
Kalpa Publications in Computing
Volume 4, 2018, Pages 284–296

28th International Workshop on
Principles of Diagnosis (DX’17)

Reducing Model-Based Diagnosis
to Knowledge Base Debugging

Patrick Rodler and Konstantin Schekotihin

Alpen-Adria Universität, Klagenfurt, Austria
firstname.lastname@aau.at

Abstract

Model-Based Diagnosis (MBD) is a principled approach to fault localization in any type of system
that can be described in a formal structured way. Knowledge Base Debugging (KBD) draws on con-
cepts from MBD to find faults in a monotonic knowledge base. We show that KBD is a generalization
of MBD in that any MBD problem can be reduced to a KBD problem and solutions of the former can
be directly extracted from solutions of the latter. Moreover, we find that the sequential MBD problem
is a special case of the sequential KBD problem in that the latter allows a user to provide more types
of measurements. As a consequence of these results, KBD approaches can be applied to all systems
amenable to MBD.

1 Introduction
Model-Based Diagnosis (MBD) is a general approach to localizing faults in a system of interest, e.g.
a digital circuit. The only assumption in MBD is a formal structured description (model) of the given
system along with observations of the system behavior. The model includes behavioral descriptions of
relevant system components (e.g. gates in a digital circuit). The fundamental paradigm underlying MBD
is the interaction of prediction and observation. For, in case the observations conflict with the predicted
system behavior, MBD aims at the determination of diagnoses, explanations of this discrepancy, and
possibly the discrimination between multiple diagnoses by gathering additional observations in terms of
measurements. The latter process is referred to as sequential diagnosis [1].

MBD was originally proposed by Reiter [15] as well as by de Kleer and Williams [1] in 1987. Since
then it has generated considerable interest in a great variety of application domains such as physical
devices [2, 14, 3], software [22, 12], configuration systems [6], recommender systems [5] and knowledge
bases [9, 10, 20, 16]. This has led to a number of different related diagnosis paradigms that build
upon MBD and extend, generalize or specialize MBD. In this work we focus on the Knowledge Base
Debugging (KBD) problem, as studied in e.g. [7, 19, 20, 17, 21, 16]. KBD is basically built on the ideas
and concepts from MBD and assumes a (faulty) monotonic knowledge base for which it searches for
minimally invasive modifications that yield a solution KB satisfying various postulated properties. The
latter are assumed to be given as a set of requirements (e.g. logical consistency) and two sets of test
cases, the first one (positive test cases) including all required entailments of the solution KB and the
second one (negative test cases) comprising all necessary non-entailments of the solution KB. This test
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Figure 1: Full adder MBD example [8, 15] from the domain of circuit diagnosis.

case paradigm can be viewed as an analogon to software debugging, where test cases serve to verify the
correctness of the program code.

After recapitulating ideas and concepts from both MBD and KBD, we show that KBD, albeit being a
derivative of MBD, is a more general paradigm than MBD. More specifically, we prove that any method
solving the KBD problem can be used to solve any MBD problem. In particular, the given proof is
constructive, i.e. we specify a mapping from an MBD problem to a KBD problem that constitutes the
problem reduction. In addition, we show that there is a direct bijective relationship between the notions
of diagnoses and conflicts from both approaches. Finally, we discuss the effects of our analyses on the
relationship between sequential MBD and KBD problems.

The rest of the work is organized as follows. In Section 2, we revise the general theory of MBD as
proposed by [15, 1]. Then, in Section 3 we recap the KBD framework [20, 16]. In Section 4, we demon-
strate that (sequential) KBD is a generalization of (sequential) MBD. Finally, Section 5 concludes.

2 Model-Based Diagnosis
We briefly review the classical Model-Based Diagnosis (MBD) problem, as described by [15]. We first
characterize a system, e.g. a digital circuit or a physical device, which is the subject of a diagnosis task:

Definition 1 (System). A system is a tuple (SD, COMPS) where SD, the system description, is a set of
first-order sentences, and COMPS, the system components, is a finite set of constants c1, . . . , cn.

The distinguished unary “abnormal” predicate AB is used in SD to model the expected behavior
of components c ∈ COMPS. Let us denote the first-order sentence describing this expected behavior
of c by beh(c) and let SDbeh := {¬AB(c)→ beh(c) | c ∈ COMPS}. The latter subsumes a statement
of the form “if c is nominal (not abnormal), then its behavior is beh(c)” for each system component
c ∈ COMPS. Any behavior different from beh(c) implies that c is at fault, i.e. AB(c) holds. But,
an abnormal component does not necessarily manifest a faulty behavior in each situation (weak fault
model [11, 4]), e.g. for an or-gate c stuck at 1 faulty behavior ¬beh(c) can only be observed if both
inputs are 0. Further, SD might include general axioms describing the system domain or descriptions of
the interplay between the system components. Let us call the set of these general axioms SDgen. So,
SD = SDbeh ∪ SDgen.

The behavior of a system (SD, COMPS) assuming all components working correctly is cap-
tured by the description SD ∪ {¬AB(c) | c ∈ COMPS}. Note, this description is equal to SDgen ∪
{beh(c) | c ∈ COMPS}.

A diagnosis problem arises when the observed system behavior – represented by a finite set of
first-order sentences OBS – differs from the expected system behavior. Formally, this means that SD ∪
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{¬AB(c) | c ∈ COMPS} ∪ OBS |= ⊥. For instance, in circuit diagnosis OBS might be the observation of
the system inputs and outputs.

In practical applications there are usually multiple different hypotheses (diagnoses) that explain the
discrepancy between observed and predicted system behavior. Without additional information about
the system, one cannot conjecture a unique diagnosis. Hence, discrimination between diagnoses can
be accomplished by means of additional observations MEAS called measurements [15, 1]. Each mea-
surement m in the set of measurements MEAS is a set of first-order sentences [15] describing additional
knowledge about the actual system behavior, e.g. whether a particular wire in a faulty circuit is high
or low. Usually new measurements are conducted and added to MEAS until some diagnostic goal G is
achieved, e.g. the presence of one highly probable or just a single remaining hypothesis. Each added
measurement m, if chosen properly, will invalidate some hypotheses.

Formalized, these notions lead to the definitions of an MBD diagnosis problem instance (MBD-DPI)
and of an MBD-diagnosis.1

Definition 2 (MBD-DPI). Let OBS (system observations) be a finite set of first-order sentences, MEAS
(measurements) be a finite set including finite sets mi of first-order sentences, and let (SD, COMPS) be a
system. Then the tuple (SD, COMPS, OBS,MEAS) is an MBD diagnosis problem instance (MBD-DPI).

Definition 3. Let DPI := (SD, COMPS, OBS,MEAS) be an MBD-DPI and UMEAS denote the union of all
m ∈ MEAS. Then SD∗[∆] := SD ∪ {AB(c) | c ∈ ∆} ∪ {¬AB(c) | c ∈ COMPS \∆} ∪ OBS ∪ UMEAS for
∆ ⊆ COMPS denotes the behavior description of the system (SD, COMPS)

• under the current state of knowledge given by the DPI in terms of OBS and MEAS, and
• under the assumption that all components in ∆ ⊆ COMPS are faulty and all components in

COMPS \∆ are healthy.

Definition 4 (MBD-Diagnosis). Let DPI := (SD, COMPS, OBS,MEAS) be an MBD-DPI. Then ∆ ⊆
COMPS is an MBD-diagnosis for DPI iff SD∗[∆] is consistent (i.e. ∆ explains OBS and MEAS). An MBD-
diagnosis ∆ for DPI is called minimal iff there is no MBD-diagnosis ∆′ for DPI such that ∆′ ⊂ ∆.

Sequential MBD addresses the problem of measurement selection in order to reach a predefined
diagnostic goal G:

Problem 1 (Sequential MBD). .
Given: An MBD-DPI DPI := (SD, COMPS, OBS,MEAS) and a diagnostic goal G.
Find: MEASnew ⊇ ∅ and ∆, where MEASnew is a set of new measurements such that ∆ is a minimal
MBD-diagnosis for the MBD-DPI DPInew := (SD, COMPS, OBS, MEAS∪MEASnew ) and ∆ satisfies G.

In general, the size of the search space for minimal MBD-diagnoses for (SD, COMPS, OBS, MEAS)
is in O(2|COMPS|). A useful concept to restrict this search space is the one of an MBD-conflict [15, 1], a
set of components whose elements cannot all be healthy given OBS and MEAS:

Definition 5 (MBD-Conflict). Let DPI := (SD, COMPS, OBS,MEAS) be an MBD-DPI. Then C ⊆
COMPS is an MBD-conflict for DPI iff SD ∪ {¬AB(c) | c ∈ C} ∪ OBS ∪ UMEAS is inconsistent. An
MBD-conflict C for DPI is called minimal iff there is no MBD-conflict C ′ for DPI such that C ′ ⊂ C.

Definition 6 (Hitting Set). Let S = {S1, . . . , Sn} be a collection of sets and US the union of all Si ∈ S.
Then H is called a hitting set of S iff H ⊆ US and H ∩ Si 6= ∅ for all i = 1, . . . , n. A hitting set H of
S is minimal iff there is no hitting set H ′ of S such that H ′ ⊂ H .

The following result [15] can be used to determine MBD-diagnoses through the computation of
MBD-conflicts:

1The prefix “MBD-” is used to differentiate between MBD concepts and (later discussed) KBD concepts.
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i αi SDbeh SDgen OBS

1 ¬AB(X1)→ beh(X1) •
2 ¬AB(X2)→ beh(X2) •
3 ¬AB(A1)→ beh(A1) •
4 ¬AB(A2)→ beh(A2) •
5 ¬AB(O1)→ beh(O1) •
6 out(X1) = in2(A2) •
7 out(X1) = in1(X2) •
8 out(A2) = in1(O1) •
9 in1(A2) = in2(X2) •
10 in1(X1) = in1(A1) •
11 in2(X1) = in2(A1) •
12 out(A1) = in2(O1) •
13 in1(X1) = 1 •
14 in2(X1) = 0 •
15 in1(A2) = 1 •
16 out(X2) = 1 •
17 out(O1) = 0 •

COMPS

{X1, X2, A1, A2, O1}

c beh(c) for c ∈ COMPS

X1 out(X1) = xor(in1(X1), in2(X1))

X2 out(X2) = xor(in1(X2), in2(X2))

A1 out(A1) = xor(in1(A1), in2(A1))

A2 out(A2) = xor(in1(A2), in2(A2))

O1 out(O1) = xor(in1(O1), in2(O1))

i MEAS

× ×

Table 1: MBD-DPI ExM obtained from the cir-
cuit diagnosis problem in Fig. 1.

i αi K B

1 out(X1) = xor(in1(X1), in2(X1)) •
2 out(X2) = xor(in1(X2), in2(X2)) •
3 out(A1) = and(in1(A1), in2(A1)) •
4 out(A2) = and(in1(A2), in2(A2)) •
5 out(O1) = or(in1(O1), in2(O1)) •
6 out(X1) = in2(A2) •
7 out(X1) = in1(X2) •
8 out(A2) = in1(O1) •
9 in1(A2) = in2(X2) •

10 in1(X1) = in1(A1) •
11 in2(X1) = in2(A1) •
12 out(A1) = in2(O1) •
13 in1(X1) = 1 •
14 in2(X1) = 0 •
15 in1(A2) = 1 •
16 out(X2) = 1 •
17 out(O1) = 0 •

i pi ∈ P

× ×

i ni ∈ N

× ×

i ri ∈ R

1 consistency

min KBD-conflicts

{α1, α2} , {α1, α4, α5}

min KBD-diagnoses

{α1} , {α2, α4} , {α2, α5}

Table 2: KBD-DPI ExM2K obtained from the
MBD-DPI ExM from Tab. 1.

Property 1. A (minimal) MBD-diagnosis for a DPI is a (minimal) hitting set of all minimal MBD-
conflicts for this DPI.

Example 1 Let us revisit the circuit diagnosis example given in [15] shown in Fig. 1. The first step
towards diagnosing the circuit using MBD is to formulate the problem as an MBD-DPI. The result
ExM := (SD, COMPS, OBS,MEAS) is given by Tab. 1 and explained next.

The circuit, i.e. the system to be diagnosed, includes five gates X1, X2 (xor-gates), A1, A2 (and-
gates) and O1 (or-gate), which are at the same time the system components COMPS of interest. The
system description SD = SDbeh ∪ SDgen consists of a knowledge base SDbeh = {α1, . . . , α5} describing
the behavior of each gate given it is working properly, e.g. for gate X1, SDbeh includes the sentence
α1 := (¬AB(X1) → out(X1) = xor(in1(X1), in2(X1))). Besides, SD includes a knowledge base
SDgen = {α6, . . . , α12} describing which gate-terminals are connected by wires, e.g. the wire connect-

287



Reducing Model-Based Diagnosis to Knowledge Base Debugging Rodler, Schekotihin

ing X1 to X2 is defined by the sentence α7 := (out(X1) = in1(X2)). For simplicity we omit the
explicit statement of additional general domain knowledge in SDgen such as axioms for Boolean alge-
bra or axioms restricting wires to only either 0 or 1 values. The observations OBS = {α13, . . . , α17}
are given by the system inputs and outputs (see the table in Fig. 1). Finally, since there are no already
performed measurements, the set MEAS is empty.

Assuming all components are healthy, i.e. all gates function properly, we find out that SD∗[∅] is
inconsistent (cf. Def. 3). That is, the assumption of no faulty components conflicts with the observations
OBS made. For instance, if X1 and X2 manifest nominal behavior, we can deduce that the output
out(X2) = 0 which contradicts the observation sentence α16 := (out(X2) = 1). Supposing either of
the componentsX1 andX2 to be nominal, we can no longer deduce out(X2) = 0 (or any other sentence
contradicting OBS). Therefore, C1 := {X1, X2} is a minimal MBD-conflict (cf. Def. 5). Similarly, we
find that C2 := {X1, A2, O1} is the only other minimal MBD-conflict for ExM. Computing minimal
hitting sets of all minimal MBD-conflicts C1, C2 (Property 1), we obtain three minimal MBD-diagnoses
∆1 := {X1}, ∆2 := {X2, A2} and ∆3 := {X2, O1}.

Let the diagnostic goal G be the achievement of complete diagnostic certainty, i.e. to sin-
gle out the correct minimal MBD-diagnosis. The goal of the MBD-problem is then to find new
measurements m1, . . . ,mk such that there is a single minimal diagnosis ∆ for (SD, COMPS, OBS,
MEAS ∪ {m1, . . . ,mk}). Let the first measurement m1 be the observation of the terminal out(X1),
and let the value of it be 0. Then, ∆1 is still a minimal MBD-diagnosis for ExMnew := (SD,
COMPS, OBS,MEAS ∪ {{out(X1) = 0}}) since the abnormality of X1 explains both OBS and MEAS.
Moreover, all other MBD-diagnoses for ExMnew must contain X1 (since its faultiness is the only ex-
planation for MEAS) and thus be supersets of ∆1. Hence, ∆1 is the only minimal MBD-diagnosis for
ExMnew and thus the actually faulty component in this scenario is X1 (under the assumption that a
⊆-minimal set of components is broken). This fact could be derived by conducting only one measure-
ment.

3 Knowledge Base Debugging
In this section we revisit the Knowledge Base Debugging (KBD) problem [6, 7, 19, 20, 17, 21] (dis-
cussed in detail in [16]).

The inputs to a KBD problem can be characterized as follows: Given is a KB K to be repaired and
a KB B (background knowledge). All sentences in B are considered correct and all sentences in K are
considered potentially faulty. K ∪ B does not meet postulated requirements R (where consistency is a
least requirement2) or does not feature desired semantic properties, called test cases. Positive test cases
(aggregated in the set P ) correspond to necessary entailments and negative test cases (aggregated in the
set N ) represent necessary non-entailments of the correct (repaired) KB (together with the background
KB B). Each test case p ∈ P and n ∈ N is a set of sentences. The meaning of a positive test case
p ∈ P is that the union of the repaired KB and B must entail each sentence (or: the conjunction of
sentences) in p, whereas a negative test case n ∈ N signalizes that some sentence (or: the conjunction
of sentences) in n must not be entailed by this union.

The described inputs to the KB debugging problem are captured by the notion of a KBD diagnosis
problem instance (KBD-DPI):

Definition 7 (KBD-DPI). Let

• K be a KB,
2Consistency is a minimal requirement to a solution KB provided by a debugging system as inconsistency makes a KB

completely useless from the semantic point of view.
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i αi K B

1 ¬H ∨ ¬G •

2 X ∨ F → H •

3 E → ¬M ∧X •

4 A→ ¬F •

5 K → E •

6 C → B •

7 M → C ∧ Z •

8 H → A •

9 ¬B ∨K •

i pi ∈ P

1 {¬X → ¬Z}

i ni ∈ N

1 {M → A}

2 {E → ¬G}

3 {F → L}

i ri ∈ R

1 consistency

Table 3: Example KBD-DPI ExK over propositional logic.

• P ,N be sets including sets of sentences,
• R ⊇ {consistency} be a set of (logical) requirements,
• B be a KB such that K ∩ B = ∅ and B satisfies all requirements r ∈ R,
• the cardinality of all sets K, B, P , N be finite, and
• all sets K, B, P , N be formulated over some monotonic logic.

Then we call the tuple 〈K,B,P ,N 〉R a KBD diagnosis problem instance (KBD-DPI).

Example 2 An example ExK of a propositional logic KBD-DPI is depicted by Tab. 3. It includes a KB
K with seven axioms α1, . . . , α7, a background KB B with two axioms α8, α9, one singleton positive
test case p1 and three singleton negative test cases n1,n2,n3. There is one requirement r1 = consistency
in R imposed on the correct (repaired) KB. It is easy to verify that the standalone KB B = {α8, α9}
is consistent, i.e. satisfies all r ∈ R, that K ∩ B = ∅ and that all involved sets K, B, P and N are
finite. Moreover, propositional logic is monotonic. Hence, ExK indeed constitutes a KBD-DPI as per
Def. 7.

A solution (KB) for a KBD-DPI is characterized as follows:

Definition 8 (Solution KB). Let DPI := 〈K,B,P ,N 〉R be a KBD-DPI. Then a KBK∗ is called solution
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KB w.r.t. DPI iff all the following conditions hold:

∀ r ∈ R : K∗ ∪ B fulfills r (1)
∀ p ∈ P : K∗ ∪ B |= p (2)
∀n ∈ N : K∗ ∪ B 6|= n. (3)

A solution KBK∗ w.r.t. DPI is called maximal iff there is no solution KBK′ w.r.t. DPI such thatK′∩K ⊃
K∗ ∩ K (i.e. K∗ has a set-maximal intersection with K among all solution KBs).

Remark: The requirements R may include additional (stronger) logical properties apart from consis-
tency. For example, one might postulate solution KBs to be coherent [18, 13]. In first-order logic terms
(using logic programming notation), a KB K is coherent iff there is no predicate r in the signature of
K such that K |= ∀X¬r(X) where X = X1, . . . , Xn and n is the arity of the predicate r. That is,
coherency means that every predicate in K can be instantiated without necessarily yielding an inconsis-
tency.

Observing the Principle of Parsimony [15], maximal solution KBs K∗ are preferred to non-maximal
ones since they result from the input KB K through the modification of a minimal set of axioms.

Example 3 For the KBD-DPI ExK given by Tab. 3, K = {α1, . . . , α7} is not a solution KB w.r.t.
〈K,B,P ,N 〉R since, e.g. clearly K ∪ B = {α1, . . . , α9} 6|= p1 which is a positive test case and
therefore has to be entailed. Another reason why K = {α1, . . . , α7} is not a solution KB w.r.t. ExK is
that K ∪ B ⊃ {α1, α2, α3} |= n2, which is a negative test case and hence must not be an entailment.
This is straightforward since {α1, α2, α3} implies E → X , X → H and H → ¬G and thus clearly
n2 = {E → ¬G}.

On the other hand, K∗a := {} ∪ {Z → X} is clearly a solution KB w.r.t. ExK as {Z → X} ∪ B is
obviously consistent (satisfies all r ∈ R), does entail p1 ∈ P and does not entail any ni ∈ N , (i ∈
{1, 2, 3}). However, K∗a is not a maximal solution KB since, e.g. α5 = (K → E) ∈ K can be added to
K∗a without resulting in the violation of any of (1) – (3).

Maximal solution KBs w.r.t. the given DPI are, e.g. K∗b := {α1, α4, α5, α6, α7, p1} (resulting from
the deletion of {α2, α3} from K and the addition of p1) or K∗c := {α1, α2, α5, α6, p1} (resulting from
the deletion of {α1, α4, α7} from K and the addition of p1). That these KBs constitute solution KBs
can be verified by checking the three conditions named by Def. 8. Indeed, adding an additional axiom
in K to any of the two KBs leads to the entailment of a negative test case n ∈ N . That is, no solution
KB can contain a proper superset of the axioms from K that are contained in any of the two solution
KBs K∗b and K∗c . Hence, both are maximal.

In general, there is not a unique (maximal) solution KB resulting from the deletion of one and the
same set of axioms D from the original KB K:

Example 4 Consider again ExK in Tab. 3 and assume D = {α2, α3} is deleted from K. Then one
solution KB constructible fromK\D isK∗b given in the last example. To determine the maximal solution
KB K∗b from K \ D, the most straightforward way of adding just all sentences occurring in positive
test cases in P has been chosen in this case. Other maximal solution KBs obtainable from adding
sentences to K \ D are, e.g. K∗b1 := {α1, α4, α5, α6, α7, Z → X} (which differs syntactically, but not
semantically fromK∗b ) andK∗b2 := {α1, α4, α5, α6, α7, Z → X ∧W} (which differs both syntactically
and semantically from K∗b yielding the entailment Z →W which is not implied by K∗b ).

Since (i) the diagnostic evidence of a DPI in terms of positive test cases P does not justify the
inclusion of sentences (semantically) different from UP (cf. [7, 20, 16]) and (ii) in KBD applications
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only one solution KB is sought, K \ D ∪ UP is regarded as the canonical solution KB for D w.r.t. DPI
iff K \ D ∪ UP is a solution KB w.r.t. DPI.

A KBD-diagnosis is defined in terms of the axioms D that must be deleted from the KB K of a
DPI in order to construct a solution KB w.r.t. this DPI. In particular, the deletion of D from K targets
the fulfillment of (1) and (3) such that UP can be added to the resulting modified KB K \ D without
introducing any new violations of (1) or (3).

Definition 9 (KBD-Diagnosis). Let DPI := 〈K,B,P ,N 〉R be a KBD-DPI. A set of sentencesD ⊆ K is
called a KBD-diagnosis w.r.t. DPI iff (K\D)∪UP is a solution KB w.r.t. DPI (i.e.K∗ := (K\D)∪UP

satisfies (1) – (3)). A KBD-diagnosis D w.r.t. DPI is minimal iff there is no D′ ⊂ D such that D′ is a
KBD-diagnosis w.r.t. DPI.

Remark: Since (K \ D) ∪ UP trivially satisfies (2) due to the inclusion of UP , D is a KBD-diagnosis
w.r.t. DPI iff K∗ := (K \ D) ∪ UP satisfies (1) and (3).

The relationship between maximal canonical solution KBs and minimal KBD-diagnoses w.r.t. a DPI
is as follows (cf. [16, p. 34]):

Property 2. Let DPI be a KBD-DPI. Then the set of all maximal canonical solution KBs w.r.t. DPI is
given by {(K \ D) ∪ UP | D is a minimal KBD-diagnosis w.r.t. DPI}.

Therefore, KBD methods focus on the computation of minimal KBD-diagnoses in order to find all
maximal canonical solution KBs.

In a completely analogous way as MBD-conflicts provide an effective mechanism for focusing the
search for MBD-diagnoses, KBD-conflicts are exploited for KBD-diagnoses calculation. Simply put, a
(minimal) KBD-conflict is a (minimal) per se faulty subset of the original KBK, i.e. one source causing
the faultiness of K in the context of B ∪ UP . For a KBD-conflict there is no extension that yields
a solution KB. Instead, such an extension is only possible after deleting appropriate axioms from the
KBD-conflict.

Definition 10 (KBD-Conflict). Let DPI := 〈K,B,P ,N 〉R be a KBD-DPI. A set of formulas C ⊆ K is
called a KBD-conflict w.r.t. DPI iff C ∪ UP is not a solution KB w.r.t. DPI (i.e. K∗ := C ∪ UP violates
at least one of (1) – (3)). A KBD-conflict C w.r.t. DPI is minimal iff there is no C′ ⊂ C such that C′ is a
KBD-conflict w.r.t. DPI.

Property 3. [7, Prop. 2] Let DPI be a KBD-DPI. Then a (minimal) KBD-diagnosis w.r.t. DPI is a
(minimal) hitting set of all minimal conflict sets w.r.t. DPI.

Property 4. [16, Prop. 3.4] Let DPI := 〈K,B,P ,N 〉R be a KBD-DPI. Then a KBD-diagnosis w.r.t.
DPI exists iff B ∪ UP satisfies all r ∈ R and B ∪ UP 6|= n for all n ∈ N .

Example 5 A list of all minimal KBD-conflicts w.r.t. the example DPI ExK (see Tab. 3) is enumerated
in Tab. 4. In Example 3, we gave an explanation why C1 is a KBD-conflict (violation of n2 ∈ N , cf. the
explanation in column 3 of Tab. 4). C1 is minimal since, first, it is consistent, i.e. satisfies all r ∈ R, and
does not entail any of the negative test cases n1,n3. Consequently, by logical monotonicity no proper
subset of C1 can violate r, n1 or n3. Second, the elimination of any axiom αi(i ∈ {1, 2, 3}) from C1
breaks the entailment of the negative test case n2.
C2 := {α2, α4} is a KBD-conflict due to the fact that α2 ≡ {X → H,F → H} together with

α8(∈ B) = H → A and α4 = A → ¬F clearly yields F → ¬F ≡ ¬F which, in particular, implies
n3 = {F → L} ≡ {¬F ∨ L}.
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min KBD-conflict X {i |αi ∈ X} explanation

C1 {1, 2, 3} |= n2

C2 {2, 4} ∪ {8} |= ¬F (|= n3)

C3 {2, 7} ∪ {p1, 8} |= n1

C4 {3, 5, 6, 7} ∪ {9} |= ¬M (|= n1)

min KBD-diagnosis X {i |αi ∈ X} explanation

D1 {2, 3} Property 1

D2 {2, 5} Property 1

D3 {2, 6} Property 1

D4 {2, 7} Property 1

D5 {1, 4, 7} Property 1

D6 {3, 4, 7} Property 1

Table 4: Minimal KBD-conflicts and KBD-diagnoses for the KBD-DPI ExK in Tab. 3.

The verification of the minimality of C2 and the fact that C3 and D4 are (all) other minimal KBD-
conflicts works analogous and is straightforward under consideration of the explanations in column 3 of
Tab. 4.

All minimal KBD-diagnoses D1, . . . ,D6 w.r.t. ExK (see Tab. 4) result from a minimal hitting set
computation over all minimal KBD-conflicts.

The relationship between the notions KBD-diagnosis, solution KB and KBD-conflict is as follows:

Property 5. [16, Cor. 3.3] Let D ⊆ K. Then the following statements are equivalent:

1. D is a KBD-diagnosis w.r.t. 〈K,B,P ,N 〉R.
2. (K \ D) ∪ UP is a solution KB w.r.t. 〈K,B,P ,N 〉R.
3. (K \ D) is not a KBD-conflict w.r.t. 〈K,B,P ,N 〉R.

Example 6 Since, e.g., K \ D := {α1, α2} is not a KBD-conflict w.r.t. ExK (Tab. 3), we obtain that
D = K\ (K\D) = {α1, . . . , α7} \ {α1, α2} = {α3, . . . , α7} is a KBD-diagnosis w.r.t. ExK, albeit not
a minimal one (α5 as well as α6 can be deleted from it while preserving its KBD-diagnosis property).
Further on, (K \ D) ∪ UP = {α1, α2, p1} must be a solution KB w.r.t. ExK.

The sequential KBD problem which seeks a set of test cases in order to achieve a diagnostic goal G
is defined as follows:

Problem 2 (Sequential KBD). .
Given: A KBD-DPI DPI := 〈K,B,P ,N 〉R and a diagnostic goal G.
Find: Pnew ,Nnew ⊇ ∅ and D, where Pnew ,Nnew are sets of positive and negative test cases, respec-
tively, such that D is a minimal KBD-diagnosis w.r.t. DPInew := 〈K,B,P ∪ Pnew ,N ∪Nnew 〉R and D
satisfies G.

4 Reducing Model-Based Diagnosis to Knowledge Base Debugging
We next demonstrate that the classical MBD problem described in Sec. 2 can be reduced to the KBD
problem explicated in Sec. 3. That is, any MBD-DPI can be modeled as a KBD-DPI, and the solutions
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of the latter directly yield the solutions of the former.

Theorem 1 (Reduction of MBD to KBD). Let mDPI := (SD, COMPS, OBS,MEAS) be an MBD-DPI
where COMPS = {c1, . . . , cn}. Then, mDPI can be formulated as a KBD-DPI kDPI such that there is a
bijective correspondence between KBD-diagnoses for kDPI and MBD-diagnoses for mDPI. Moreover,
all MBD-diagnoses for mDPI can be computed from the KBD-diagnoses w.r.t. kDPI.

Proof. We first show how mDPI can be formulated as a KBD-DPI kDPI. To this end, we spec-
ify how kDPI = 〈K,B,P ,N 〉R can be written in terms of the components of mDPI = (SDbeh ∪
SDgen , COMPS, OBS,MEAS):

K = {αi | αi := beh(ci), ci ∈ COMPS} (4)
B = OBS ∪ SDgen (5)
P = MEAS (6)
N = ∅ (7)
R = {consistency} (8)

That is, K captures SDbeh ∪ {¬AB(ci) | ci ∈ COMPS}, i.e. the nominal behavioral descriptions of all
system components. By Def. 9 and the subsequent remark, D ⊆ K is a KBD-diagnosis for kDPI iff
both

(K \ D) ∪ B ∪ UP meets all r ∈ R (i.e. is consistent) (9)

and

(K \ D) ∪ B ∪ UP 6|= n for all n ∈ N (10)

hold. Let now D be an arbitrary KBD-diagnosis for kDPI such that D = {αi | i ∈ I} for the index set
I ⊆ {1, . . . , n}.

Using (4) – (8) above, condition (9) for D is equivalent to the consistency of SDbeh ∪ {AB(ci) | i ∈
I} ∪ {¬AB(ci) | i ∈ {1, . . . , n} \ I} ∪ OBS ∪ SDgen ∪ UMEAS which in turn yields that

SD ∪ {AB(ci) | ci ∈ ∆}
∪ {¬AB(ci) | ci ∈ COMPS \∆} (11)
∪ OBS ∪ UMEAS is consistent

for ∆ := {ci | i ∈ I}. But, (11) is exactly the condition defining an MBD-diagnosis (see Def. 4).
Note, since N = ∅ by (7), condition (10) is met for any D satisfying (9) and can thus be neglected.
Hence, D = {αi | i ∈ I} ⊆ K is a KBD-diagnosis w.r.t. kDPI iff ∆ = {ci | i ∈ I} ⊆ COMPS is an
MBD-diagnosis for mDPI.

Also, there is a bijective correspondence between KBD-conflicts and MBD-conflicts:

Theorem 2. Let mDPI = (SD, COMPS, OBS,MEAS) be an MBD-DPI and kDPI = 〈K,B,P ,N 〉R a
KBD-DPI modeling mDPI as per (4) – (8). Further, let COMPS = {c1, . . . , cn} and I ⊆ {1, . . . , n}.
Then, C = {ci | i ∈ I} ⊆ COMPS is an MBD-conflict for mDPI iff C = {αi | i ∈ I} ⊆ K is a KBD-
conflict w.r.t. kDPI.

Proof. C is a KBD-conflict w.r.t. kDPI iff K \ C = {αi | i ∈ {1, . . . , n} \ I} is not a KBD-diagnosis
w.r.t. kDPI (Property 5) iff {ci | i ∈ {1, . . . , n} \ I} is not an MBD-diagnosis for mDPI (Theorem 1)
iff {ci | i ∈ I} = C is an MBD-conflict for mDPI ([15, Prop. 4.2]).
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Let us exemplify these theoretical results:

Example 7 Reconsider the circuit diagnosis example of Fig. 1. The formalization of the circuit prob-
lem as an MBD-DPI ExM was already discussed in Example 1. The formulation of this MBD-DPI
as a KBD-DPI ExM2K as per (4) – (8) is depicted by Tab. 2. All minimal KBD-conflicts and their
minimal hitting sets, i.e. the minimal KBD-diagnoses (Property 3), are given in the lower part of
Tab. 2. For instance, C = {α1, α4, α5} is a KBD-conflict w.r.t. ExM2K since C ∪ B ∪ UP |= ⊥.
We briefly sketch why this holds. α13(∈ B) = (in1(X1) = 1), α14(∈ B) = (in2(X1) = 0)
and α1 = (out(X1) = xor(in1(X1), in2(X1))) imply that out(X1) = xor(1, 0) = 1, which,
along with α6(∈ B) = (out(X1) = in2(A2)), entails in2(A2) = 1, which in turn, together with
α15(∈ B) = (in1(A2) = 1) and α4 = (out(A2) = and(in1(A2), in2(A2))), lets us deduce that
out(A2) = and(1, 1) = 1. Because of α8(∈ B) = (out(A2) = in1(O1)) we have that in1(O1) = 1
which yields out(O1) = or(1, in2(O1)) = 1 due to α5 = (out(O1) = or(in1(O1), in2(O1))). How-
ever, α17 ∈ B states that out(O1) = 0, a contradiction.
C is minimal since all elements of C – namely, the behavioral descriptions beh(g) of gates g ∈

{X1, A2, O1} (see Tab. 2) – were necessary to derive the outlined contradiction. In fact, no proper subset
of C can be used to deduce any negative test case (trivially, as the set N is empty) or any contradiction
(possibly different from the one given above). Intuitively, the latter holds since any C′ ⊂ C includes too
few behavioral descriptions of components so that there is no “open” path for constraint propagation
from inputs to outputs of the circuit. C itself, on the other hand, enables to propagate information
from all three inputs via gates X1, A2 and O1 towards the second output. By the fact that C is a minimal
KBD-conflict, Theorem 2 lets us conclude that {X1, A2, O1} is a minimal MBD-conflict for the original
MBD-problem stated in Tab. 1.

What becomes nicely evident at this point is the principle of transformation between MBD and
KBD. Whereas in MBD behavioral descriptions of components are “disabled” via abnormality assump-
tions about components, in KBD it is exactly these descriptions that make up the KB, and they are
“inactivated” by just deleting them from the KB.

The justification for the minimal KBD-conflict {α1, α2} follows essentially the same argumentation
as was given in Example 1 to explain C1. In this case, Theorem 2 yields that {X1, X2} must be a
minimal MBD-conflict for the original MBD-problem because α1 = beh(X1) and α2 = beh(X2).

Computing minimal hitting sets of the minimal KBD-conflicts {α1, α4, α5} and {α1, α2} yields
all minimal KBD-diagnoses w.r.t. ExM2K given at the bottom of Tab. 2. Application of Theorem 1
lets us conclude that {X1} (due to the minimal KBD-diagnosis {α1}), {A2, X2} (due to {α4, α2}) and
{O1, X2} (due to {α5, α2}) are exactly the minimal MBD-diagnoses for the orginal MBD-problem.

5 Conclusions
To sum up, we can find all MBD-diagnoses and MBD-conflicts for any MBD problem by representing it
as a KBD-DPI and solving the latter for KBD-diagnoses (Theorem 1) and KBD-conflicts (Theorem 2),
respectively. Considering the sequential problems associated with MBD (Problem 1) and KBD (Prob-
lem 2), the derived results indicate that the former is a special case of the latter. In particular, Problem 1
can be solved for a given MBD-DPI MP by reducing MP to a KBD-DPI KP as per Theorem 1 and
solving Problem 2 for KP under the restriction that Nnew = ∅. In other words, sequential KBD methods
specifying only positive test cases allow to solve the sequential MBD problem. This shows that methods
targeting Problem 2 are more general than those addressing Problem 1 as they allow the specification
of negative information Nnew in addition to positive one (Pnew and MEASnew , respectively). From the
practical point of view, our findings imply that existing KBD methods such as [6, 7, 19, 20, 17, 21, 16]
are in principle eligible to be used for solving arbitrary MBD problems as per [15, 1].
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