
Utilizing Hoare Logic to Strengthen Testing for

Error Detection in Programs∗

Shaoying Liu

Hosei University, Japan
sliu@hosei.ac.jp

Abstract

Hoare logic (also known as Floyd-Hoare logic) can be used to formally verify the cor-
rectness of programs while testing provides a practical way to detect errors in programs.
Unfortunately, the former is rarely applied in practice and the later is difficult to detect
all existing errors. In this paper, we propose a novel technique that makes good use of
Hoare logic to strengthen testing. The essential idea is first to use specification-based
testing to discover all traversed program paths and then to use Hoare logic to prove their
correctness. During the proof process, all errors on the paths can be detected. A case
study is conducted to show its feasibility; an example taken from the case study is used to
illustrate how the proposed method is applied; and discussion on the potential challenges
to the method is presented.

1 Introduction

Formal verification (or proof) based on Hoare logic [1] provides a possibility to establish the
correctness for programs, but due to the difficulty in deriving appropriate invariants for itera-
tions in general, as well as the difficulties in managing side effect and invocations of subroutines
(methods, functions, or procedures) in programming languages (e.g., Java, C#), formal proof
for realistic programs is rarely used in practice.

Specification-based testing (SBT) is a practical technique for detecting program errors. A
strong point of SBT superior to formal correctness verification is that it is much easier to be
performed automatically if formal specifications are adopted [2, 3], but a weak point is that
existing errors on a program path may still not be uncovered even if it has been traversed
using a test case. We believe that the strong point of SBT should be utilized to realize full
automation for error detection efficiency, but its weak point should be overcome by making
good use of relevant part of Hoare logic.

In this paper, we put forward a novel approach to testing programs by combining a specific
SBT we have developed before with the Hoare logic-based formal correctness verification. This
new approach is known as testing-based formal verification (TBFV). The essential idea is first
to generate a test case from each functional scenario, derived from the formal specification
using pre- and post-conditions, to run the program, and then repeatedly apply the axiom for
assignment in Hoare logic to formally verify the correctness of the path that is traversed by
using the test case. As described in Section 2, any pre-post style formal specification can
be automatically transformed into an equivalent disjunction of functional scenarios and each
scenario defines an independent function of the corresponding program in terms of the relation
between input and output. A test case can be generated from each functional scenario and
can be used to run the program to find a traversed path, which is a sequence of conditions or
statements, but the correctness of the path with respect to the pre-condition and the functional

∗This work is supported by NII Collaborative Program, SCAT research foundation, and Hosei University.

A. Voronkov (ed.), Turing-100 (EPiC Series, vol. 10), pp. 229–238 229

Utilizing Hoare Logic to Strengthen Testing for Error Detection in Programs Shaoying Liu

scenario is unlikely to be established by means of testing. This deficiency can be eliminated by
repeatedly applying the axiom for assignment in Hoare logic. The superiority of our approach
to both SBT and formal verification is that it can verify the correctness of all traversed paths
and can be performed automatically because the derivation of invariants from iterations is no
longer needed.

Our focus in this paper is on the explanation of the new idea in combining specification-
based testing with Hoare logic. Therefore, we deliberately choose small examples to explain
the principle, which is expected to facilitate the reader in understanding the essential idea.
The feasibility of applying the new technique to deal with a realistic program system has been
demonstrated in our case study.

The rest of the paper is organized as follows. Section 2 gives a brief introduction to both the
functional scenario-based testing (FSBT) and the axiom for assignment in Hoare logic. Section
3 describes the essential idea of our TBFV approach. In Section 4, we give an example to
illustrate the TBFV approach systematically. Section 5 elaborates on how method invocation
is dealt with in TBFV. Section 6 gives a brief overview of the related work. Finally, in Section
7, we conclude the paper and point out future research direction and topics.

2 Introduction to FSBT and Hoare Logic

This section briefly introduces the relevant parts of FSBT and Hoare logic to pave the way for
the discussion of our TBFV approach.

2.1 FSBT

FSBT is a specific specification-based testing approach that takes both the pre-condition and
post-condition into account in test case generation [3]. Applying the principle of “divide and
conquer”, the approach treats a specification as a disjunction of functional scenarios (FS), and
to generate test sets and analyze test results based on the functional scenarios. A functional
scenario in a pre-post style specification is a logical expression that tells clearly what condition
is used to constrain the output when the input satisfies some condition.

Specifically, let S(Siv, Sov)[Spre, Spost] denote the specification of an operation S, where Siv

is the set of all input variables whose values are not changed by the operation, Sov is the set of
all output variables whose values are produced or updated by the operation, and Spre and Spost

are the pre- and post-conditions of S, respectively. The characteristic of this style specification
is that the post-condition Spost is used to describe the relation between initial states and final
states. We assume that in the post-condition, a decorated variable, such as ˜x, is used to denote
the initial value of external (or state) variable x before the operation and the variable itself, i.e.,
x, is used to represent the final value of x after the operation. Thus, ˜x ∈ Siv and x ∈ Sov. Of
course, Siv also contains all other input variables declared as input parameters and Sov includes
all other output variables declared as output parameters.

A practical strategy for generating test cases to exercise the behaviors expected of all func-
tional scenarios derived from the specification is established based on the concept of functional
scenario. To precisely describe this strategy, we first need to introduce functional scenario.

Definition 1. Let Spost ≡ (C1 ∧ D1) ∨ (C2 ∧ D2) ∨ · · · ∨ (Cn ∧ Dn), where each Ci (i ∈
{1, ..., n}) is a predicate called “ guard condition” that contains no output variable in Sov; Di a
“ defining condition” that contains at least one output variable in Sov but no guard condition.
Then, a functional scenario fs of S is a conjunction ˜Spre ∧ Ci ∧ Di, and the expression

230

Utilizing Hoare Logic to Strengthen Testing for Error Detection in Programs Shaoying Liu

(˜Spre ∧C1 ∧D1) ∨ (˜Spre ∧C2 ∧D2) ∨ · · · ∨ (˜Spre ∧Cn ∧Dn) is called a functional scenario
form (FSF) of S.

The decorated pre-condition ˜Spre = Spre(˜σ/σ) denotes the predicate resulting from substi-
tuting the initial state ˜σ for the final state σ in pre-condition Spre. We treat a conjunction
˜Spre ∧ Ci ∧Di as a scenario because it defines an independent behavior: when ˜Spre ∧ Ci is
satisfied by the initial state (or intuitively by the input variables), the final state (or the output
variables) is defined by the defining condition Di. The conjunction ˜Spre ∧ Ci is known as the
test condition of the scenario ˜Spre ∧Ci ∧Di, which serves as the basis for test case generation
from this scenario.

To support automatic test case generation from functional scenarios, the vital first step is to
obtain an FSF from a given specification. A systematic transformation procedure, algorithm,
and software tool support for deriving an FSF from a pre-post style specification have been
developed in our previous work [4]. Generating test cases based on a specification using the
functional scenario-based test case generation method is realized by generating them from its
all functional scenarios. The production of test cases from a functional scenario is done by
generating them from its test condition, which can be divided further into test case generations
from every disjunctive clause of the test condition. In the previous work [3], a set of criteria
for generating test cases are defined in detail. To effectively apply FSBT, the FSF of the
specification must satisfy the well-formed condition defined below.

Definition 2. Let the FSF of specification S be (˜Spre∧C1∧D1)∨(˜Spre∧C2∧D2)∨···∨(˜Spre∧
Cn ∧Dn). If S satisfies the condition (∀i,j∈{1,...,n} · (i 6= j ⇒ (Ci ∧ Cj ⇔ false))) ∧ (˜Spre ⇒
(C1 ∨ C2 ∨ · · ·∨ Cn ⇔ true)), S is said to be well-formed.

The well-formedness of specification S ensures that each functional scenario defines an indepen-
dent function and the guard conditions completely cover the restricted domain (a subdomain of
the operation in which all of the values satisfy the pre-condition). Thus, for any input satisfying
the pre-condition, S is guaranteed to define an output satisfying the defining condition of only
one functional scenario.

Under the assumption that S is well-formed, we can focus on test case generation from a
single functional scenario, say ˜Spre ∧ Ci ∧Di, at a time using our approach. The test case is
then used to run the program, which will enable one program path to be executed. Let us take
operation ChildFareDiscount, a process of the IC card system for JR commute train service
used in our case study that is briefly explained in Section 4, as an example. The functionality
of the process is specified using the SOFL specification language [5] below, which is similar to
VDM-SL for operation specifications.

process ChildFareDiscount(a : int, n f : int) a f : int
pre a > 0 and n f > 1
post (a > 12⇒ a f = n f)

and
(a ≤ 12⇒ a f = n f − n f ∗ 0.5)

end process
The specification states that the input a (standing for age) must be greater than 0 and n f
(normal fare) must be greater than 1. when a is greater than 12, the output a f (actual fare)
will be the same as n f ; otherwise, a f will be 50% discount on n f .

According to the algorithm reported in our previous work [4], three functional scenarios can
be derived from this formal specification:

(1) a > 0 and n f > 1 and a > 12 and a f = n f
(2) a > 0 and n f > 1 and a ≤ 12 and a f = n f − n f ∗ 0.5

231

Utilizing Hoare Logic to Strengthen Testing for Error Detection in Programs Shaoying Liu

Table 1: A test example
test case: a = 5, n f = 2
test condition: a > 0 and n f > 1 and a ≤ 12
functional scenario: a > 0 and n f > 1 and a ≤ 12 and

a f = n f − n f ∗ 0.5

(3) a ≤ 0 or n f ≤ 1 and anything
where anything means that anything can happen when the pre-condition is violated.

Assume the formal specification is refined into the following program (a Java-like method):
int ChildFareDiscount(int a, int n f) {

(1) If (a > 0 && n f > 1){
(2) if (a > 12)
(3) a f := n f ;
(4) else a f := n f ∗ ∗2− n f − n f ∗ 0.5;
(5) return a f ; }
(6) else System.out.println(“the precondition is violated.”);

}
where the symbol := is used as the assignment operator in order to distinguish from the equality
symbol = used in the specification. It is evident that we can derive the following paths:
[(1)(2)(3)(5)], [(1)(2)′(4)(5)], and [(1)′(6)]. In the path [(1)(2)′(4)(5)], (2)′ means the negation
of the condition a > 12 (i.e., a ≤ 12), and the similar interpretation applies to (1)′ in path
[(1)′(6)]. We also deliberately insert a defect in the assignment a f = n f ∗ ∗2−n f −n f ∗ 0.5
(the correct one should be a f = n f − n f ∗ 0.5), where n f ∗ ∗2 means n f to the power 2
(i.e., n f2).

The weakness of the testing approach is that it can only find the presence of errors but
cannot find their absence. For example, we generate a test case, {(a, 5), (n f, 2)}, from the test
condition a > 0 and n f > 1 and a ≤ 12 of functional scenario (2), as illustrated in Table 1.
Executing the program with this test case, the path [(1)(2)′(4)(5)] will be traversed. The result
of the execution is a f = 2 ∗ ∗2 − 2 − 2 ∗ 0.5 = 1. This result does not indicate the existence
of error because when the test condition a > 0 and n f > 1 and a ≤ 12 is satisfied by the test
case, the defining condition a f = n f−n f ∗0.5 is also satisfied by the output a f = 1 (because
1 = 2− 2 ∗ 0.5 <⇒ true), which proves that in this case, the program correctly implements the
functional scenario. But obviously the path contains an error.

One solution to this problem is to perform a formal verification based on Hoare logic to check
whether the traversed path is correct with respect to the functional scenario. The correctness
verification is expected to be fully automatic in order to allow us to integrate this technique
into the functional scenario-based testing approach. To understand this point further, we need
to briefly introduce the axiom for assignment in Hoare logic.

2.2 Hoare logic

Hoare logic is established based on predicate logic and provides a set of axioms to define the
semantics of programming languages. For each program construct, such as sequence, selection,
or iteration, an axiom for defining its semantics is defined. These axioms can be used to reason
about the correctness of programs written in a programming language. For the sake of space
and the relevance of the axioms to this paper, we only introduce the axiom for assignment in
this section.

232

Utilizing Hoare Logic to Strengthen Testing for Error Detection in Programs Shaoying Liu

Let x := E be an assignment: assigning the result of evaluating expression E to variable x.
The axiom for assignment is

{Q(E/x)} x := E {Q} .

It states that the assignment x := E is correct with respect to the given post-assertion Q and
the derived pre-assertion Q(E/x), a predicate resulting from substituting E for all of the free
occurrences of x in Q. The post-assertion Q presents a condition that must be satisfied by
variable x after the execution of the assignment (the assignment can be treated as an operation
that updates variable x). To make post-assertion Q true after the execution, expression E
must satisfy Q before the execution, that is, Q(E/x) is true, because x represents E after the
execution.

3 Principle of TBFV

TBFV proposed in this paper provides a specific technique for verifying the correctness of
traversed program paths identified using FSBT. The principle underlying the technique includes
the following three points:

• Using FSBT to generate adequate test cases to identify all of the representative paths
in the program under testing; each path is traversed by using at least one test case. A
representative path is formed by treating an iteration as an if-then-else construct to ensure
that the body of the iteration is executed at least once and the iteration terminates, and
by treating all of the other constructs as same as their original form.

• Let ˜Spre ∧Ci ∧Di (i = 1, ..., n) denote a functional scenario and test case t be generated
from the test condition ˜Spre ∧Ci. Let p = [sc1, sc2, ..., scm] be a program path in which
each scj (j = 1, ...,m) is called a program segment, which is a decision (i.e., a predicate),
an assignment, a “return” statement, or a printing statement. Assume path p is traversed
by using test case t. To verify the correctness of p with respect to the functional scenario,
we form a path triple

{˜Spre} p {Ci ∧Di} .

The path triple is similar in structure to Hoare triple, but is specialized to a single path
rather than the whole program. It means that if the pre-condition ˜Spre of the program
is true before path p is executed, the post-condition Ci ∧Di of path p will be true on its
termination.

• Repeatedly applying the axiom for assignment or the axiom we provide below for other
relevant statements, we can derive a pre-assertion, denoted by ppre, to form the following
expression:

{˜Spre(˜x/x)} {ppre(˜x/x)} p {Ci ∧Di(˜x/x)} .

where ˜Spre(˜x/x), ppre(˜x/x) and Ci ∧Di(˜x/x) are a predicate resulting from substi-
tuting every decorated input variable ˜x for the corresponding input variable x in the
corresponding predicate, respectively. These substitutions are necessary to avoid confu-
sion between the input variables and the internally updated variables (which may share
the same name as the input variables).

Finally, if the implication ˜Spre(˜x/x) ⇒ ppre(˜x/x) can be proved, it means that no
error exists on the path; otherwise, it indicates the existence of some error on the path.

233

Utilizing Hoare Logic to Strengthen Testing for Error Detection in Programs Shaoying Liu

The axiom for the other relevant statements or decisions is given as follows:

{Q}S{Q} ,

where S is one of the three kinds of program segments: decision, “return” statement, and
printing statement. The axiom describes that the pre-condition and post-condition for any of
the three kinds of program segments are the same because none of them changes states. We
call this axiom for non-change segment.

It is worth mentioning that since the application of the axioms for assignment and for non-
change segment involves only syntactical manipulation, deriving the pre-assertion ppre(˜x/x)
can be automatically carried out, but formally proving the implication ˜Spre(˜x/x) ⇒
ppre(˜x/x), which we simply write as ˜Spre ⇒ ppre below in this paper, may not be done
automatically, even with the help of a theorem prover such as PVS, depending on the com-
plexity of ˜Spre and ppre. If achieving a full automation is regarded as the highest priority, as
taken in our approach, the formal proof of this implication can be “replaced” by a test. That
is, we first generate sample values for variables in ˜Spre and ppre, and then evaluate both of
them to see whether ppre is false when ˜Spre is true. If this is true, it tells that the path under
examination contains an error. Since the testing technique is already available in the literature
[3, 6], we do not repeat the detail in this paper for the sake of space. Our experience suggests
that in many realistic circumstances, testing can be both practical and beneficial. However, if
the correctness assurance is regarded as the highest priority, a formal proof of the implication
must be performed.

4 Example

We have conducted a case study to apply our TBFV approach to test and verify a simplified
version of the IC card system for JR commute train service in Tokyo. Our experience shows
that the approach is feasible and can be effective in general but also faces some challenges or
limitations that need to be addressed in the future research. The system we used is designed
to offer the following functional services: (1) Controlling access to and exit from a railway
station, (2) Buying tickets using the IC card, (3) Recharging the card by cash or through a
bank account, and (4) Buying a railway pass for a certain period (e.g., for one month or three
months). Due to the limit of space, we cannot present all of the details, but take one of the
internal operations used in the system, which is ChildFareDiscount mentioned above, as an
example to illustrate how TBFV is applied to rigorously test the corresponding program. The
program contains three paths, it is necessary to formally verify all of the three paths. Since
the process of the verification is the same for all the paths, we only use the path [(1)(2)′(4)(5)]
that is traversed by using the test case {(a, 5), (n f, 2)} as an example for explanation.

Firstly, we form the path triple:
{˜a > 0 and ˜n f > 1}
[a > 0 && n f > 1
a ≤ 12,
a f := n f ∗ ∗2− n f − n f ∗ 0.5,
return a f]
{˜a ≤ 12 and a f = ˜n f − ˜n f ∗ 0.5}

where ˜a > 0 and ˜n f > 1 is the result of substituting ˜a and ˜n f for input variables a and
n f , respectively, in the pre-condition of the program, and ˜a ≤ 12 and a f = ˜n f −˜n f ∗0.5
is the result of completing the similar substitution in the post-condition.

234

Utilizing Hoare Logic to Strengthen Testing for Error Detection in Programs Shaoying Liu

Secondly, we repeatedly apply the axiom for assignment or the one for non-change segment
to this path triple, starting from the post-condition. As a result, we form the following path,
known as asserted path, with derived internal assertions between two program segments:

{˜a > 0 and ˜n f > 1}
{˜a ≤ 12 and
˜n f ∗ ∗2− ˜n f − ˜n f ∗ 0.5 = ˜n f − ˜n f ∗ 0.5}
a > 0 && n f > 1
{˜a ≤ 12 and
n f ∗ ∗2− n f − n f ∗ 0.5 = ˜n f − ˜n f ∗ 0.5}

a ≤ 12
{˜a ≤ 12 and
n f ∗ ∗2− n f − n f ∗ 0.5 = ˜n f − ˜n f ∗ 0.5}
a f := n f ∗ ∗2− n f − n f ∗ 0.5
{˜a ≤ 12 and a f = ˜n f − ˜n f ∗ 0.5}
return a f
{˜a ≤ 12 and a f = ˜n f − ˜n f ∗ 0.5}

where the assertion ˜a ≤ 12 and ˜n f ∗ ∗2− ˜n f − ˜n f ∗ 0.5 = ˜n f − ˜n f ∗ 0.5, the second
from the top of the sequence, is the result of substituting ˜a for a and ˜n f for n f in the
derived assertion {˜a ≤ 12 and n f ∗ ∗2 − n f − n f ∗ 0.5 = ˜n f − ˜n f ∗ 0.5. As explained
previously, this is necessary in order to keep consistency of the input variables a and n f in the
original pre-condition (appearing as ˜a and ˜n f) and the derived pre-assertion.

Thirdly, we need to judge the validity of the implication ˜a > 0 and ˜n f > 1 ⇒ ˜a ≤ 12
and ˜n f ∗ ∗2− ˜n f − ˜n f ∗ 0.5 = ˜n f − ˜n f ∗ 0.5. Using the test case {(˜a, 5), (˜n f, 8)},
we can easily prove that the implication is false (the evaluation detail is omitted due to space
limit).

From this example, we can see that sometimes testing can be even more efficient than formal
proof in judging the validity of the implication when an error exists on the path, but if the path
contains no error, testing will be almost impossible to give a firm conclusion in general. In that
case, an engineering judgement must be made about the validity. The good point about testing
is that complete automation can be realized, which is extremely helpful for industry.

5 Dealing with method invocation

If a method invocation is used as a statement, it may change the current state of the program.
Therefore, the traversed path within the invoked method will have to be taken into account in
deriving the pre-assertion of the program under testing.

Let us change the program ChildFareDiscount and organize the implementation into a
class called FareDiscount below.

235

Utilizing Hoare Logic to Strengthen Testing for Error Detection in Programs Shaoying Liu

class FareDiscount {
int tem; //instance variable

int ChildFareDiscount1(int a, int n f) {
(1) Discount(n f);
(2) if (a > 0 && n f > 1){
(3) if (a > 12)
(4) a f := n f ;
(5) else a f := n f ∗ ∗2− n f − tem;
(6) return a f ; }
(7) else System.out.println(“the precondition is violated.”);

}

void Discount(int x){
int r;

(1.1) r := x ∗ 0.5;
(1.2) tem := r; }

}
When running the method ChildFareDiscount1 in which the method Discount(n f) is in-
voked, we obtain three paths: [(1)(2)(3)(4)(6)], [(1)(2)(3)′(5)(6)], and [(1)(2)′(7)], where seg-
ment (1) is a subpath [(1.1)(1.2)](n f/x), denoting the path resulting from substituting actual
parameter n f for formal parameter x in the subpath [(1.1)(1.2)]. Thus, [(1)(2)(3)′(5)(6)] for
example, actually means the path after inserting the traversed path in Discount into the tra-
versed path in ChildFareDiscount1, which is simply represented by [(1.1)(1.2)(2)(3)′(5)(6)].
Selecting the same test case {(a, 5), (n f, 2)} as before to run the program, we make the path
[(1.1)(1.2)(2)(3)′(5)(6)] traversed. We then form the asserted path as follows:

{˜a > 0 and ˜n f > 1}
{˜a ≤ 12 and
˜n f ∗ ∗2− ˜n f − ˜n f ∗ 0.5 = ˜n f − ˜n f ∗ 0.5}
r := n f ∗ 0.5
{˜a ≤ 12
n f ∗ ∗2− n f − r = ˜n f − ˜n f ∗ 0.5}
tem := r
{˜a ≤ 12 and
n f ∗ ∗2− n f − tem = ˜n f − ˜n f ∗ 0.5}
a > 0 && n f > 1
{˜a ≤ 12 and
n f ∗ ∗2− n f − tem = ˜n f − ˜n f ∗ 0.5}
a ≤ 12
{˜a ≤ 12 and
n f ∗ ∗2− n f − tem = ˜n f − ˜n f ∗ 0.5}
a f := n f ∗ ∗2− n f − tem
{˜a ≤ 12 and a f = ˜n f − ˜n f ∗ 0.5}
return a f
{˜a ≤ 12 and a f = ˜n f − ˜n f ∗ 0.5}

where the subpath [r := n f ∗ 0.5, tem := r] is the result of substituting actual parameter
n f used in the method invocation Discount(n f) for formal parameter x used in the method
definition in the original subpath [r := x ∗ 0.5, tem := r]. Similarly, we can easily use testing to

236

Utilizing Hoare Logic to Strengthen Testing for Error Detection in Programs Shaoying Liu

prove that the implication ˜a > 0 and ˜n f > 1⇒ ˜a ≤ 12 and ˜n f ∗ ∗2− ˜n f − ˜n f ∗ 0.5 =
˜n f − ˜n f ∗ 0.5 is false, indicating that an error is found on the path.

6 Related Work

Research on integration of Hoare logic and testing seems to mainly concentrate on using pre-
and post-assertions in Hoare triple for test case generation and test result analysis, but none of
them takes the same approach as our TBFV to solve the same problem in specification-based
testing.

One of the earliest efforts is Meyer’s view of Design By Contract (DBC) implemented in
the programming language Eiffel [7, 8]. Eiffel’s success in checking pre- and post-conditions
and encouraging the DBC discipline in programming partly contributed to the development of
the similar work for other languages such as the Sunit testing system for Smalltalk [9]. Cheon
and Leavens describe an approach to unit testing that uses a formal specification language’s
runtime assertion checker to decide whether methods are working correctly with respect to
a formal specification using pre- and post-conditions, and have implemented this idea using
the Java Modeling Language (JML) and the JUnit testing framework [10]. Gray and Mycroft
describe another approach to testing Java programs using Hoare-style specifications [11]. They
show how logical test specifications with a more relaxed post-condition than existing restricted
Hoare-style post-condition can be embedded within Java and how the resulting test specification
language can be compiled into Java for executable validation of the program. There are many
other similar results in the literature, but we have to omit them due to the space limit.

7 Conclusion and future research

We presented a new approach, known as testing-based formal verification (TBFV), for error
detection in programs by integrating specification-based testing and Hoare logic. The principle
underlying TBFV is first to use the functional scenario-based testing (FSBT) to achieve a
(representative) path coverage in the program under testing, and then to apply the Hoare
logic-based approach to formally verify the correctness of every traversed path. Since both
techniques for FSBT and for path correctness verification can be automatically performed, the
TBFV approach has an advantage over formal correctness verification based on Hoare logic
in dealing with realistic program systems. It also has a potential advantage in reducing the
number of necessary test cases over the existing specification-based testing.

While focusing on the presentation of the essential idea of the TBFV approach and an
example from the case study to show its feasibility and potential effectiveness in this paper, a
controlled experiment needs to be conducted to systematically assess the effectiveness and to
compare with the related testing and formal verification approaches. Further research is also
needed to address the tool support issue.

References

[1] C. A. R. Hoare and N. Wirth. An Axiomatic Definition of the Programming Language PASCAL.
Acta Informatica, 2(4):335–355, 1973.

[2] S. Khurshid and D. Marinov. TestEra: Specification-based Testing of Java Programs using SAT.
Automated Software Engineering, 11(4), 2004.

237

Utilizing Hoare Logic to Strengthen Testing for Error Detection in Programs Shaoying Liu

[3] S. Liu and S. Nakajima. A Decompositional Approach to Automatic Test Case Generation Based
on Formal Specifications. In 4th IEEE International Conference on Secure Software Integration
and Reliability Improvement (SSIRI 2010), pages 147–155, Singapore, June 9-11 2010. IEEE CS
Press.

[4] S. Liu, T. Hayashi, K. Takahashi, K. Kimura, T. Nakayama, and S. Nakajima. Automatic Trans-
formation from Formal Specifications to Functional Scenario Forms for Automatic Test Case Gen-
eration. In 9th International Conference on Software Methodologies, Tools and Techniques (SoMet
2010), page to appear, Yokohama city, Japan, Sept. 29- Oct. 1 2010. IOS International Publisher.

[5] S. Liu. Formal Engineering for Industrial Software Development Using the SOFL Method. Springer-
Verlag, ISBN 3-540-20602-7, 2004.

[6] S. Liu and S. Nakajima. A ”Vibration” method for Automatically Generating Test Cases Based
on Formal Specifications. In 18th Asia-Pacific Software Engineering Conference (APSEC 2011),
pages 73–80, HCM City, Vietnam, Dec. 5-8 2011. IEEE CS Press.

[7] B. Meyer. Applying Design by Contract. IEEE Computer, 25(10):40–51, Oct. 1992.

[8] B. Meyer. Eiffel: The Language. Prentice Hall Object-Oriented Series, 1991.

[9] M. C. Castellon, J. G. Molina, E. Pimentel, and I. Repiso. Design by contract in smalltalk. Journal
of Object-Oriented Programming, 9(7):23–28, Dec. 1996.

[10] Y. Cheon and G. T. Leavens. A Simple and Practical Approach to Unity Testing: The JML and
JUnit Way. In B. Magnusson, editor, Proceedings of ECOOP 2002, pages 231–255, Spain, 2002.
LNCS 2374, Springer-Verlag.

[11] K. E. Gray and A. Mycroft. Logical Testing: Hoare-style Specification Meets Executable Vali-
dation. In Proceedings of 2009 Fundamental Approaches to Software Engineering (FASE 2009),
pages 186–200, York, UK, March 2009. LNCS 5503, Springer-Verlag.

238

	Introduction
	Introduction to FSBT and Hoare Logic
	FSBT
	Hoare logic

	Principle of TBFV
	Example
	Dealing with method invocation
	Related Work
	Conclusion and future research

