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Abstract

The problem of Cloud resource provisioning for component-based applications is very
important. It consists in the allocation of virtual machines (VMs) from various Cloud
Providers (CPs), to a set of applications such that the constraints induced by the inter-
actions between components and by the components hardware/software requirements are
satisfied and the performance objectives are optimized (e.g. costs are minimized). It can
be formulated as a constrained optimization problem and tackled by state-of-the-art op-
timization modulo theories (OMT) tools. The performance of the OMT tools is highly
dependent on the way the problem is formalized as this determines the size of the search
space. In the case when the number of VMs offers is large, a naive encoding which does
not exploit the symmetries of the underlying problem leads to a huge search space making
the optimization problem intractable. We overcame this issue by reducing the search space
by using: (1) a heuristic which exploits the particularities of the application by detect-
ing cliques in the conflict graph of the application components fixing all components of
the clique with the largest number of component instances, and (2) a lex-leader method
for breaking variable symmetry where the canonical solution fulfills an order based on ei-
ther the number of components deployed on VMs, or on the VMs price. As the result,
the running time of the optimization problem improves considerably and the optimization
problem scales up to hundreds of VM offers. We also observed that by combining the
heuristic with the lex-leader method we obtained better computational results than by
using them separately, suggesting the fact that symmetry breaking constraints have the
advantage of interacting well with the search heuristic being used.

1 Introduction

In an article published in February 2017, Gartner1 stated that, due to digital market demand,
the successful application service providers are “investing in platforms that allow component-
based development based on converged infrastructure as a service (IaaS) and platform as a
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service (PaaS) (Amazon Web Services, Azure, Force.com) [...]” thus proving the wide adoption
of component-based software development. Other advantages of this paradigm include code
reusability and short application creation and delivery time.

With the wide adoption of Cloud Computing, application components are deployed on VMs
which are offered by various CPs: Amazon Web Services (https://aws.amazon.com/), Google
Cloud (https://cloud.google.com/), Azure (https://azure.microsoft.com/en-us/), etc.
One of the natural questions arising is: Which CPs offer the best infrastructure at a fair budget
such that my application performance requirements are fulfilled?

To answer the question one must solve a resource management problem, that is: (1) mapping
the components to VMs such that the computing, storage, networking requirements of the
application are fulfilled, and (2) selection of VMs offers which minimize the cost.

In the framework of the MANeUveR project2, we are approaching the problem by construct-
ing a recommendation engine which translates the problem into a constrained optimization one
aiming to minimize the leasing cost of all VMs needed for deployment such that the hardware
and interaction constraints of the application components are fulfilled.

The importance of such a recommendation engine is motivated by the fact that there are var-
ious industrial initiatives, e.g. Cloud Foundry (http://www.cloudfoundry.com/), Jujucharm
(https://jujucharms.com/) assisting the user in the application Cloud deployment process
but which require the knowledge of a preliminary mapping of the services and packages to
locations (VMs) such that all the requirements are satisfied. This is typically solved by custom
scripts and manual techniques requiring human intervention, hence the process is susceptible
to errors.

Constrained optimization problems have been previously solved using: (1) exact : e.g. con-
straint programming [7] and SMT solving [1]; and (2) approximate [10] approaches.

In a recent work [12], we investigated how the three approaches enumerated above scale in
practice. More precisely:
• we introduced the formalization of the problem, briefly presented in Section 3;
• we applied the constraint programming solver OR-tools (https://developers.google.
com/optimization/) and the OMT solver νZ for solving the optimization problem for
the three case studies Oryx2, Secure Web Container and Wordpress (no heuristics used);

• since they did not scale for more than a few dozens of VMs offers, which is not a realistic
number in applications, we designed a population-based metaheuristic algorithm that uses
a problem tailored mutation and a simple one-to-one selection.

The results showed that the metaheuristic provides acceptable solutions, however not necessarily
optimal, for hundreds of offers. The SMT approach gave better timings than the metaheuristic
for problems involving low number of components and VM offers.

In this paper, we address the computational issues behind the adoption of state-of-the-
art OMT solvers for solving constrained optimization problems arising in the Cloud resource
management domain.

The main contributions of the paper are:
• SMT encoding of the optimization problem, in particular the link between application

components hardware requirements and CPs offers (Section 3.2);
• investigation of the scalability of the state-of-the-art OMT tools, namely νZ [4] and Op-

tiMathSAT [13] (Section 4.1);
• proposal of: (1) a heuristic tailored for component-based applications which exploits the

possible cliques in the conflict graph of the components, and (2) a lex-leader method for

2https://merascu.github.io/links/MANeUveR.html
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breaking variable symmetries where the canonical solution satisfies an order based on,
either the number of components deployed on VMs, or on the VMs price (Section 4.2).

• extension of test problems benchmarks with examples coming from the Cloud deployment
scenarios of complex component-based applications.

The paper is structured as follows. We continue this section with related work. In Section 3
we present the formalization of the problem as a linear programming problem. Section 4
contains comparative results of the OMT solvers and proposes two strategies for improving
their scalability. Section 5 concludes the paper and presents future research directions.

Related Work. Optimization problems arising in Cloud Computing are typically solved using
approximate approaches (evolutionary algorithms) because of their complexity and the require-
ment of low computational time. However, these methods are suboptimal and there are no
theoretical results which allow to estimate how far from the real optimum the solution is. The
benefit of exact techniques is that they guarantee the optimal solution, with the disadvantage
of higher computational time.

To the best of our knowledge there is only the Zephyrus2 tool [1] using an SMT solver
which addresses a problem similar to ours. The problem solved is that, given the application
description (interaction constraints and hardware requirements) and VMs specifications, the
aim is to minimize the cost and then the number of VMs leased for hosting the application. For
solving it, constraint programming solvers Chuffed (https://github.com/chuffed/chuffed),
Gecode (https://github.com/Gecode/gecode), OR-Tools and the SMT solver Z3 (https:
//github.com/Z3Prover/z3) were used. The paper presents various comparisons on how the
tools perform on different types of constraints (linear/nonlinear), the conclusion being that
the SMT solver performs better for nonlinear constraints while is outperformed by constraint
programming solvers in the linear case.

Regarding the similarities/dissimilarities to our approach, we mention the following.
• In Zephyrus2, the list of offers is limited to four types of VMs; in our approach we

considered up to 500 since this is a number more realistically expressing the number of
current CPs offers. Moreover, in Zephyrus, the list of VM offers has to be specified by
the user at the moment of application description, while in our case this list is obtained
dynamically (via crawling).

• In Zephyrus2, according to the provided examples, only memory and price requirements
are specified in the problem description but their approach can be easily extended to other
types of constraints. The extension would increase the computational time.

• In Zephyrus2, the interaction between components is specified through logical expressions
which would require the user of the application specialized knowledge. We avoid this by
having JSON names for every constraint type we consider.

• In Zephyrus2, as symmetry breaking constraints, two strategies were considered: (a) an
order among VMs (components are deployed first on the cheapest VMs) and, (b) compo-
nents (lexicographic order based on the number of components on a VM) was considered.
We included in our tests from Table 2 only the second one (encoded as VML) as the first
one gave worse timings.

• Trimming heuristics for VMs were not considered in our approach, but they appear in
Zephyrus2 with the outcome that they are outperformed by symmetry breaking con-
straints.

• A feature of Zephyrus2, which we do not consider, is the binding between collocated
components. This would avoid configurations in which a component Ci uses the function-
alities of another component Cj deployed on another VM while it could have used the
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functionalities of the same component Cj deployed on the same VM as Ci.
SMT solvers have been also applied to other important problems in Cloud Computing.

For example, in [6], SMT and constraint programming approaches have been applied to the
problem of cloud service selection. More precisely, their framework automatically detects, in a
first step, conflicts in enterprise policies and inconsistencies in user-defined requirements, and,
if it is the case, generates explanations identifying problematic user requirements. Next, cloud
services satisfying all enterprise policies and user requirements are selected. The framework
has been applied to applications managing heterogeneous cloud infrastructure services in large
enterprises. Paper [3] presents a different type of allocation than ours, namely virtual data
center, that is finding an allocation of VMs to servers and links in the virtual network to links
in the physical network. The allocation is valid if it fulfills the compute, memory, and network
bandwidth requirements of each VM across the entire data center infrastructure, including
servers, top-of-rack switches, and aggregation switches. The problem can be formulated as a
SAT modulo monotonic predicates and solved using MonoSAT SMT solver [2].

2 Motivating Case Studies

In order to illustrate the applicability of our approach we consider three case studies3.
Secure Web Container is an important web security application providing:
• resilience to attacks and failures, by introducing redundancy and diversity techniques,

and
• protection from unauthorized and potentially dangerous accesses, by integrating proper

intrusion detection tools.
We extended its formulation from [5] by including hardware requirements for its components
and by formulating the mapping task (assignment of components to VMs) as a constrained
optimization problem aiming to minimize the overall cost.

Figure 1: Secure Web Container Application

Wordpress open-source application is frequently used in creating websites, blogs and appli-
cations. For large businesses, which need multiple Wordpress websites, it can become difficult to
manage all of them at the same instance, hence more instances are needed to be deployed. We
chose this case study in order to compare our approach to Zephyrus and Zephyrus2 deployment
tools [7, 1].

Oryx2 application is a realization of the lambda architecture, hence it is used in data anal-
ysis, and deploys the latest technologies such as Apache Spark (https://spark.apache.org/)

3Complete description of the case studies is at https://github.com/Maneuver-PED/ICCP2018.
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Figure 2: Wordpress Application

and Apache Kafka (https://kafka.apache.org/). It has a significant number of components
interacting with each other and is highly used in practical applications.

Figure 3: Oryx2 Application

These use cases have been selected such that they incorporate a fairly large set of constraints
types. Other types of constraints might be easily included as long as they can be formulated
using linear (in)equalities.

3 Problem Description

The problem to be solved is to find a mapping (of components to VMs) which: (1) satisfies
the constraints induced by the interactions between components; (2) satisfies the hardware
requirements of all components, and (3) minimizes the purchasing price. The formalization of
the interaction constraints between components was introduced in [12] and briefly discussed
here, while the link between the components hardware constraints and CPs offers was more
challenging and it will be presented in detail.

5
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In order to describe the problem in a more formal way, let us consider a set of N interacting
component types, {C1, C2, . . . , CN}, to be assigned to a set of maximum M virtual machines,
{V1, V2, . . . , VM}. Each component Ci is characterized by a set of L requirements concerning the
hardware resources HRi

t with t = 1, L. Each Vk is characterized by a leasing price VPk ∈ R+.
The problem can be formulated as a mathematical optimization problem, aiming:

1. to find a mapping between components and VMs such that all constraints are satisfied;
the mapping is encoded like a set of binary variables, aik ∈ {0, 1} for i = 1, N , k = 1,M ,
interpreted as follows: aik is 1 if Ci is assigned to Vk, and it is 0 otherwise.

2. to minimize the leasing price
∑M
k=1 VPk. Note that some VPk could be 0 if no component

is assigned to Vk.
There are two main types of constraints: (1) structural, which are related to the interac-

tion between components, and (2) hardware, which are related to the components hardware
requirements.

3.1 Structural Constraints

This type of constraints are of two types: general and application-specific. The general con-
straints are always considered in the deployment model and are related to basic allocation rules.
The application-specific constraints are based on the case studies we considered (Secure Web
Container, Oryx2 and Wordpress).

We identified two main types of application-specific constraints regarding the components:
interactions (conflict, collocation, exclusive deployment) and number of instances (require-
provide, full deployment, deployment with a bounded number of instances)4.
General Constraint. This case specifies that each component Ci must be allocated to at least
one VM:

∑N
i=1 aik ≥ 1, for all k = 1,M , except those being in Exclusive Deployment relation

(see below).
Conflicts. This case corresponds to situations when there are conflictual components
which cannot be deployed on the same VM. Considering that all conflicts between compo-
nents are encoded in a matrix R (i.e. Rij = 1 if Ci and Cj are conflictual components
and Rij = 0 otherwise), the constraints can be described as a set of linear inequalities:
aik + ajk ≤ 1, k = 1,M, for all (i, j) such that Rij = 1. Note that if the number of
conflicts increases, the number of needed VMs also increases.

For example, for Wordpress application, Varnish component exhibits load balancing features.
Hence, it should not be deployed on the same VM with HTTPLoadBalancer or DNSLoadBal-
ancer. Moreover, Varnish and MySQL should not be deployed on the same VM because it is
best practice to isolate the DBMS level of an application. Therefore, based on the notations in
Figure 2, where each component has an assigned identifier, the coresponding constraints are:

a5k + aik ≤ 1, i ∈ {2, 3, 4}, k = 1,M

Collocation. This means that the components in the collocation relation should be deployed
on the same VM. The collocation relation can be stored in a matrix D (i.e. Dij = 1 if Ci and
Cj should be collocated and Dij = 0 otherwise) and the constraints can be described as a set
of equalities: aik = ajk, k = 1,M, for all (i, j) such that Dij = 1.

For example, for Oryx2 application, components HDFS.DataNode and Spark.Worker must
be deployed on the same VM. In this scenario, we also collocated Yarn.NodeManager because

4The component identifier occurring in the formulae in this section corresponds to the one from the figures
in Section 2.
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we used Yarn as a scheduler for Spark jobs:

aik = a9k, i ∈ {5, 8}, k = 1,M

Exclusive deployment. There are cases when from a set of q components only one should be
deployed in a deployment plan. Such a constraint can be described as:

H(

M∑
k=1

ai1k) +H(

M∑
k=1

ai2k) + ...+H(

M∑
k=1

aiqk) = 1,

where H is the Heaviside-like function defined as: H(u) = 1 if u > 0 and H(u) = 0 if u = 0.
For example, for Wordpress application, only one type of Balancer must be deployed (the

Balancer components are HTTPLoadBalancer and DNSLoadBalancer). If HTTPLoadBalancer
is deployed a caching component, in our case Varnish, should also be deployed leading to a
different set of conflicts:

H(

M∑
k=1

a3k) +H(

M∑
k=1

a4k) = 1 and H(

M∑
k=1

a3k) +H(

M∑
k=1

a5k) = 1

Require-Provide. A special case of interaction between components is when one component
requires some functionalities offered by other components. Such an interaction induces con-
straints on the number of instances corresponding to the interacting components as follows:
(1) Ci requires (consumes) at least nij instances of Cj and (2) Cj can serve (provides) at most
mij instances of Ci. This can be written as:

nij

M∑
k=1

aik ≤ mij

M∑
k=1

ajk, nij ,mij ∈ N. (1)

For example, for Wordpress application, the Wordpress component requires at least three in-
stances of MySQL and MySQL can serve at most 2 Wordpress instances, leading to the con-
straint:

3

M∑
k=1

a1k ≤ 2

M∑
k=1

a2k, k = 1,M.

A related case is when for each set of n instances of component Ci a new instance of Cj
should be deployed. This can be described as:

0 ≤ n
M∑
k=1

ajk −
M∑
k=1

aik < n, n ∈ N (2)

This constraint cannot be deduced from (1) because of the following. Taking in (1) nij = 1, we
obtain an expression meaning that for mij instances of Cj one should have at least one instance
of Ci (but there can be more). (2) is more specific requiring exactly one instance of Cj .
Full Deployment. There can be also cases when a component Ci must be deployed on all
VMs (except on those which would induce conflicts on components). This can be expressed as:

M∑
k=1

(aik +H(
∑

j,Rij=1

ajk)) = M

7
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where R is the conflicts matrix and H is the Heaviside-like function defined above.
For example, for Oryx2 application, components HDFS.DataNode, YARN.NodeManager

and Spark.Worker must be deployed on all VMs except those hosting conflicting components.
Since H(

∑
j,Rij=1 ajk) = 0, we have

∑M
k=1 aik = M , for i ∈ {5, 8, 9}.

Note that we do not allow in the application description the full deployment of two conflicting
components. This is checked before invoking the recommendation engine.
Deployment with bounded number of instances. There are situations when the number
of instances corresponding to a set of deployed components C should be equal, greater or less
than some values. These types of constraints can be described as follows:

∑
i∈C

M∑
k=1

aik 〈op〉 n, 〈op〉 ∈ {=,≤,≥}, n ∈ N

For example, for Secure Web Container application, the total amount of instances of com-
ponents Apache and Nginx must be at least 3 (level of redundancy):

M∑
k=1

a2k +

M∑
k=1

a3k = 3, k = 1,M

3.2 Constraints Related to Hardware Requirements and CPs Offers

These constraints specify the amount of resources required by the components assigned to a VM
and assures that they do not overpass the VM characteristics as offered by the CPs. The set of
available offers is obtained apriori by an Offer Management System component developed in the
framework of our project and respects the minimum requirements of application components.
So we start with a set of offers {Offer1,Offer2, . . . ,OfferON}, where ON is the number of possible
CPs offers for VMs.

The challenging parts were to encode the CPs offers and to link them with the components
hardware constraints. In order to overcome these issues, we introduced the following variables:
(1) vmType vector is used to identify the CPs offers (vmTypek ∈ {1, . . . ,ON}, k = 1,M);
(2) vmHRt vectors are used to store a CPs offer (vmHRt

k ∈ R+, k = 1,M , t = 1, L). We
consider in this paper three hardware resources: number of CPUs, memory, storage.
The next step was to link the vmType with the allocation matrix a. Hence, we have:

N∑
i=1

aik≥1 ∧ vmTypek=h =⇒ VPk=PriceOfferh ∧ vmHR1

k =HR
Offerh
1 ∧ . . . ∧ vmHRL

k =HR
Offerh
L ,

where k = 1,M and h = 1,ON; HR
Offerh
t represents the CPUs number, memory size and

storage size for offer h (t = 1, L). For example for the first offer (h = 1) corresponding values

for (PriceOffer1 , HR
Offer1
1 , HR

Offer1
2 , HR

Offer1
3 ) are (9.152$, 64, 488MB, 8GB). The formula

above also specifies that the price of a VM contributes to the final price only if the machine is
occupied. If the machine is not occupied, then it does not contribute to the final total leasing
price. Hence, we have:

∑N
i=1 aik = 0 =⇒ VPk = 0, k = 1,M .

The last step was to ensure that the components requirements deployed on a VM do not
exceed the resources of the selected offer:

N∑
i=1

aik ·HRi
t ≤ vm

HRt

k , k = 1,M, t = 1, L.

8
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4 Encoding Approaches and Experimental Results

For solving the problem presented in Section 3, we used SMT solvers which exhibit optimization
features, the so-called Optimization Modulo Theories (OMT) solvers. We did not have too many
options in this regard:

1. OptiMathSAT [13] uses an inline architecture in which the SMT solver, MathSAT5 (http:
//mathsat.fbk.eu), is run only once and its internal SAT solver is modified to handle
the search for the optima,

2. Symba [11] and νZ [4] both are based on an offline architecture in which the SMT solver
Z3 [9] is incrementally called multiple times as a black-box.

We decided to perform a comparative analysis of the computation time between νZ and Opti-
MathSAT, since Symba is not maintained since 2014.

4.1 Variable Encoding

As the problem encoding, we decided to use linear arithmetic since the state-of-the-art OMT
tools offer efficient decision procedures for this kind of theories. Based on the type of the
variables from Section 3, we chose all variables (a, VP, vmType, vmHR

t ) to be of type Real5.
The results are presented in Table 1. For solving the problem, we needed to know in advance

the maximum number of VMs that the problem requires. This is not a fixed parameter in our
approach, but is calculated using the structural constraints which involve number of instances
(see init#VMs in the tables). This preprocessing step is not computationally expensive because
it solves a constrained optimization problem with a number of variables equal to the number
of components.

We studied the scalability of the OMT tools for the case studies from Section 2 from two
perspectives: number of VMs offers, respectively number of deployed components. For Secure
Web Container and Oryx2 applications, we considered up to 500 CPs offers. Additionally, for
the Wordpress application, we considered the number of instances of Wordpress component to
be deployed. The set of offers was crawled from the Amazon CPs offers list.

All tests in this paper were done on an MacBook Pro with the following configuration:
3.1 GHz dual-core Intel Core i5, Turbo Boost up to 3.5GHz. In Table 1, we included only those
results for which we obtained a result in 1 hour timeframe. One can observe that νZ does not
scale well for high number of VMs offers and components, while OptiMathSAT even for small
number of offers. From the logs, we observed that later reached many times the minimum but
failed to prove it.

4.2 Symmetry Breaking

As one can see from Table 1, the naive application of general OMT solvers to our problem
shows their lack of scalability. This is due to the large solutions space, which, however, might
contain equivalent solutions. Therefore, in order to further reduce the search space, we used
the following techniques:

1. a heuristic exploiting the particularities of the application, and
2. a lex-leader method introducing symmetry breaking constraints.

5A careful reader would notice the fact that the elements of a could be encoded as boolean. However, in
order to express the terms from (3.2), the variables a, HRi

t, and vmHRt
k should be of compatible type. If a is

considered to be boolean, one could use the ternary operator If(a, 1., 0.), however this complicates more the
SMT formulas.

9
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Table 1: Scalability tests for νZ/OptiMathSAT tools. Time values are expressed in seconds.

Problem
init#
VMs

#offers
= 20

#offers
= 40

#offers
= 100

#offers
= 250

#offers
= 500

νZ
Opti

MathSAT
νZ νZ νZ νZ

Oryx2 11 6.62 59.7 8.74 21.84 73.56 193.69
Secure Web
Container

6 0.27 - 0.45 1.8 8.56 35.25

Wordpress
min#inst = 4

10 16.39 - 120.84 1444.12 - -

Wordpress
min#inst = 5

12 775.7 - - - - -

Wordpress
min#inst = 6

13 3516.19 - - - - -

Wordpress MySQL

DNSLoadBalancer HTTPLoadBalancer

V arnish

Figure 4: Wordpress min#inst=4 conflict graph. Red background components, being in Exclu-
sive Deployment relation, are not taken into consideration for the construction of the cliques,
so we have two cliques. From these two, G = {Wordpress} (deployment size is 4).

The constraints related to these techniques together with those presented in Section 3, are fed
to the OMT tools.

Fixing Variable Values (FV). For any application, the components conflict graph can be
constructed based on the restrictions of type Conflicts. In this graph it is possible to identify
cliques (fully connected subgraphs), in which all pairs of components are conflictual so they
cannot be placed on the same VM. Any component in a clique can have several deployed
instances, therefore we can define the deployment size of a clique G as the total number of
deployed instances of all components in G. In the following, we will denote by G the clique
with maximal deployment size. Then each component of G is assigned to a different empty VM

Balancer Apache

Nginx IDSServer IDSAgent

Figure 5: Secure Web Container conflict graph. The components with green background belong
to the clique G.

10
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Kafka Zookeeper HDFS.NameNode

HDFS.SecondaryNameNode

HDFS.DataNode

Y ARN.ResourceManagement

Y ARN.HistoryService

Y ARN.NodeManager Spark.Worker Spark.HistoryService

Figure 6: Oryx2 conflict graph. There are two cliques G which include the components with
green background (the number of instances of Kafka is 2).

(by adding a constraint that fixes the variable aik to 1, where i is a component index from G
and k is a VM index).

When the conflict graph is constructed, the components that are involved in restrictions of
type Exclusive deployments are excluded. For example, in case of the Wordpress application,
the DNSLoadBalancer, HTTPLoadBalancer and Varnish components are excluded (Figure 4)
and in this case two cliques are identified: [Wordpress] and [MySQL]. In case of Secure Web
Container (Figure 5) there are also two cliques: [Balancer, Apache, Nginx, IDSServer] and
[Balancer, IDSServer, IDSAgent]. In both use cases the first clique plays the role of G. The
largest clique encountered in our use cases has 12 components instances and is found in case of
Wordpress#12.

This approach introduces some additional constraints which fix some of the values of the
assignment matrix variable reducing the number of candidate configurations.

To find all the cliques in the graph, we used an implementation of Bron-Kerbosch algorithm
available in NetworkX library (https://networkx.github.io). Finding cliques inside a graph
is a NP-hard problem, however in our case studies the graph size (given by the number of
components) is not very large, so this preprocessing step does not increase significantly the
execution time.

Lex-leader method. The motivation for using this kind of method came from the fact that
in OMT techniques the search can revisit equivalent states over and over again. Hence it
is desirable to eliminate as many equivalent (symmetric) states as possible. This is known as
symmetry breaking : never explore two search states which are symmetric to each other since the
result will be the same. One way to approach symmetry breaking is to add symmetry breaking
constraints before search starts, hence making some symmetric solutions unacceptable while
leaving at least one solution in each symmetric equivalence class.

We used lex-leader method for constructing symmetry-breaking ordering constraints for
variable symmetries [8]. The idea is to predefine a canonical solution for each equivalence class
of solutions. At this aim, we added constraints before invoking the OMT solver which are
satisfied by the canonical solution and not by any others. We consider as canonical solutions
those which fulfill an ordering of VMs based on either load (number of deployed instances per
machine) or price:

1. Virtual Machine Load (VML):
∑N
i=1 ai1 ≥

∑N
i=1 ai2 ≥ . . . ≥

∑N
i=1 aiM

2. Price (PR): VP1 ≥ VP2 ≥ . . . ≥ VPM .
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The comparative results of applying the strategies FV, VML and PR are presented in Table 2.
By observing that FV and PR give the best timings, we combined them into PRFV strategy
(Algorithm 1). In the case of PRFV, we used FV to fix, on separate VMs, the conflicting
components and PR to sort the unassigned VMs. The list of VMs is not globally sorted but
it is split in sublists which are sorted. This splitting is based on the structure of the clique
with maximal deployment size (Ḡ). More specifically, for each component in Ḡ the sublist
containing the VMs on which its instances are deployed is decreasingly sorted based on price.
Finally the VMs which do not contain instances of the components in Ḡ are decreasingly sorted
(see Algorithm 1).

Algorithm 1 PRFV Algorithm

Find the clique G
k ← 1 /*k - VM index*/
CL = {} /*CL - constraints list*/
for each Cj ∈ G do
h← k
for each Cj instances do
CL.add(ajk = 1)
k ← k + 1

end for
CL.add(VPh ≥ VPh+1 ≥ . . . ≥ VPk−1)

end for
CL.add(VPk ≥ VPk+1 ≥ . . . ≥ VPM )
return CL

The reported results consist in the average execution time and standard deviation from 10
independent runs. As expected, FV gives the best results for applications with high number
of conflicts between components (Secure Web Container and Oryx2 ). Although VML and PR
are similar approaches, PR outperforms VML in all cases. One can also observe that using
them separately is not as efficient as combining them (in PRFV heuristic). From Table 2, even
in some cases the timings of PR are better than those of PRFV, due to the high standard
deviation of the first one, one cannot assume that PR always outperforms PRFV.

Also OptiMathSAT scales better by using symmetry breaking but the timings are worse
than those of νZ.

5 Conclusions

In this paper, we analyzed the scalability of state-of-the-art OMT tools for optimization prob-
lems coming from Cloud resource management. The outcome was that general OMT tools do
not scale well for problems involving a large number of disjunctive constraints. Our improve-
ment solution was to use graph theory (clique detection) and constraint programming (symme-
try breaking) approaches before invoking the OMT tools in order to reduce the search space.

As future work, by observing that the cost function in the optimization problem is a sum
of variables whose values are a deterministic consequence of the current truth assignment, for
better computational results, we plan to encode the problem as a MaxSMT one by means of
the assert-soft constructs. We also plan to encode our problems as a integer linear program and
use appropriate solvers to compare them with the methods introduced in this paper.

12
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Table 2: Scalability analysis: for νZ, time to find an optimal solution (sec) in case of applying
different symmetry breaking strategies. FV – fixing variables values, VML – order on VM load
(# of deployed instances), PR – order on VM price, PRFV – combination of PR and FV.

Problem
Stra-
tegy

#offers=20 #offers=40 #offers=100 #offers=250 #offers=500

Oryx2
init#VMs
=11

FV 0.45(±0.12) 0.51(±0.06) 2.28(±0.22) 6.13(±0.72) 114.26(±14.90)
VML 1.00(±0.10) 1.60(±0.14) 3.06(±0.44) 10.07(±1.23) 208.33(±25.47)
PR 0.55(±0.15) 0.68(±0.08) 1.11(±0.19) 5.61(±1.10) 113.85(±26.36)
PRFV 0.20(±0.03) 0.48(±0.07) 2.41(±0.40) 4.31(±0.53) 176.08(±25.75)

Secure Web
Container
init#VMs
=6

FV 0.09(±0.01) 0.10(±0.02) 0.41(±0.07) 9.96(±1.03) 56.95(±5.70)
VML 0.19(±0.01) 0.39(±0.08) 1.64(±0.23) 16.93(±1.44) 112.68(±9.03)
PR 0.19(±0.02) 0.32(±0.04) 1.42(±0.23) 11.54(±1.93) 76.69(±9.80)
PRFV 0.09(±0.02) 0.08(±0.01) 0.30(±0.05) 7.45(±0.82) 43.00(±4.51)

Wordpress
min#inst=4
init#VMs
=10

FV 0.76(±0.14) 1.74(±0.27) 6.69(±0.88) 43.74(±4.03) 229.76(±16.37)
VML 0.99(±0.11) 1.66(±0.16) 5.76(±0.58) 37.90(±5.40) 191.84(±16.68)
PR 0.48(±0.09) 1.05(±0.10) 3.42(±0.36) 23.51(±4.36) 129.86(±22.14)
PRFV 0.31(±0.16) 0.62(±0.07) 2.55(±0.17) 21.82(±2.03) 128.47(±10.56)

Wordpress
min#inst=5
init#VMs
=12

FV 1.73(±0.25) 36.79(±3.81) 28.59(±7.08) 1175.08(±283.0) 752.03(±107.26)
VML 1.57(±0.13) 3.00(±0.42) 9.54(±1.10) 59.13(±2.86) 289.02(±30.47)
PR 0.92(±0.18) 2.48(±0.64) 5.22(±0.77) 40.85(±0.00) 183.22(±38.85)
PRFV 0.30(±0.05) 0.63(±0.19) 3.53(±0.47) 9.89(±0.63) 183.38(±19.32)

Wordpress
min#inst=6
init#VMs
=13

FV 1.82(±0.22) 7.59(±1.26) 1345.17(±438.3) 2943.98(±793.6) 1230.36(±309.20)
VML 1.76(±0.19) 2.62(±0.22) 19.68(±2.00) 70.00(±9.90) 323.08(±23.88)
PR 0.82(±0.09) 1.93(±0.31) 4.02(±1.28) 15.69(±1.54) 202.36(±24.15)
PRFV 0.35(±0.05) 0.78(±0.08) 2.08(±0.16) 10.47(±1.23) 210.30(±17.83)

Table 3: Scalability analysis: for νZ, time to find an optimal solution (sec) in case of ap-
plying different symmetry breaking strategies for Wordpress application with high number of
components instances.

Problem
init#
VMs

Stra-
tegy

#offers
=20

#offers
=40

#offers
=100

#offers
=250

#offers
=500

Wordpress
min#inst=7

15
PR 1.1(±0.1) 2.4(±0.2) 6.8(±0.6) 46.7(±7.5) 228.6(±44.0)
PRFV 0.5(±0.08) 0.8(±0.07) 2.69(±0.2) 43.5(±4.4) 70.6(±5.7)

Wordpress
min#inst=8

17
PR 1.3(±0.3) 3.3(±0.4) 10.6(±3.7) 65.3(±36.5) 334.2(±53.8)
PRFV 0.6(±0.07) 1.3(±0.1) 3.82(±0.3) 17.47(±0.9) 318.3(±36.9)

Wordpress
min#inst=9

18
PR 1.6(±0.3) 3.8(±0.6) 10.2(±1.0) 64.9(±7.9) 368.4(±54.1)
PRFV 0.7(±0.08) 1.0(±0.1) 7.4(±0.5) 18.8(±1.8) 97.6(±10.1)

Wordpress
min#inst=10

20
PR 2.0(±0.2) 5.0(±1.0) 12.5(±1.1) 89.1(±8.9) 387.2(±70.3)
PRFV 0.8(±0.07) 1.6(±0.1) 8.4(±0.5) 70.8(±7.3) 392.3(±29.3)

Wordpress
min#inst=11

22
PR 2.6(±0.7) 5.7(±0.6) 14.4(±1.2) 115.5(±15.7) 545.4(±76.1)
PRFV 1.0(±0.1) 1.6(±0.2) 10.1(±0.6) 29.2(±3.6) 133.0(±13.0)

Wordpress
min#inst=12

23
PR 2.7(±0.3) 6.5(±1.0) 286.1(±87.1) 1000 (±205.1) 585.4(±70.7)
PRFV 0.9(±0.09) 2.1(±0.1) 7.0(±0.6) 33.8(±4.2) 503.9(±24.5)

Acknowledgements. We thank Erika Ábrahám for for many helpful discussions on SMT,
Patrick Trentin and Roberto Sebastiani for their support with OptiMathSAT.

References
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