goal states (e.g., a final or goal time) from the initial conditions. In Table A.1, [α, β] denotes a running
time interval between the initial state and the final state, where α is the initial time and β is the final time (i.e.,
the time at which the final state should be reachable from the initial state). Here, xα, xβ are n-vector of the
solutions of the state variables at initial time α and at final time β of a simulation, respectively. As these results
come from numerical simulators, one may need to create a hyper-rectangle around the final state to create a
neighborhood near the final state that is reachable at the final time.
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No. Name [α, β] IC, FS Value

1 Hires [0, 321.81] xα (1, 0, 0, 0, 0, 0, 0, 0.0057)T
xβ (0.737 · 10−3, 0.144 · 10−3, 0.589 · 10−4, 0.118 · 10−2,

0.239 · 10−2, 0.624 · 10−2, 0.285 · 10−2, 0.285 · 10−2)T

2 Pollution [0, 12] xα (0, 0.2, 0, 0.04, 0, 0, 0.1, 0.3, 0.01, 0, 0, 0, 0, 0, 0,
0, 0, 0.007, 0, 0)T

xβ (0.056, 0.134, 0.414 · 10−8, 0.006, 0.202 · 10−6,
0.147 · 10−6, 0.078, 0.324, 0.007, 0.162 · 10−7,
0.114 · 10−7, 0.002, 0.002, 0.139 · 10−4, 0.008,
0.435 · 10−17, 0.007, 0.1008 · 10−3, 0.177 · 10−5,
, 0.568 · 10−4)T

3 Ring
Modulator [0, 0.001] xα (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

xβ (−0.023,−0.007, 0.258,−0.406,−0.404,−0.261,
0.1107, 0.294 · 10−6,−0.284 · 10−7, 0.727 · 10−3,
0.793 · 10−3,−0.726 · 10−3,−0.794 · 10−3,
−0.709 · 10−4, 0.239 · 10−4)T

4 OREGO [0, 360] xα (1, 2, 3)T
xβ (1.0008, 1228.178, 132.055)T

5 ROBER
[

0, 1011
]

xα (1, 0, 0)T

xβ (0.208 · 10−7, 0.833 · 10−13, 0.999)T

6 E5
[

0, 1013
]

xα (1.76 · 10−3, 0, 0, 0)T

xβ (0.115 · 10−290, 0.887 · 10−22, 0.885 · 10−22, 0)T

7 Akzo
Nobel [0, 180] xα (0.444, 0.001, 0, 0.007, 0, 0.359)T

xβ (0.115, 0.001, 0.161, 0.0003, 0.017, 0.004)T

8 VDPOL [0, 2000] xα (2, 0)T
xβ (1.171,−0.893 · 10−3)T

9 Small
Circuit [0, 20] xα (0, 0, 0, 0)T

xβ (−0.99, 0.0001, 0.99,−0.99)T

10 Pleiades [0, 2] xα (3, 3,−1,−3, 2,−2, 2, 3,−3, 2, 0, 0,−4,−4,
0, 0, 0, 0, 0, 1.75,−1.5, 0, 0, 0,−1.25, 1, 0, 0)T

xβ (0.371, 3.247,−3.222, 0.66, 0.3426, 1.562,−0.7,
−3.944,−3.271, 5.225,−2.591, 1.198,−0.243, 1.091,
3.417, 1.355,−2.59, 2.025,−1.156,−0.807, 0.595,
−3.741, 0.377, 0.939, 0.367,−0.347, 2.344,−1.947)T

Table A.1: Configurations for reachability analysis using the test set, specifying the initial
conditions (xα), final states (xβ), and the time at which the final state is reachable (β) when
starting from the initial time (α).
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