
Engineering Theories with Z3

Nikolaj Bjørner

Microsoft Research
nbjorner@microsoft.com

Abstract

Modern Satisfiability Modulo Theories (SMT) solvers are fundamental to many pro-
gram analysis, verification, design and testing tools. They are a good fit for the domain
of software and hardware engineering because they support many domains that are com-
monly used by the tools. The meaning of domains are captured by theories that can be
axiomatized or supported by efficient theory solvers. Nevertheless, not all domains are
handled by all solvers and many domains and theories will never be native to any solver.
We here explore different theories that extend Microsoft Research’s SMT solver Z3’s basic
support. Some can be directly encoded or axiomatized, others make use of user theory
plug-ins. Plug-ins are a powerful way for tools to supply their custom domains.

1 Introduction

This talk surveys a selection of theories that have appeared in applications of Z3 [5] and also
in recent literature on automated deduction. In each case we show how the theories can be
supported using either existing built-in theories in Z3, or by adding a custom decision procedure,
or calling Z3 as a black box and adding axioms between each call. The theme is not new. On
the contrary, it is very central to research on either encoding (reducing) theories into a simpler
basis or developing special solvers for theories. Propositional logic is the most basic such basis
e.g., [6]. In the context of SMT (Satisfiability Modulo Theories), the basis is much richer.
It comes with built-in support for the theory of equality, uninterpreted functions, arithmetic,
arrays, bit-vectors, and even first-order quantification. The problem space is rich, and new
applications that require new solutions keep appearing. We don’t offer a silver bullet solution,
but the “exercise” of examining different applications may give ideas how to tackle new domains.

Z3 contains an interface for plugging in custom theory solvers. We exemplify this interface
on two theories: MaxSMT and partial orders. This interface is powerful, but also requires
thoughtful interfacing. To date it has been used in a few projects that we are aware of [8, 1, 7].
Some of our own work can also be seen as an instance of a theory solver. The quantifier-
elimination procedures for linear arithmetic and algebraic data-types available in Z3 acts as a
special decision procedure [2]. The OpenSMT solver also supports an interface for pluggable
theories [4]. We feel that the potential for plugging in custom theory solvers into modern SMT
solvers is enormous.

Z3 also allows interfacing theories in simpler ways. The simplest is by encoding a theory
using simpler theories and often also first-order quantification. We discuss two encodings for
a theory of object graphs. A usage model that lies between encoding and a user theory, is by
calling Z3 repeatedly. Whenever Z3 returns a satisfiable state, then add new axioms that are
not satisfied by the current candidate model for the existing formulas. A theory of Higher-Order
Logic, HOL, can be encoded using this approach.

Code samples illustrating the theory integrations are available in F# from http://research.

microsoft.com/en-us/events/z3dtu/usertheories.zip. An extended version of this ab-
stract appears in [3].

K. Korovin, S. Schulz, E. Ternovska (eds.), IWIL 2012 (EPiC Series, vol. 22), pp. 1–2 1

nbjorner@microsoft.com
http://research.microsoft.com/en-us/events/z3dtu/usertheories.zip
http://research.microsoft.com/en-us/events/z3dtu/usertheories.zip


Engineering Theories with Z3 Nikolaj Bjørner

References

[1] Anindya Banerjee and David Naumann and Stan Rosenberg. Decision Procedures for Region Logic.
In submission, Aug. 2011. http://www.cs.stevens.edu/ naumann/publications/dprlSubm.pdf.

[2] N. Bjørner. Linear Quantifier Elimination as an Abstract Decision Procedure. In J. Giesl and
R. Hähnle, editors, IJCAR, volume 6173 of Lecture Notes in Computer Science, pages 316–330.
Springer, 2010.

[3] N. Bjørner. Engineering Theories with Z3. In H. Yang, editor, APLAS, volume 7078 of Lecture
Notes in Computer Science, pages 4–16. Springer, 2011.

[4] R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich. The opensmt solver. In J. Esparza and
R. Majumdar, editors, TACAS, volume 6015 of Lecture Notes in Computer Science, pages 150–153.
Springer, 2010.

[5] L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan and J. Rehof,
editors, TACAS, volume 4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

[6] S. K. Lahiri, S. A. Seshia, and R. E. Bryant. Modeling and verification of out-of-order micropro-
cessors in uclid. In M. Aagaard and J. W. O’Leary, editors, FMCAD, volume 2517 of Lecture Notes
in Computer Science, pages 142–159. Springer, 2002.

[7] P. Rümmer and C. Wintersteiger. Floating-point support for the Z3 SMT Solver. http://www.

cprover.org/SMT-LIB-Float.

[8] P. Suter, R. Steiger, and V. Kuncak. Sets with cardinality constraints in satisfiability modulo
theories. In R. Jhala and D. A. Schmidt, editors, VMCAI, volume 6538 of Lecture Notes in Computer
Science, pages 403–418. Springer, 2011.

2

http://www.cprover.org/SMT-LIB-Float
http://www.cprover.org/SMT-LIB-Float

	Introduction

