
EPiC Series in Computing

Volume 58, 2019, Pages 155–167

Proceedings of 34th International Confer-
ence on Computers and Their Applications

Analyzing JavaScript Programs Using Octagon Domain

Nabil Almashfi and Lunjin Lu

Oakland University, Rochester, Michigan, USA
{nalmashfi,L2Lu}@oakland.edu

Abstract

Static analyzers for JavaScript use constant propagation and interval domains to dis-
cover numerical properties of program variables. These domains are non-relational and
incapable of tracking relationships between variables, leading to imprecise analysis. This
paper presents a static analyzer for the full language of JavaScript that employs the oc-
tagon domain to capture numerical properties of the program. Our work is built on top
of TAJS (type analyzer for JavaScript) which employs a constant propagation domain for
numerical properties. We reengineered TAJS’s abstract domain for abstractions of primi-
tive values and its abstract domain for object abstractions and related transfer functions,
resulting in an analyzer that is much more precise. Our experiments show an improvement
in analysis precision of JavaScript programs with an acceptable increase in cost.

1 Introduction

JavaScript has a very broad presence in web applications. It has become one of the most popular
programming languages for Web applications. However, JavaScript allows for the creation of
numerous bugs during development because of its flexibility. This flexibility may produce subtle
programming errors that are not reported by the language system.

Static program analysis is promising in uncovering subtle program bugs. It examines pro-
grams and discovers their properties that hold for all possible execution paths of the program.
There are various approaches to static analysis. The static analysis presented in this paper is
based on abstract interpretation [3]. In abstract interpretation, a program is analyzed to model
some properties of concrete computations which gives an understanding of the program’s be-
havior.

Numeric analyses have been a topic of research over many years. Many numeric domains
have been proposed varying in precision and efficiency. The existing numeric domains can be
divided into two types: non-relational domains and relational domains. Non-relational domains
collect simple properties of variables and variables are abstracted independently of each other.
On the other hand, relational domains collect properties of variables and take the relationships
between variables into consideration.

The octagon abstract domain [13] is a relational domain that enables the discovery of re-
lationships between program variables. In the case of our work, it allows us to discover the
relationships among numeric variables, numeric elements of arrays and numeric properties of
objects.

G. Lee and Y. Jin (eds.), CATA 2019 (EPiC Series in Computing, vol. 58), pp. 155–167

Analyzing JavaScript Programs Using Octagon Domain Almashfi and Lu

In this paper, we present a static analyzer that supports relational abstractions. Specifically,
the analyzer uses the octagon domain to track relational numeric properties of program vari-
ables. The analyzer, which we will refer to as TAJSoct, is built on top of TAJS [6]. TAJS tracks
numeric properties of different program variables separately and is strictly non-relational. The
reengineering of TAJS to support relational abstractions is a non-trivial task that requires the
reengineering of TAJS’s abstract domain for primitive value abstractions, its abstract domain
for object abstractions and related abstract operations.

We have validated the precision and performance of TAJSoct using a suite of JavaScript
benchmark programs. Our experiments suggest that TAJSoct infers more precise numerical
properties and that constant propagation domains are very imprecise and yield a high number
of false positives that can be avoided using relational domains.

The main contributions of this paper are as follows. Firstly, we discuss state-of-the-art
JavaScript analyzers and their numerical domains. Secondly, we describe the implementation
of TAJSoct that uses the octagon domain to track relational numeric properties of program
variables. Finally, we present an empirical evaluation of performance and precision of the
analyzer on different JavaScript programs.

The rest of the paper is structured as follows. Section 2 presents related work. Section
3 provides the motivation behind this work with a motivating example. Section 4 gives an
introduction to TAJS. Section 5 describes the abstract domains in TAJSoct. Section 6 describes
some of the transfer functions. Section 7 presents the evaluation results in terms of precision
and performance and section 8 concludes.

2 Related Work

Several static analyzers based on abstract interpretation have been developed for JavaScript. In
this section, we focus on those analyzers that capture numerical properties of program variables.
Most of these tools use constant propagation domains to infer type information about variables.

TAJS [6], Type Analysis for JavaScript, is a dataflow analysis tool based on abstract inter-
pretation. It can infer type information and call graphs. The numerical abstract domain used
in TAJS is a constant propagation domain for numbers augmented with four abstract elements
UInt, NotUInt, Inf and NaN. Inf represents ±∞, NaN represents ”Not-a-Number” value, UInt
represents 32-bit signed integers and NotUInt is for all other numbers.

JSAI [8], JavaScript Abstract Interpreter, is also an abstract interpreter for JavaScript
programs. It detects and reports type errors in JavaScript programs and it has a range of
context-sensitivities from which a user can choose. The numerical and string abstract domains
in JSAI are configurable. However, the default numerical domain is a constant propagation
domain augmented with abstract elements similar to those in TAJS except that Inf is used to
represent +∞ and NInf is used for −∞.

SAFE [9], a Scalable Analysis Framework for EcmaScript, is another JavaScript analyzer. It
detects type-related errors as well as reference errors, dead code, null/undefined variables and
more. The numerical abstract domain is the same as JSAI’s except that the abstract elements
have slightly different names.

RATA [11], Rapid Atomic Type Analysis, is a combination of interval analysis, kind analysis
and variation analysis. The kind analysis enables RATA to determine whether the value of a
variable is definitely a 32-bit integer. The variation analysis relates the values of variables
on a per-loop basis. It over-approximates for each variable in a single loop its values by an
interval. This information helps Just-in-time (JIT) compilers to generate more specialized
machine instructions which results in large performance gains.

156

Analyzing JavaScript Programs Using Octagon Domain Almashfi and Lu

1 var i = 10 , a = 1 ;
2 while (i > 0) {
3 a = a + 1 ;
4 i = i − 1 ;
5 }
6 i f (a < 10) { . . . }
7 else { . . . }

O1 = >
O2 = {i = 10}
O3 = {i = 10, a = 1, i + a = 11, i− a = 9}
O4,1 = {i = 10, a = 1, i + a = 11, i− a = 9}
O5,1 = {i = 10, a = 2, i + a = 12, i− a = 8}
O6,1 = {i = 9, a = 2, i + a = 11, i− a = 7}
O4,2 = O4,1 5 (O6,1)(i>0)

O4,2 = {1 ≤ i ≤ 10, 1 ≤ a ≤ 10, i + a = 11,−9 ≤ i− a ≤ 9}
O5,2 = {1 ≤ i ≤ 10, 2 ≤ a ≤ 11, i + a = 12,−10 ≤ i− a ≤ 8}
O6,2 = {0 ≤ i ≤ 9, 2 ≤ a ≤ 11, i + a = 11,−11 ≤ i− a ≤ 7}
O4,3 = O4,2 (fixpoint reached)
O7 = {i = 0, a = 11, i + a = 11, i− a = −11}

Figure 1: Simple JavaScript program

All JavaScript Analyzers presented use non-relational numeric abstract domains and there-
fore are unable to capture relational information between numerical program variables.

3 Motivation

In this section, we use a simple JavaScript program to demonstrate the impact of our analysis
on precision. Fig. 1 shows the need for a relational domain. In this example, we have a while
loop with a loop counter i that is decremented at every iteration. On the other hand, the
variable a is incremented by one at every iteration. The variable a is then used in a conditional
statement where the condition is true if the value of a is less than 10, false otherwise. Fig. 1
also shows the computation of the octagonal constraints that result from the analysis of the
program. Oi,j represents the octagonal constraints before the execution of line i where j is the
number of iteration inside the loop.

At the beginning of the analysis, the initial octagon is set to the top element, O1 = >,
and information is propagated through the control flow of the program execution. Widening 5
operator is used to ensure the analysis reaches a fixpoint. Our analysis of JavaScript programs
using the octagon domain can discover the relational loop invariant i+ a = 11 at line 2. Using
widening operator, the analysis can also infer that i = 0 and conclude that a = 11 at line 6.
Given this information, it is clear that the condition at line 6 will always evaluate to false and
the else branch will be marked as dead code. The constant propagation domain, used in TAJS,
and the interval numerical domain, which has been applied to JavaScript, are non-relational
domains and therefore not able to discover this information.

4 Static Analyzer TAJS

TAJS [6] is a flow-sensitive analyzer for JavaScript. It can infer type information for JavaScript
programs using abstract interpretation and the monotone framework. We recall from [6] the

157

Analyzing JavaScript Programs Using Octagon Domain Almashfi and Lu

analysis lattice:

V ×N → State

where V denotes contexts and N is the set of program points. State consists of an abstract
store and an abstract stack. The abstract stack models the JavaScript runtime stack. The store
is used for the abstraction of values and it is defined as a partial map from object labels L to
abstract objects where object labels are possible allocation sites.

Store = (L ⇀ Object)

Abstract objects are maps from property names P to values and flags as follows:

Object = (P → Value× Absent× Attributes×Modified)× ℘(ScopeChain)

where Absent models potentially absent properties, Modified models modified properties in
interprocedural analysis, Attributes models the property attributes ReadOnly, DontDelete, and
DontEnum. ScopeChain is used with objects representing functions to track execution contexts.
The Value component is used to model all possible values using a non-relational abstraction.

Value = Undef× Null× Bool× Num× String× ℘(L)

Undef and Null represent undefined and null values respectively. Bool, Num and String are
boolean, number and string domains respectively.

5 Abstract Domains

TAJSoct preserves the flow sensitivity of TAJS. In order to cope well with a relational abstraction
for numerical variables, we use two abstract domains for numerical abstractions. The first
domain is the octagon abstract domain which is used to track relationships between variables.
The second domain is the type abstract domain which is used to determine whether the value
of a variable is an unsigned integer number or a float number. We describe both domains next.

5.1 Octagon Abstract Domain

The octagon abstract domain [13] was used in order to precisely track values of numeric variables
and the relationships between them. We recall that the octagon abstract domain captures
relations in the form of (±x ± y ≤ c), where x and y are variables, ± ∈ {−, 0,+} and c is a
constant. Any constraints of the form (±x±y ≤ c) are called octagonal constraints or octagonal
inequalities. An octagon can be defined as the conjunction of a set of octagonal inequalities.
Each octagonal inequality can be represented as an element of a difference-bound matrix. The
complete lattice of octagons is (O+,vo,to,uo,⊥o,>o) where O+ = O ∪ {⊥o} and O is the set
of octagons. The partial order between two octagons a vo b means that each inequality in a
is as tight as or tighter than the corresponding inequality in b. to and uo represent the least
upper bound and greatest lower bound respectively. ⊥o represents the bottom element and >o

represent the top element.
In our analysis, each variable is mapped to an allocation site and is represented by a di-

mension in the octagon. However, many variables could be mapped to one allocation site. The
global object label, for instance, is an allocation site to which variables declared in the global
scope are mapped.

158

Analyzing JavaScript Programs Using Octagon Domain Almashfi and Lu

Since JavaScript variables can be of any type, we do not have dimensions for variables that do
not hold numerical values. Assigning a numerical value to a variable cause a new dimension to
be added representing the value of that variable. On the other hand, assigning a non-numerical
value to a variable holding a numerical value causes the corresponding dimension to be deleted.
Object properties are also treated in the same way. As a consequence of this approach, the
size of octagons may dynamically change during the analysis and we follow [10] to call these
octagons dynamic. Each dimension in a dynamic octagon is a pair of a variable name v and
an allocation site l. The allocation site l serves as the abstract address to the variable v. We
define the abstract domain of dynamic octagons next.

Definition 1: (Dynamic Octagon). Let L be the set of possible allocation sites and V the set
of variables. We can define the abstract domain of dynamic octagons as

DynamicOctagon = (
⋃

P⊆L×V
OP ,vd,td,ud,⊥d,>d)

Adding and removing dimensions from dynamic octagons complicates the analysis. For instance,
the standard join operation to on two octagons o1 and o2 assumes that both o1 and o2 have
the same size and represent the same variables which is not the case in our analysis. As a
consequence, the partial order vd as well as standard abstract operations on octagons need to
be redefined.

Intuitively, the partial order between two dynamic octagons dp1
vd dp2

means that each
constraint in dp1 is as tight as or tighter than the corresponding constraint in dp2 . However,
dp1 may contain constraints that have no corresponding constraints in dp2 which makes dp2 an
over-approximation of dp1

. Therefore, we require that p2 ⊆ p1. Formally,

dp1 vd dp2 iff p2 ⊆ p1 and πp2(dp1) vo πp2(dp2)

where πp(d) is the projection of the dynamic octagon d on the pairs of variables and allocation
sites p.

Example: Let dp1
= {(l1.v1 ≤ 15) ∧ (l1.v1 + l1.v2 ≤ 20)}, dp2

= {(l1.v1 ≤ 20)}. Then
dp1
vd dp2

.

We recall from [10] the abstract operations join td, meet ud and widening ∇d on dynamic
octagons with some changes to ensure the correctness of the analysis. We observed that the
definitions of these abstract operations in [10] do not always yield a correct analysis. Particu-
larly, when an object containing an integer field is allocated memory in one of the branches of a
conditional, the analysis treats the value of the integer field in the other branch as ⊥, when it is
in fact not defined. Therefore, when two dynamic octagons are joined, the constraints that are
present in one octagon but not the other are simply added to the resulting dynamic octagon
which yields incorrect analysis.

We redefine the abstract operations join td, meet ud and widening ∇d on dynamic octagons
and we use to, uo and ∇o for the standard join, meet and widening operators respectively.

Given two dynamic octagons dp1
and dp2

, the kernel of the dp1
and dp2

is defined as p1 ∩ p2.
The join td, meet ud and widening ∇d operators are defined as follows.

Join. There are two cases to consider when joining two dynamic octagons dp1
and dp2

. If
p1 = p2, we simply apply the standard join operation on dp1

and dp2
. If p1 6= p2, we construct

a dynamic octagon by using the standard join to on the constraints involving the variables in
the kernel of dp1 and dp2 and we discard all the remaining constraints. The join of dynamic
octagons dp1 td dp2 is defined by Eq.(1) in Fig. 2.

159

Analyzing JavaScript Programs Using Octagon Domain Almashfi and Lu

p = p1 ∩ p2

κ1 = πp(dp1
)

κ2 = πp(dp2
)

η1 = πp1−p(dp1
)

η2 = πp2−p(dp2
)

dp1 td dp2 = (κ1 to κ2) (1)
dp1 ud dp2 = (κ1 uo κ2) ∪ η1 ∪ η2 (2)
dp1
∇d dp2

= (κ1∇o κ2) (3)

Figure 2: The definitions of join, meet and widening operations td, ud and ∇d on dynamic
octagons where πp(d) is the projection of the dynamic octagon d on p.

Example 1: Let p1 = {(l1, v1), (l1, v2)}, dp1 = {(l1.v1 ≤ 15) ∧ (l1.v1 + l1.v2 ≤ 20)}, p2 =
{(l1, v1), (l1, v2), (l2, v3)}, dp2

= {(l1.v1 ≤ 10)∧ (l1.v1 + l1.v2 ≤ 25)∧ (l2.v3 ≤ 5)}. The kernel of
dp1

and dp2
is {(l1, v1), (l1, v2)} and we have the following:

κ1 = {(l1.v1 ≤ 15) ∧ (l1.v1 + l1.v2 ≤ 20)}
κ2 = {(l1.v1 ≤ 10) ∧ (l1.v1 + l1.v2 ≤ 25)}

dp1
td dp2

= κ1 to κ2

dp1
td dp2

= {(l1.v1 ≤ 15) ∧ (l1.v1 + l1.v2 ≤ 25)}

Meet. There are two cases to consider when meeting two dynamic octagons dp1
and dp2

. If
p1 = p2, we simply apply the standard meet operation on dp1 and dp2 . If p1 6= p2, we first
construct a dynamic octagon by using the standard meet uo on the constraints involving the
variables in the kernel of dp1

and dp2
. Then we add all the remaining constraints to the re-

sulting dynamic octagon. The meet of dynamic octagons dp1
uddp2

is defined by Eq.(2) in Fig. 2.

Example 2: Let dp1 , dp2 be defined as in Example 1. The we have the following:

κ1 uo κ2 = {(l1.v1 ≤ 10) ∧ (l1.v1 + l1.v2 ≤ 20)}
dp1 ud dp2 = {(l1.v1 ≤ 10) ∧ (l1.v1 + l1.v2 ≤ 20)

∧(l2.v3 ≤ 5)}

Widening. The widening of two dynamic octagons is similar to the join operation in that we
construct a dynamic octagon by using the standard widening ∇o on the constraints involving
the variables in the kernel of dp1

and dp2
and we discard all the remaining constraints. The

widening of dynamic octagons dp1
∇d dp2

is defined by Eq.(3) in Fig. 2.

Floating-Point Octagons. Unlike many other programming languages, all numbers in
JavaScript are floating-point. They are always stored as 64-bit floating-point based on the
international IEEE 754 standard. As a consequence, we adopt the framework presented in [12]
in order to soundly abstract floating-point computations in JavaScript. Floating-point expres-
sions are expressed using interval linear forms on real numbers that can be fed to octagons and
rounding errors are abstracted as non-deterministic error intervals.

5.2 Number Type Domain

The number type domain is used to determine whether the value of a variable is an unsigned
integer number or a float number. It also determines the possibility that a variable could be

160

Analyzing JavaScript Programs Using Octagon Domain Almashfi and Lu

NaN indicating that a number is not a legal number. This domain does not contain an abstract
element that represents infinity since the infinity value can be captured by the octagon domain.
The motivation behind this domain is to increase analysis precision when analyzing arrays. The
set of elements of the type abstract domain is:

Type] = {⊥t ,UInt ,Float ,NaN , >t}

The abstract element UInt represents unsigned integers and Float represents all other numbers.
Let NumVal be the set of concrete numerical values NumVal = R∪ {NaN} where R is the set of
real numbers. The concretization function γt : Type] → ℘(NumVal) is defined as follows:

γt(⊥t) = ∅
γt(NaN) = {NaN}
γt(UInt) = { r | r ∈ Z, 0 ≤ r ≤ 231 − 1 } ∪ {NaN}
γt(Float) = { r | r ∈ R, r is Float754} ∪ {NaN}
γt(>t) = NumVal

where Float754 is the set of all 64-bits IEEE754 numbers. The abstraction function αt :
℘(NumVal)→ Type] is defined as

αt(S) = tt{ α̂t(n) | n ∈ S} where

α̂t(n) =

NaN if n is NaN
UInt if n is an unsigned integer
Float if n is a floating-point number
>t otherwise

Theorem 1: (αt, γt) is a Galois connection.

5.3 Abstract String Domain

The string domain interacts closely with the number domain when analyzing arrays since array
indices are represented with numeric string properties as well as non-numeric string properties.
The original string domain in TAJS is equipped with the two abstract elements UIntString and
NotUIntString in order to increase precision when dealing with arrays. UIntString describes
the set of string representations of unsigned integers whereas NotUIntString describes the set of
string representations of all other numbers and strings. However, this domain is still inadequate
since it could possibly affect unrelated properties that fall under the category UIntString.

The projection operator in the octagon domain enables us to have an interval representing
the values that a variable might hold. Therefore, we exploit the increase in precision in the
number domain to develop a string domain that can capture precise information on array index
ranges. This domain is a part of a static conventionality analysis for JavaScript arrays that was
introduced in [15] which gives more precise information about array index ranges. The abstract
string domain is a constant propagation domain similar to the string domain in TAJS except
that it is extended with integer intervals as follows.

161

Analyzing JavaScript Programs Using Octagon Domain Almashfi and Lu

String] = {⊥s,>s,UIntString,NotUIntString} ∪ {[a, b] | a,b ∈ N ∧ 0≤a≤b≤IdMax}
∪ String \ {toString(i) | 0 ≤ i ≤ IdMax, i ∈ N}

where String represents the set of all strings and toString() is a function that maps a number
to its string representation. In JavaScript, an array index is a property whose name is a string
representing an integer between 0 and IdMax (232 − 2).

The number type domain and string domain are integrated in the Value component described
previously.

Value = Undef× Null× Bool× Type] × String] × ℘(L)

5.4 Abstract Store

The abstract store in TAJS uses non-relational domains to abstract values. The use of a
relational domain to abstract numbers requires the reengineering of the store. As a consequence,
we redefine the abstract store as the follows:

Store = (L→ Object)× DynamicOctagon

where the first element of the cartesian product is non-relational abstraction for all values except
numbers and DynamicOctagon is for relational abstraction for numbers.

6 Transfer Functions

We describe in this section some of the transfer functions and our approach to handle the
complications of JavaScript in order to increase precision, yet keep good performance.

6.1 Assignments

JavaScript is a dynamically typed language and a given variable can hold values of different
types: numbers, strings, objects and more. The addition operator can also be used for con-
catenation as well as adding numbers. As a consequence, we first need to resolve the types of
the operands and determine the correct behavior before we can operate on variables. However,
numerical assignments, which we are interested in, can be divided into two kinds: one kind is
where assignments can be exactly modeled in the octagon domain and the other kind is where
assignments are approximated as described in [13]. Assigning a numerical value to a variable
causes a new dimension to be added in the octagon to represent that value. On the other hand,
changing the value of a variable from a numerical value to a non-numerical value causes the
corresponding dimension to be deleted. For instance, if we have the following

1 var x = ” s1 ” ;
2 x = 10 ;
3 x = ” s2 ”

The variable x will not be mapped to a dimension in the octagon after analyzing the first line.
Analyzing the second line will cause a new dimension to be created to represent the numerical
value of x. Assigning a string to x in the third line causes the corresponding dimension to be
deleted since x no longer holds a numerical value.

162

Analyzing JavaScript Programs Using Octagon Domain Almashfi and Lu

6.2 Function calls

When a function in JavaScript is called, the arguments may be either passed by value or by
reference and we distinguish between these two cases:
- If the arguments are passed by value, we add a new dimension in the octagon to represent
each argument as long as the arguments hold numerical values.
- If the arguments are passed by reference, which occurs in the case of passing an instance of
an object as an argument, there will be no new dimensions added to the octagon. Any changes
made to properties of the object within the function will be reflected on the original properties.
For instance, if we have the following

1 var p1 = { id : 20} ;
2 var x = 10 ;
3 fun1 (x , p1) ;
4 func t i on fun1 (y , p2) {
5 p2 . id = 10 ;
6 }

When analyzing this program, the octagon will contain the following dimensions {l1.id, l2.x, l3.y}.
The two variables p1, p2 refer to the same allocation site l1 and therefore they correspond to
the same dimension in the octagon when updating the property id which is l1.id.

6.3 Arrays

Arrays in JavaScript are different from other programming languages. For instance, the length
of arrays can be dynamically changed. Array elements may be of different types and they
can be added with high indexes which may create undefined elements in an array. In TAJS,
array elements that are assigned values separately are tracked individually. For those elements
that are not in the domain of the map, presented previously, TAJS has two special properties
default index and default other. The default index approximates the values of all property names
that match UIntString and default other approximates the values of all property names that
match NotUIntString. In TAJSoct, we use intervals to abstract the set of array indexes and the
set of values they might hold. For instance, if we have the following program

1 var A;
2 A = populateArray (0 , 5 , A) ;
3 A = populateArray (10 , 15 , A) ;
4
5 func t i on populateArray (x , y , A) {
6 var i ;
7 for (i=x ; i<=y ; i++)
8 A[i]= 2 i ;
9 re turn A;
10 }

The array A will be described by the following abstract object: {[0, 5] → [0, 10], [10, 15] →
[20, 30]}. The element ([0, 5] → [0, 10]), for example, indicates that integers from 0 to 5 are
possible indexes of A and values at these array indexes are numbers between 0 and 10. These
numbers are either unsigned integers or floating-point numbers as determined by the type
domain.

Each property name that is assigned a numerical value individually is represented by a
dimension in the octagon. In addition, each interval representing a set of array indexes is also
represented by a dimension in the octagon. In the previous example, the element A[0, 5] will
be mapped to a dimension that represents the possible values for indexes from 0 to 5. The

163

Analyzing JavaScript Programs Using Octagon Domain Almashfi and Lu

element A[10, 15] will be mapped to another dimension that represents the possible values for
indexes from 10 to 15.

6.4 Objects

An object in JavaScript is a collection of properties and functionality. An object property
could be of any type in a similar way to variables and may be added or removed dynamically.
TAJS incorporates recency abstraction [5] which is a solution that allows an abstract object
to describe an unlimited number of concrete objects and permits strong updates on objects.
We took advantage of this solution to perform strong updates on objects. When an object is
created, the octagon is extended with a dimension corresponding to each property. Removing
any property causes the related dimension to be removed from the octagon. For instance, if we
have

1 func t i on A(a)
2 { t h i s . a = a ; }
3 . . .
4 var A1 = new A(20) ;
5 var A2 = new A(30) ;

Then each object property corresponds to a dimension in the octagon as follows O = {l1.a =
20, l2.a = 30, l1.a + l2.a = 50} where l1 is the allocation site of the object A1 and l2 is the
allocation site of the object A2.

6.5 Prototypes

Prototype is a fundamental concept in JavaScript. JavaScript uses prototype objects to model
inheritance. Every object has a prototype from which other objects can inherit methods and
properties. The JavaScript prototype property can be used to add a new property to an
existing prototype and hence all objects that inherit from that prototype will have access to
the new property. Fields on the prototype will be shared between instances. When an object is
created, all properties of the object including properties inherited through the prototype will be
represented in the octagon and each object has its own properties. A property on the prototype
that is shared between instances will be mapped to a single dimension in the octagon that can
be accessed by all instances. In the following code

1 func t i on Person (age)
2 { t h i s . age = age ; }
3 . . .
4 var p1 = new Person (20) ;
5 var p2 = new Person (30) ;
6 Person . prototype . he ight = 170 ;

both p1 and p2 are instances of Person and each has its own copy of age. The octagon will
be extended with two dimensions to abstract p1.age and p2.age. The property height behaves
like a static field and therefore will be mapped to one dimension in the octagon that can be
accessed by all instances of Person.

7 Evaluation

We implemented the new abstract domains on top of TAJS for the full language of JavaScript.
In our experiments, we evaluate precision and performance of TAJSoct and we compare the

164

Analyzing JavaScript Programs Using Octagon Domain Almashfi and Lu

b
en
ch
p
re
ss

cr
y
p
to
b
en
ch

ri
ch
ar
d
s

sp
la
y

3d
-c
u
b
e

3d
-m

or
p
h

3d
-r
ay
tr
ac
e

ac
ce
ss
-b
in
ar
y
-t
re
es

ac
ce
ss
-f
an

n
k
u
ch

ac
ce
ss
-n
b
o
d
y

ac
ce
ss
-n
si
ev
e

co
n
tr
ol
fl
ow

-r
ec
u
rs
iv
e

cr
y
p
to
-m

d
5

cr
y
p
to
-s
h
a1

d
at
e-
fo
rm

at
-t
of
te

m
at
h
-c
or
d
ic

m
at
h
-p
ar
ti
al
-s
u
m
s

m
at
h
-s
p
ec
tr
al
-n
or
m

st
ri
n
g-
b
as
e6
4

0

10

20

30

E
x
ec

u
ti

on
T

im
e

(s
)

TAJS TAJSoct

Figure 3: Comparison on analysis time (seconds) between TAJS and TAJSoct

results with the original one. The test platform is a MacOS Sierra with 2.6 GHz Intel Core i5
processor and 8GB memory.

Benchmarks. TAJS contains a collection of benchmarks. Some of the benchmarks included
are the standard SunSpider (26 tests) and V8 programs (196 tests), Google programs (5 tests),
ChromeExperiements (35 tests) and JS1k programs (266 tests). We ran our analysis on these
benchmarks and we have slightly modified some of them by inlining some conditions and as-
sertions. However, we have chosen some of the most used benchmarks to present our results
which are shown in Fig. 3.

Performance. The results in Fig. 3 show that there is an increase in the time needed to
complete the tests in TAJSoct. Unlike constant propagation domains which have a linear time
complexity, the time complexity of abstract operators of the octagon domain in our analysis is
O(n3). The octagon domain is also combined with type abstract domain in order to infer more
precise information about variables than TAJS. Thus, the increase in analysis time is expected.
The results also show a higher execution time in the benchmarks that do heavier numerical
computation compared to those with less numerical computation. The average percentage of
the increase is roughly 147%.

Precision. TAJS generates warnings of possible type errors. Some of these warnings are false
due to over-approximation. The over approximation in TAJS causes some infeasible paths
wrongly identified as feasible leading to further over approximation. The gain in precision and
the number of infeasible paths detected in the new analysis has led to the reduction of the
number of false warnings. In addition, the imprecision in TAJS causes it to report inaccurate
information about variables in some cases, such as a possible NaN or undefined values. The new
analysis in many cases can eliminate such false positives that may result in some unreported
errors. Fig. 4 show the reduction in false positives in TAJSoct compared to TAJS. The average
percentage of the reduction in false positives is roughly 9.5%.

165

Analyzing JavaScript Programs Using Octagon Domain Almashfi and Lu

b
en
ch
p
re
ss

cr
y
p
to
b
en
ch

ri
ch
ar
d
s

sp
la
y

3d
-c
u
b
e

3d
-m

or
p
h

3d
-r
ay
tr
ac
e

ac
ce
ss
-b
in
ar
y
-t
re
es

ac
ce
ss
-f
an

n
k
u
ch

ac
ce
ss
-n
b
o
d
y

ac
ce
ss
-n
si
ev
e

co
n
tr
ol
fl
ow

-r
ec
u
rs
iv
e

cr
y
p
to
-m

d
5

cr
y
p
to
-s
h
a1

d
at
e-
fo
rm

at
-t
of
te

m
at
h
-c
or
d
ic

m
at
h
-p
ar
ti
al
-s
u
m
s

m
at
h
-s
p
ec
tr
al
-n
or
m

st
ri
n
g-
b
as
e6
4

st
ri
n
g-
fa
st
a

0

20

40

60

80

100

F
al

se
P

os
it

iv
es

R
ed

u
ct

io
n

(%
)

Figure 4: Decrease in false positives in TAJSoct

8 Conclusion

JavaScript has dynamic features that make it hard to reason about. This makes analysis tools
both necessary and hard to develop. We enhanced TAJS, concentrating on the numerical
domain by incorporating the octagon and type domains as abstract domains for number values.
Our analysis can detect some runtime errors such as division by zero and violation of user-
defined assertions. Results show that the output from TAJSoct is much more precise as it gives
relational information between numerical program variables.

References

[1] Agostino Cortesi and Matteo Zanioli. Widening and narrowing operators for abstract interpreta-
tion. Computer Languages, Systems & Structures, 37(1):24–42, 2011.

[2] Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of programs. In
Proceedings of the second International Symposium on Programming, pages 106–130. Paris, 1976.

[3] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages 238–252.
ACM, 1977.

[4] Patrick Cousot and Radhia Cousot. Comparing the galois connection and widening/narrowing
approaches to abstract interpretation. In Programming Language Implementation and Logic Pro-
gramming, pages 269–295. Springer, 1992.

[5] Phillip Heidegger and Peter Thiemann. Recency types for dynamically typed object-based lan-
guages. In International Workshops on Foundations of Object-Oriented Languages. FOOL, 2009.

[6] Simon H. Jensen, Anders Møller, and Peter Thiemann. Type analysis for JavaScript. In Static
Analysis, pages 238–255. Springer, 2009.

[7] Simon H. Jensen, Anders Møller, and Peter Thiemann. Interprocedural analysis with lazy propa-
gation. In Static Analysis, pages 320–339. Springer, 2011.

166

Analyzing JavaScript Programs Using Octagon Domain Almashfi and Lu

[8] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons, John Sarracino,
Ben Wiedermann, and Ben Hardekopf. JSAI: A static analysis platform for Javascript. In 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages 121–132.
ACM, 2014.

[9] Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. SAFE: Formal spec-
ification and implementation of a scalable analysis framework for ECMAScript. In International
Workshop on Foundations of Object-Oriented Languages (FOOL), 2012.

[10] Francesco Logozzo. Cibai: An Abstract Interpretation-Based Static Analyzer for Modular Analysis
and Verification of Java Classes, pages 283–298. Springer Berlin Heidelberg, Berlin, Heidelberg,
2007.

[11] Francesco Logozzo and Herman Venter. RATA: rapid atomic type analysis by abstract
interpretation–application to Javascript optimization. In Compiler Construction, pages 66–83.
Springer, 2010.

[12] Antoine Miné. Relational abstract domains for the detection of floating-point run-time errors.
In David Schmidt, editor, Programming Languages and Systems, pages 3–17, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[13] Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19(1):31–
100, Mar 2006.

[14] Peter Thiemann. Towards a type system for analyzing javascript programs. In Programming
Languages and Systems, pages 408–422. Springer, 2005.

[15] Astrid Younang, Lunjin Lu, and Nabil Almashfi. Static checking of array objects in javascript. In
4th Tools and Methods of Program Analysis International Conference (TMPA), 2017.

167

	Introduction
	Related Work
	Motivation
	Static Analyzer TAJS
	Abstract Domains
	Octagon Abstract Domain
	Number Type Domain
	Abstract String Domain
	Abstract Store

	Transfer Functions
	Assignments
	Function calls
	Arrays
	Objects
	Prototypes

	Evaluation
	Conclusion

