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Abstract

Satisfiability (SAT) solving has become an important technology in computer-aided
mathematics with various successes in number and graph theory. In this paper we apply
SAT solvers to color infinitely long strips in the plane with a given height and number of
colors. The coloring is constrained as follows: two points that are exactly unit distance
apart must be colored differently. To finitize the problem, we tile the strips and all points
on a tile have the same color. We evaluated our approach using two different tile shapes:
squares and hexagons. The visualization of bounded height strips using 3 to 6 colors reveal
patterns that are similar to the best known lower bounds for infinite strips. Our method
can be a useful tool for mathematicians to search for patterns that can be generalized to
infinite strips and allowed us to increase the lower bound for the strip height with 5 colors
to an improved height of 1.700084.

1 Introduction

The significant performance boost of SAT solvers in the last two decades have allowed them to
efficiently deal with problems ranging from verification [4] to planning [13] and synthesis [11].
In this paper, we use these solvers for an application in computer-aided mathematics: coloring
strips in the plane with a certain height under the unit-distance constraint. The unit-distance
constraint states that two points must differ in color if their distance is exactly 1 (unit distance).

The goal of the presented work is to generate interesting patterns using a SAT solver by
grouping neighboring points and give them the same color. A similar approach has been ex-
plored by Boris Alexeev, who showed that a square of 2.4 by 2.4 can be colored using six colors
while satisfying the unit-distant constraint [1]. Mathematicians can study these patterns and
determine whether they can be generalized.

Coloring unit-distance strips is related to the Chromatic Number of the Plane (CNP), a
problem first proposed by Nelson in 1950 [18]. The CNP asks how many colors are required to
color the entire plane using the unit-distance constraint. Early results showed that at least four
and at most seven colors are required. By the de Bruijn–Erdős theorem, the chromatic number
of the plane is the largest possible chromatic number of a finite unit-distance graph [8]. The
Moser Spindle, a unit-distance graph with 7 vertices and 11 edges, shows the lower bound [14],
while the upper bound is shown by a 7-coloring of the entire plane by Isbell [18]. Both the
lower bound and the upper bound are shown in Figure 1.

E. Albert and L. Kovacs (eds.), LPAR23 (EPiC Series in Computing, vol. 73), pp. 373–389



Coloring Unit-Distance Strips using SAT Oostema, Martins, and Heule

Figure 1: A 7-coloring of the plane using hexagon tiles with an outer radius of slightly smaller
than unit distance. Also shown is a visualization of the Moser spindle graph.

In a breakthrough for the CNP in April 2018, Aubrey de Grey improved the lower bound by
providing a unit-distance graph with 1 581 vertices with chromatic number 5 [9]. This discovery
by de Grey started a Polymath project to find smaller graphs. Various smaller graphs have been
constructed with the help of SAT solvers [12]. The current record is a graph with 509 vertices
and 2 442 edges, which was recently discovered by Jaan Parts [16] and shown in Figure 2.

While these results provide understanding in lower bounds of the CNP, our research explores
whether SAT solvers can be used to produce and help with upper bound results. Existing upper
bound advances are based on a tessellation of the plane with shapes such that all points in the
shape have the same color and all points in two shapes with the same color are at least distance
1 apart. Pritikin showed that there exists a 7-color tiling of the plane such that only a tiny
fraction of the plane is colored with the seventh color [17].

In this paper, we focus on coloring infinite strips with a given height instead of the entire
plane. Table 1 summarizes the research in this direction. Early results for 3 and 4 colors are
based on coloring the strips with rectangles of the same shape and with a height that equals
the strip height [2] and an example is shown in Figure 3a. A recent result improves the height
for 4 colors using a much more involved pattern [6] and is shown in Figure 3b.

The only published result [2] for 5 colors is a height of 0.968. A height of 1.625 has been

Table 1: Colorings of infinite strips with different heights

# Colors Height
3

√
3/2 ' 0.866 [3]

4
2
√
2/3 ' 0.94 [3]√
32/35 ' 0.956 [15]

0.959 [6]

5

√
15/4 ' 0.968 [2]

13/8 ' 1.625 [15]
9/2

√
7 ' 1.70084 [this paper]

6
√
15/2 +

√
3 ' 3.668 [2]
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Figure 2: A unit-distance graph with chromatic number five with 509 vertices and 2, 442 edges.
The vertices are colored with five colors. Only the central vertex has the fifth color (white),
which results in patterns in for colors of the other nodes.

posted on a blog by Jaan Parts [15] showing a construction with pentagons. Our SAT-based
approach also produces a coloring with similar shapes, but with a larger height. We constructed
a tiling with height 1.70084 based on the SAT solution. The best known result for 6 colors is
a height of 3.668 [2] and is shown in Figure 3c. Our SAT-based approach was able to find a
similar pattern for a similar height after relaxing the constraints, which we call scaling.

2 Background

Below we present some background concepts related to the contributions of this paper.

2.1 Chromatic Number of the Plane

The Chromatic Number of the Plane (CNP) [18] asks how many colors are required in a coloring
of the plane to ensure that there exists no monochromatic pair of points with distance 1. A
unit-distance graph is a graph formed from a set of points in the plane by connecting two points
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(a) 4-coloring of a strip with height 0.94 [2]

(b) 4-coloring of a strip with height 0.959 [6]

(c) 6-coloring of a strip with height 3.668 [2]

Figure 3: Some known k-colorings of strips

by an edge whenever the distance between the two points is exactly one. A lower bound for
CNP of k colors can be obtained by showing that a unit-distance graph has chromatic number
k. An upper bound for CNP of k colors can be obtained by showing that a k-coloring of the
plane exists, such as the tessellation shown in Figure 1. In this paper, we will focus on coloring
infinitely long strips of a given height.

2.2 Graph Coloring

Given a graph G = (V,E) and a number k, the graph coloring problem asks whether it is
possible to color the vertices v ∈ V with k colors such that for all edges (v, w) ∈ E hold that
vertices v and w have a different color. The chromatic number of a graph G, denoted by χ(G),
is the smallest number k such that there exists a valid k coloring of G. To determine χ(G), one
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needs to show that a valid χ(G)-coloring exists for G, while there exists no such coloring with
χ(G)− 1 colors.

2.3 Propositional Satisfiability

We compute the chromatic number of graphs on the propositional level. We consider formulas
in conjunctive normal form (CNF), which are defined as follows. A literal is either a variable
x (a positive literal) or the negation ¬x of a variable x (a negative literal). The complement ¬l
of a literal l is defined as ¬l = ¬x if l = x and ¬l = x if l = ¬x. For a literal l, var(l) denotes
the variable of l. A clause is a disjunction of literals and a formula is a conjunction of clauses.

An assignment is a function from a set of variables to the truth values 1 (true) and 0 (false).
A literal l is satisfied by an assignment α if l is positive and α(var(l)) = 1 or if it is negative
and α(var(l)) = 0. A literal is falsified by an assignment if its complement is satisfied by the
assignment. A clause is satisfied by an assignment α if it contains a literal that is satisfied
by α. A formula is satisfied by an assignment α if all its clauses are satisfied by α. A formula
is satisfiable if there exists an assignment that satisfies it and unsatisfiable otherwise.

3 Coloring of Strips as a SAT problem

To translate our problem into SAT we first need to create a tessellation of the strip and make a
graph from the shapes that contain points one distance away. Several polygons can be used to
tessellate the plane. In this work, we tessellated the plane with squares and hexagons. Squares
have the advantage of being able to draw straight lines, while hexagons are one of the roundest
shapes which minimizes the number of conflicts between intersecting shapes.

Each shape was given two indices (one for each dimension) to identify its position as depicted
in Figure 4a for hexagons. We build a conflict graph where each shape is a node and there is
an edge between two shapes if there is a conflict between them, i.e. they cannot be colored
with the same color. The graph is constructed by finding the conflicts from one shape to all
others and repeating that pattern for each shape. For instance, squares that touch the red outer
border area in Figure 4b are conflicting with the central (black) square. These conflicts can be
found efficiently by searching downwards for the first shape that is one distance away. From
here the adjacent shapes are traversed to find the complete set of shapes that are one distance
away. When a shape is found not in this range the traversal returns from that shape without
adding a connection. The connections are stored at pairs of index offsets and easily translate
to other shapes. For example, if two hexagons three rows apart share points one distance away
then all hexagons will similarly share points with hexagons three rows above or below.

3.1 SAT Encoding

In this section, we show how to encode the coloring of strips to SAT. We follow a traditional
encoding for graph coloring problems using SAT [10].

Variables. Let S be the set of shapes and K the set of colors. For each shape s ∈ S we
create k = |K| variables s1, . . . , sk. If si is assigned truth value 1 then it means that shape s is
colored with color i.
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(a) Indexing of hexagons (b) Conflicts between squares

Figure 4: Indexing and conflicts in a tessellation

Constraints. There are two sets of constraints that we need to constrain our variables to
encode a strip coloring problem. The first set of constraints requires that each shape s ∈ S is
colored by at least one of the k colors. The following constraints capture this restriction:∧

∀s∈S

∨
∀k∈K

sk

The second set of constraints uses the conflict graph constructed during the tessellation of
the strip. Shapes that are connected with an edge cannot be colored with the same color. Let
E be the set of edges, where if (sv, sw) is an edge in E and sv, sw correspond to the underlying
shapes. The following constraints describe the conflict restrictions:∧

∀(sv,sw)∈E
∀k∈K

(¬svk ∨ ¬swk )

Symmetry-breaking constraints. Like many other SAT problems, the coloring of strips
has symmetries. To break some of the symmetries [7] that are associated with the permutation
of colors, we find a triangle in the graph representation of the problem with vertices one distance
away. Let s, s′, and s′′ be the underlying shapes that correspond to the three vertices of the
triangle, then we add unit clauses such that each shape is assigned a different color (1 to 3):

(s1) ∧ (s′2) ∧ (s′′3)

Scaling factor. In addition to the necessary constraints from the traditional SAT encoding
for graph coloring problems [10], we introduce a new scaling factor for the shapes. The scaling
factor is a ratio between 0 and 1 and describes what size of the internal shape will be colored.
If the scaling factor is set to 1, then the entire shape needs to be colored. Otherwise, a hexagon
or square will be created at the center of the original shape, but with edge length scaled down.
An example is given in Figure 5 which shows a coloring using a scaling factor of 0.74. Notice the
internal hexagons with white space between them since those areas do not need to be colored.
This allows us to find patterns for the strip that may violate the conflict constraints and not
fully color the strip, but still give us an intuition on how the pattern should look like. The
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Figure 5: Coloring using a scaling factor of 0.74

scaling factor also has the added benefit of generating fewer conflicts between each shape and
thus resulting in a smaller graph and easier to solve SAT formula. To improve the clarity of the
images generated with a scaling factor, for the remainder of the paper, we will color the white
space with the same color of the corresponding internal shape.

4 Experimental Results

To evaluate our approach, we encoded the k-coloring of a strip with variable height, fixed width
of 8, and k ∈ {3, 4, 5, 6}. The tessellation of the plane was done with squares and hexagons. The
experimental results presented in this section aim to answer the following research questions:

Q1: What is the largest height of a bounded strip that a SAT solver can find a k-coloring?

Q2: What is the impact of the different shapes in the coloring found by a SAT solver?

Q3: What is the impact of the scaling factor in the coloring found by a SAT solver?

The results described in this section were obtained using the Bridges system of the Pitts-
burgh Supercomputing Center. Nodes in the supercomputer have an Intel Xeon e5-2695 v3 @
2.3GHz processor with 28 cores and 96 GB of memory. For this kind of problem, we observed
that either the problem is solved within a short time limit or it does not get solved. Therefore,
we run the SAT solver CaDiCaL1 20 times, using a different random seed each time, with a
time limit of 600 seconds per run. Shuffling the formula or using random seeds to simulate a
shuffling effect has been shown to increase the performance of SAT solvers to some classes of
benchmarks [5], and we have observed similar phenomena while solving k-coloring strips prob-
lems. We implemented the encoding generator and reconstruction of the solution in our tool
SArTcolor, which is written in Python and publicly available at GitHub. 2

4.1 k-Coloring of Strips

Table 2 shows the main results for k-coloring of strips using different colors and shapes without
scaling. We can observe that SAT solvers can solve very large formulas, in particular, we were
able to solve formulas with over 155 million clauses and 311 thousand variables. However, we
can also observe that when the number of colors and the height of the strip increases, then

1https://github.com/arminbiere/cadical
2https://github.com/peteroostema/SATChromaticPlane
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Table 2: Largest strip height for k-colorings without scaling

Strip Shape Formula Time (s)
#Colors Height Polygon Edge Length Scaling #Vars #Clauses #Timeouts Average Std Dev Result

3 0.86 Square 0.02 1 51,600 10,347,829 0 3.20 0.042 SAT
3 0.88 Square 0.02 1 52,800 10,939,217 0 4.12 0.103 UNSAT
3 0.82 Hexagon 0.01 1 77,841 1,7491,899 0 6.50 0.0342 SAT
3 0.84 Hexagon 0.01 1 80,250 18,740,099 0 5.76 0.385 UNSAT
4 0.94 Square 0.02 1 75,200 17,162,539 0 6.52 0.034 SAT
4 0.96 Square 0.02 1 76,800 18,109,011 0 164.59 11.437 UNSAT
4 0.92 Hexagon 0.01 1 116,628 30,468,376 0 13.51 0.433 SAT
4 0.94 Hexagon 0.01 1 118,768 31,841,591 0 409.48 76.263 UNSAT
5 1.66 Square 0.02 1 166,000 73,351,133 18 400.84 24.148 SAT
5 1.68 Square 0.02 1 168,000 74,808,263 20 - - Unknown
5 1.64 Hexagon 0.01 1 256,800 127,160,378 19 407.75 - SAT
5 1.66 Hexagon 0.01 1 259,475 129,333,043 20 - - Unknown
6 1.80 Square 0.02 1 216,000 100,254,051 19 419.29 - SAT
6 1.82 Square 0.02 1 218,400 102,002,527 20 - - Unknown
6 1.66 Hexagon 0.01 1 311,370 155,189,269 4 229.90 7.303 SAT
6 1.68 Hexagon 0.01 1 316,182 159,098,603 20 - - Unknown

the formulas become harder to solve. This also shows the importance of running the problem
multiple times with different seeds since the SAT solver will perform a different search which
may lead to a solution in a short amount of time. In general, using squares leads to finding
colorings with larger heights than with hexagons. This may be explained by the fact that
squares fit the space between the strip better than hexagons since at the strip border the
hexagon will not draw a straight line and will have a small part dangling outside of the strip.

What is the largest height we can find a k-coloring without using a scaling factor?
To answer this question, we fixed the edge length of hexagons to 0.01 and of squares to 0.02 3

without using a scaling factor (i.e., scaling factor is set to 1) and increased the height of the strip
in increments of 0.02 until it reached the best known value for that k-coloring or until we either
got an unsatisfiable result from the SAT solver or 20 timeouts. Small squares and hexagons
allow for more precise coloring and improve the quality of the image found by SArTcolor.

3-Coloring. Using squares, we were able to find a coloring for a strip of height 0.86 which
is close to best known height for a 3-coloring of a strip (0.866). When increasing the height
of the strip, the problem becomes unsatisfiable. In contrast, when using hexagons, we were
only able to find a coloring for a strip with height 0.82 since the problem becomes unsatisfiable
for larger heights. Figure 6 shows the coloring obtained by SArTcolor when using squares and
hexagons for 3-coloring of strips. In both cases, we can see a repeating pattern. In Section 5,
we will discuss how the repeating pattern in Figure 6a can be generalized to the infinite strip
as described by Bauslaugh [3].

4-Coloring. For 4 colors, we found colorings of height 0.94 and 0.92 by using squares and
hexagons, respectively. For larger height values, the SAT solver returned unsatisfiable. In
this case, we did not found a 4-coloring for the largest known height of a strip which is 0.959
but our findings can still be helpful to aid mathematicians to generalize these colorings for
infinite strips. Figure 7 shows the colorings returned by SArTcolor for the different shapes both

3Observe that the long diagonal of a hexagon with edge length of 0.01 is 0.02.
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(a) Coloring using squares with edge length 0.02 and height 0.86

(b) Coloring using hexagons with edge length 0.01 and height 0.82

Figure 6: Comparison between shapes for 3-coloring of strips without scaling

(a) Coloring using squares with edge length 0.02 and height 0.94

(b) Coloring using hexagons with edge length 0.01 and height 0.92

Figure 7: Comparison between shapes for 4-coloring of strips without scaling

revealing a similar pattern. This pattern resembles the best known 4-coloring [2] and will be
further discussed in Section 5.

5-Coloring. For 5 colors, we found colorings with height 1.66 and 1.64 by using squares and
hexagons, respectively. For larger height values, the SAT solver could not find any solution
within the time limit. We can observe that some shapes have a coloring (e.g. red) that differs
from the color of shapes in their close neighborhood (e.g. green). This is particularly visible
in the upper left corner of Figure 8b. The reason for this noise is because some shapes can be
colored with multiple colors while still leading to a valid coloring. As future work, we propose
to perform a postprocessing step to smooth out this noise and get a more clear picture. The
previously known best value for 5 colors was 1.625 [15] but in Section 5 we will show how the
pattern depicted in Figure 8 can be generalized to an infinite strip with height 1.70084.

6-Coloring. The best known height for 6 colors is 3.668. However, we were only able to
find a coloring for height 1.80 using squares and 1.66 using hexagons. The coloring problem
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(a) Coloring using squares with edge length 0.02 and height 1.66

(b) Coloring using hexagons with edge length 0.01 and height 1.64

Figure 8: Comparison between shapes for 5-coloring of strips without scaling

(a) Coloring using squares with edge length 0.02 and height 1.80

(b) Coloring using hexagons with edge length 0.01 and height 1.66

Figure 9: Comparison between shapes for 6-coloring of strips

becomes much harder to solve when the number of colors increases and as a consequence the
gap between the best known height and the colorings found is large.
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Table 3: Configuration for k-colorings with heights fixed to the largest known values

Strip Shape Formula Time (s)
#Colors Height Polygon Edge Length Scaling #Vars #Clauses #Timeouts Average Std Dev Result

3 0.86 Hexagon 0.01 0.2 81,855 3,182,553 0 1.21 0.017 SAT
3 0.86 Hexagon 0.01 0.3 81,855 6,534,258 0 2.65 0.034 UNSAT
4 0.96 Square 0.02 0.7 76,800 12,346,247 0 4.16 0.128 SAT
4 0.96 Square 0.02 0.8 76,800 14,239,867 1 459.28 56.701 UNSAT
4 0.96 Hexagon 0.02 0.5 31,088 2,139,723 0 1.26 0.012 SAT
4 0.96 Hexagon 0.02 0.6 31,088 2,580,555 0 16.33 1.295 UNSAT
5 1.70 Square 0.05 0.5 27,200 2,462,838 4 230.22 194.48 SAT
5 1.70 Square 0.05 0.6 27,200 3,069,148 20 - - Unknown
5 1.70 Hexagon 0.04 0.2 17,550 247,823 0 135.27 129.251 SAT
5 1.70 Hexagon 0.04 0.3 17,550 621,273 20 - - Unknown
6 3.66 Square 0.06 0.6 49,848 5,782,909 19 264.85 - SAT
6 3.66 Square 0.06 0.7 49,848 7,445,413 20 - - Unknown
6 3.66 Hexagon 0.03 0.4 77,328 6,377,607 18 289.14 297.119 SAT
6 3.66 Hexagon 0.03 0.5 77,328 8,485,569 20 - - Unknown

Figure 10: Coloring using squares with edge length 0.02 and scaling factor 0.7 for height 0.96

4.2 Impact of Scaling Factor

Table 2 shows that the largest height for which we can find k-coloring without scaling can be
too far from the best known values, in particular for 6 colors. Table 3 shows the impact of the
scaling factor when finding colorings close to the best known height values.

What is the scaling factor that we need to use to find a coloring for the heights of
the best known k-colorings? We fixed the largest known height for each k-coloring problem
and decreased the scaling factor until the SAT solver was able to find a solution. When doing
this procedure, we were still not able to find any colorings by using an edge length of 0.02 for
squares and 0.01 for hexagons. Therefore, in these cases, we also increased the edge length and
found a coloring that maximized the scaling factor and minimized the edge length. Note that we
did not perform this experiment for 3 colors using squares since we could already find a solution
close to the largest known height. Even though we were always able to find a configuration for
which the SAT solver found a solution, the quality of the coloring found depends on the scaling
factor. For small scaling factors, the coloring can become too noisy to distinguish any pattern,
which was the case for 5 colors using hexagons and a scaling factor of 0.2. However, in most
cases, using the scaling factor allowed us to see the same or new patterns at larger heights.

Figures 10 and 11 show the impact of scaling when using squares. We can observe a new
coloring pattern in Figure 10 that was not observed in images without scaling. We will discuss
a potential generalization of this pattern to an infinite strip in Section 5. For 6 colors, we
observed a pattern similar to Figure 9a but at a larger height which makes the pattern more
visible and easier to generalize to infinite strips.
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Figure 11: Coloring using squares with edge length 0.06 and scaling factor 0.6 for height 3.66

5 Generalization to Infinite Strips

In the previous section, we have shown that SAT solvers can find unit-distance colorings for
bounded strips. To generalize the colorings found from bounded strips to infinite strips, we
need to identify repeating patterns and check if these patterns can be used to obtain a valid
coloring for infinite strips. In this section, we use the solution returned by the SAT solver as a
starting point to find known generalizations for k-coloring of infinite strips and to find a new
5-coloring for infinite strips of height 9

2
√
7
' 1.70084.

5.1 3-Coloring

The pattern in Figure 6a can be used to construct a 3-coloring for an infinite strip with height√
3
2 ' 0.866 as shown by Bauslaugh [3]. This can be done by constructing an infinite strip

of height ω =
√
3
2 built of repeating monochromatic ω × 1

2 rectangles with colors R (red), O
(orange), B (blue), R, O, B, · · · . Note that the same pattern can also be extended to the

4-coloring of a strip (see Figure 3a) with a height ω′ = 2
√
2
3 ' 0.94 built of monochromatic

rectangles ω′ × 1
3 [3] and to the 5-coloring of a strip with height ω′′ =

√
15
16 ' 0.968 and

monochromatic rectangles ω′′ × 1
4 [2].

Even though this is not a new result for 3-coloring, we can see that a SAT approach would
give the exact pattern that generalizes to an infinite strip and can be used to provide insights
to mathematicians of potential patterns that can be generalized.

5.2 4-Coloring

One pattern that emerged is shown in Figures 7a and 7b. These figures show two waves of
alternating colors (yellow, orange) top and bottom separated by two colorings (blue, red) filling
in the section between the waves. This is the same pattern as shown in Figure 3b which resulted
in the largest known height (0.959) for 4 colors.
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(a) An almost 4-coloring of a strip with height 1 pattern
(b) Empty area of near 4-coloring

Figure 12: An almost 4-coloring of the strip with height 1

When using a scaling factor of 0.7, we observed a different pattern as shown in Figure 10.
This has two colors repeated on the top (blue, red) and another two on the bottom (orange,
yellow). We tried to generalize this pattern to an infinite strip of height 1. Figure 12a shows
that this generalization cannot color a strip of height 1 completely since there is a small area
in the intersection of the 3 colors that cannot be colored without breaking the unit-distance
constraints. If we approximate the area that is not colored with two triangles and generalize
it to the infinite strip, we can observe that this is an almost 4-coloring since we cover at least
99.74% of the strip. Consider the points a, b, c and d in Figure 12b. Notice that the endpoints
of these triangles are the intersection of yellow, blue and white (point b), the intersection of
red and blue at the bottom (point c), and the lowest point colored by yellow (point d). Point
a is the point in the middle and top making right triangles with these. First, the area is over-
approximated with the right triangle with endpoints a, b, and c. Next, area is taken away from
this triangle using another right triangle formed with the points a, b, and d. The coordinates
of the points a, b, c, and d are obtained using the geometric construction. The area that is
not colored occurs four times in a unit distance square and that gives an approximation to the
percentage of the colored area.

Even though our generalization was not successful, we can again see the usefulness of the
SAT approach and the scaling factor by providing hints that can be used by mathematicians.

The reader may wonder, why we did not find a pattern using monochromatic rectangles like
the one shown in Figure 3a. Since we are using small shapes, there are more solutions with
wave-like colorings than solutions that use straight lines. However, if we increased the edge
length of the rectangles to a larger size then we would also be able to find a similar coloring to
the one shown in Figure 3a.

5.3 5-Coloring

Figure 8a shows a pattern using a shape similar to a pentagon and with colors appearing on the
opposite edge (top/bottom) each time they are used. From this image, we infer that coloring
the infinite strip with 5 colors might be done using two rows of pentagons with one edge flat
on the edge of the strip and two that connect the edge to the diagonal wave in the center. This
pattern is shown in Figure 13. A similar pattern using pentagons was found by Jaan Parts [15]
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Figure 13: Pentagon tiling of improved height for 5 colors

with a height of 1.625. This led us to pose the following question.

What is the tallest strip that can be colored with this pattern? To answer this
question, we need to make the pentagon as tall as possible, such that for any two points in the
pentagon holds that they are less than distance one apart. Let x be the width of the pentagons,
and y the length of the vertical edges, and z the height.

We want to find x, y, z that maximizes y + z such that:

• a2 = x2 + y2 ≤ 1

• b2 =
(
x
2

)2
+ z2 ≤ 1

• c2 =
(
3x
2

)2
+ (z − y)2 ≥ 1

It turns out that there exists a solution for which all three constrains are equal to 1. In

this solution, shown in Figure 14, x =
√
3√
7
, y = 2√

7
, z = 5

2
√
7
. The height of the strip with

this pattern is y + z = 9
2
√
7
' 1.70084. This is also the optimal solution as the only option to

increase y or z is the reduce x, but by reducing x the distance of two pentagons with the same
color becomes less than 1.

Validity. To show that this is a valid coloring we need to show that each shape colored with
the same color only has points that are more than 1 distance apart. The pattern is repeated
infinitely so it suffices to show this for one set. Adjacent like-colored shapes share two sets of
parallel line segments we need to consider. These are the diagonals and vertical lines nearest to
each other. The distance between parallel lines is the length of the perpendicular line between
them. These line segments are offset and there is no perpendicular line intersecting them.
Therefore, the closest points between them can be found by finding the closest set of endpoints
between them. For both, the closest distance is 1, as shown in Figure 14. Since each shape
only has ownership of the points exactly on half of its line segments the distance here is 1 + ε.
From here we know all other points are further than 1 because the shape grows further away
from these parallel line segments.

5.4 6-Coloring

For six colors, we can observe that the pattern found by SArTcolor is similar to the one used
to construct a 6-coloring strip with height 3.668 [2]. This is particularly visible if we compare
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y

z

x

a

b

c

Figure 14: Illustration of the three constraints. The bold distances a, b, and c in the shown
solution are exactly 1.

(a) Pattern from the image found by SArTcolor (b) Pattern from known 6-coloring [2]

Figure 15: Comparison between patterns for 6-coloring of strips

the patterns in Figure 3c with Figure 11. To make this comparison more clear, we cropped the
pattern from each of the images and plotted them in Figure 15 by assigning a number to each
color. Even though the shapes are distorted in the pattern found by SArTcolor because of the
scaling factor, we can see that the pattern is the same. Moreover, this pattern was only found
when using a scaling factor since it allowed SArTcolor to find a 6-coloring for a height of 3.66.
This result supports that SArTcolor can be a useful tool to find these kinds of patterns.

6 Conclusions and Future Work

We presented a SAT-based approach to color strips with the unit-distance constraint and to
visualize the resulting coloring. Our method can be a useful tool for mathematicians to search
for patterns in colored strips or other shapes. Apart from tiling an entire strip, we evaluated
the usefulness of scaling: only using the inner part of tiles when computing the unit-distance
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constraint. Strips with larger heights can be colored by scaling and also other patterns emerge.
However, we observed cases where the produced colorings are not valid: there exists no coloring
for the uncolored outer parts of the tiles.

The emerged patterns are similar to the best known heights for 3 to 6 colors. Our method
with and without scaling was able to color a strip with 5 colors with a height larger than the
best known bound. We analyzed this pattern and established an improved height of 1.70084.

In future work, we plan to automate the search for a full (unscaled) coloring from a given
scaled coloring. This part was done manually in this paper. A possible approach is to use
smaller tiles for the uncolored parts. Additionally, we plan to experiment with other shapes,
such as triangles. Finally, we would like to improve the quality of the resulting images by
applying post-processing techniques to reduce the noise that arises if a tile can have multiple
colors.
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[8] N. G. de Bruijn and Paul Erdős. A colour problem for infinite graphs and a problem in the theory
of relations. Nederl. Akad. Wetensch. Proc. Ser. A, 54:371–373, 1951.

[9] Aubrey D. N. J. de Grey. The chromatic number of the plane is at least 5. Geombinatorics,
XXVIII:18–31, 2018.

[10] Allen Van Gelder. Another look at graph coloring via propositional satisfiability. Discrete Applied
Mathematic, 156(2):230–243, 2008.

[11] Jun Gu and R. Puri. Asynchronous circuit synthesis with boolean satisfiability. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 14(8):961–973, Aug 1995.

[12] Marijn J. H. Heule. Trimming graphs using clausal proof optimization. In Thomas Schiex and Si-
mon de Givry, editors, Principles and Practice of Constraint Programming, pages 251–267, Cham,
2019. Springer International Publishing.

388

https://dustingmixon.wordpress.com/2018/06/16/polymath16-seventh-thread-upper-bounds/#comment-4827
https://dustingmixon.wordpress.com/2018/06/16/polymath16-seventh-thread-upper-bounds/#comment-4827


Coloring Unit-Distance Strips using SAT Oostema, Martins, and Heule

[13] Henry Kautz and Bart Selman. Planning as satisfiability. In Proceedings of European Conference
on Artificial Intelligence, page 359–363, USA, 1992. John Wiley & Sons, Inc.

[14] L. Moser and W. Moser. Solution to problem 10. Can. Math. Bull., 4:187–189, 1961.

[15] Jaan Parts. Blog post on polymath16. https://dustingmixon.wordpress.com/2018/08/28/

polymath16-tenth-thread-open-sat-instances/#comment-5488, 2018. [Online; accessed 21-
February-2020].

[16] Jaan Parts. Graph minimization, focusing on the example of 5-chromatic unit-distance graphs in
the plane. Geombinatorics, 29, 2020.

[17] Dan Pritikin. All unit-distance graphs of order 6197 are 6-colorable. Journal of Combinatorial
Theory, Series B, 73(2):159 – 163, 1998.

[18] Alexander Soifer. The Mathematical Coloring Book. Springer New York, 2009.

389

https://dustingmixon.wordpress.com/2018/08/28/polymath16-tenth-thread-open-sat-instances/#comment-5488
https://dustingmixon.wordpress.com/2018/08/28/polymath16-tenth-thread-open-sat-instances/#comment-5488

	Introduction
	Background
	Chromatic Number of the Plane
	Graph Coloring
	Propositional Satisfiability

	Coloring of Strips as a SAT problem
	SAT Encoding

	Experimental Results
	k-Coloring of Strips
	Impact of Scaling Factor

	Generalization to Infinite Strips
	3-Coloring
	4-Coloring
	5-Coloring
	6-Coloring

	Conclusions and Future Work

