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Abstract

Explaining the presence or absence of transformations in nature, such as chemical or
elementary particle reactions, is fundamental to our thinking about nature. This paper
describes a generic approach to the search for such conserved quantities. In the work that
follows we formulate a generic approach to conserved such explanations by summoning
techniques from Linear Algebra.

1 Invariants between Observations

It is fundamental to thinking that between transformations, or apparent transformations,
something remains invariant, preserved in spite of phenomenal changes[1]. Primitively, this no-
tion is found in the concept of object permanence, where an infant develops the understanding
that objects persist between observations of them. In the history of philosophy, its first articu-
late statement can be found in the atomists Epicurus and Lucretius[2]. Their commitment to
the view that the world consisted of unalterable, indecomposable units, naturally led them to
embrace implicit conservation laws.

The mode of thought described below, the mode that guides the search for conserved quan-
tities (and ”eo ipso”, conservation laws), is intended as a contribution to the logic of discovery,
in its more modest sense[3]. It is important to note that although models which presuppose in-
variance underlying natural processes may lead only to data reduction, in practice such thinking
is extraordinarily fruitful.

2 Related work

Concern with conservation laws came fairly early in the history of Machine Learning. Lang-
ley, Bradshaw and Simon approached the problem from the point of view of rule-based systems
which was later extended to address particle physics explicitly [4, 5, 6]. Valdez-Perez approached
the same domain by means of the simplex algorithm [7], and Zytkow approached the problem
of discovering conservation laws by devising an algorithm abstracted from common scientific
practice[8, 9]. Our approach differs from these approaches in being the most abstract, mini-
mizing assumptions about the domain wherein conserved quantities might be sought. In this
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respect, it falls in the tradition, initiated by Norwood Russell Hanson, of seeking a logic of
discovery[10].

2.1 A Linear Algebra Interpretation of Conservation

We assume a set O of phenomenal objects, such as elementary particles or participants in
chemical interactions. These objects could be subject to multiple conservation laws. For exam-
ple, in general, elementary particles such as electrons are constrained by five conservation laws;
conservation of electron-Lepton number, muon-Lepton number, tau-Lepton number, Baryon
number, and strangeness number.

The input to the process we define consists of two sets of transformations T , and U . T con-
sists of observed transformations T represented by a pair of bags, ⟨{o1, · · · , ok}, {ok+1, · · · , on}⟩,
where oi ∈ O. We use the notation In(T ) for {o1, · · · , ok} and Out(T ) for {ok+1, · · · , on} to
denote the input and output component bags of T . (Bags, rather than sets, are required
because more than one instance of an object may partake as input or output to a natural
transformation.) On the other hand, U consists of unobserved transformations Tu of such a
pair representing a transformation, which has not been observed or which is known, or assumed
not, to occur.

Explaining T and U by appealing to conservation principles is equivalent to positing, for
each oi ∈ O a vector vi of conserved quantities. Transformations are licensed when the sum of
the vectors associated with each In(T ) is equal to the sum of the vectors associated with each
corresponding member of Out(T ). Transformations are forbidden when the sum of the vectors
associated with objects in In(Tu) is not equal to the sum of the vectors associated with the
corresponding objects in Out(Tu).

2.2 Indetermination

On this understanding there are a number of ways to determine the values of the vector vi
by solving the linear system of homogeneous equations implied by T against the constraints
imposed by the inequalities implied by U . Because the constraints implied by T do not confine
the search for solutions to a single convex region, the resulting mathematics and algorithm is
more complex than might at first be apparent. As a consequence, the problem of formalizing and
implementing reasoning about conservation must include implicit criteria for selecting amongst
the generally infinite set of vectors associated with each object oj .

Three approaches seem plausible:

• Heuristics which direct the search in such a way that the first solution encountered answers
to some general discovery principles. Such heuristics have indeed been advanced, although
they are often couched in terminology that obscures the search bias they introduce [11, 12].

• A related principle, unrealized by the discovery literature, is to seek vectors that exhibit
internal symmetries or maximum orthogonality from one another [13].

• Formulate the problem as an optimization problem; that is, seek vectors vi which satisfy
the equations implied by the transformations subject to some constraint such as the
minimization of the vector norm or the minimization of the absolute value of the largest
vector component [7].

It might seem that a scheme so simple is not actually faithful to the thinking that typically
goes into identifying conserved quantities, most especially because such thinking is normally
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situated in an elaborate theoretical setting. This is frequently but not always true, and has
not been true in some notable cases, such as the discovery of the conservation of strangeness.
Strangeness, when first posited, was simply a number whose invariance through strong inter-
actions. Whether or not this form of data reduction has wide application, whether it is helpful
in rendering large data sets more intelligible, is a matter of experience.

3 Logic

To find possible solutions, which satisfy given data transformations based on the existence
of conservation laws, the algorithm introduces basic linear algebra concepts. By using the prop-
erty of matrix multiplication, the algorithm can reduce the total amount of computations of
searching possible solutions.

Let T be a set of observed transformations such that T = {T1, T2, · · ·Tm} where

Ti = ⟨{o1, · · · .ok}, {ok+1, · · · , on}⟩

or
Ti = ⟨{In(Ti)}, {Out(Ti)}⟩

and oi denotes phenomenal objects such as elementary particles. Similarly, let U be a set of
unobserved transformations such that

U = {Tu1, Tu2, · · ·Tum′}

where
Tui = ⟨{o1, · · · .ok}, {ok+1, · · · , on}⟩

or
Tui = ⟨{In(Tui)}, {Out(Tui)}⟩

Since all transformations in the set T were observed, we can assume each Ti ∈ T must
satisfy some conservation law(s) and this implies that every phenomenal object oi also must
obey the law(s). In other words, if an observed set satisfies k conservation laws, then for all
phenomenal objects oi have exactly k dimensions. Therefore, ultimately, there exists a k × n
matrix X such that

DoX
T = 0

where Do is a m × n difference matrix, which expresses a gap of the number of phenomenal
objects between {In(Ti)} and {Out(Ti)} for each transformation.

Do =


d11 d12 · · · d1n
d21 d22 · · · d2n
...

...
...

dm1 dm2 · · · dmn


The rows represent transformations and each column corresponds to identical phenomenal ob-
jects, so m is the number of transformations in the observed set, and n is the number of identical
phenomenal objects.

X =


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
xk1 xk2 · · · xkn
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Each column of X corresponds to each identical phenomenal object. This X could tell us the
presence of conserved quantities and which objects are essential for the reactions.

Furthermore, because of the basic property of matrix multiplication, the matrix X is con-
structed by k linearly independent one-dimensional vectors, x1, · · · .xk. Thus, the goal of our
algorithm is finding these one-dimensional vectors such that

DoX
T =

[
Dox

T
1 Dox

T
2 · · · Dox

T
k

]
= 0

and for unobserved set U , we simply assume its reactions never happen because all of them
violate some conservation laws, which means that

DuX
T =

[
Dux

T
1 Dux

T
2 · · · Dux

T
k

]
̸= 0

where Du is a difference matrix for the unobserved set.

4 Algorithm

4.1 Overview

The algorithm follows the steps below in order to find a k×n matrix X such that DoX
T = 0

and DuX
T ̸= 0.

1. Generate the Difference matrices, Do and Du from fo, a collection of observed transfor-
mations and fu, a collection of unobserved transformations respectively.

2. Finds a one-dimensional solution x1, which satisfies both Dox
T
1 = 0 and Dux

T
1 ̸= 0 at the

same time.

3. Repeats the step 2 reasonable times, and the algorithm gets x1 · · ·xi, which are the
candidates to construct the matrix X.

4. Finds a possible linearly independent set from the candidates. Each xi can be a row
vector of the matrix X.

4.2 Search Parameters

The behavior of the algorithm is controlled by three parameters: search range, stage limit,
and try limit. Based on these parameters’ value and the difference matrix, the algorithm
searches for elemental components of given data of some reactions

4.2.1 search range

Although, in principle, conserved quantities may be of any magnitude, the algorithm assumes
an upper bound to avoid indefinite search. For the experiments that follow, the absolute value
of this upper bound is three. That is, possible entries for each conserved quantity must be
restricted within the set {x ∈ Z : −3 ≤ x ≤ 3}
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4.2.2 stage limit

On each iteration, the algorithm sets up an initial vector X, or a starting point of searching
and tries to find one 1-D vector X, which satisfiesDX = 0, where D is the difference matrix. The
stage limit parameter simply sets an upper bound on the number of these iterations. Depending
on how many elements there are, the efficient number of the stage limit might be different. For
instance, if only four elements appear in given data, 500 iterations can be excessive.

4.2.3 try limit

The algorithm continually updates the initial vector X until the algorithm finds a solution.
The try limit parameter restricts the number of this updating process. Updating vector X
will be needed when DX ̸= 0. At this point, the algorithm stores the old vector X in the
record to avoid cycles in the search. Without this provision, it is possible for the algorithm to
enter an infinite loop. In short, the try limit parameter restricts the total number of searched
points(vectors), possible solutions, and the order in which these are found.

5 Experimental Results

5.1 Preparations

To exhibit the role of three parameters; search range, stage limit, and try limit, we demon-
strate how these parameters apply to data with our artificial sample data.

First, we define a set of phenomenal objects O = {A, B, C, D, E}(the number of elements,
n = 5) and assume that these entities are subject to two conservation laws, which implies each
entity is 2-dimensional vector. We setup these vectors as following:

A = [1 1]T , B = [1 0]T , C = [2 0]T ,

D = [0 1]T , E = [-1 -1]T

Thus, the algorithm’s targets are following:

x1 = [1 1 2 0 -1]
x2 = [1 0 0 1 -1]

x1 and x2 represent the first and second entry of each element respectively. These two so-
lutions represent the essential relationship between each element under the conservation laws.

Next, based on the solutions, we form the set of observed transformations T and the set of
unobserved transformations U .

Observed transformations T :
A B → C D
C D D → A D B
E A A → B D
B B → C
D A → D D B
E B D D → D

Unobserved transformations U :
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A → C B
C C → D E
B E E → C
D A → E A
B B D → A A

For example, following our notation as mentioned, In(T1) = {A,B} and Out(T1) = {C,D}.
Similarly, In(Tu1) = {A} and Out(Tu1) = {C,B}. Using T and U as input data, the algorithm
generates the difference matrices Do and Du respectively.

Do =

A B C D E


1 1 −1 −1 0 T1

−1 −1 1 1 0 T2

2 −1 0 −1 1 T3

0 2 −1 0 0 T4

1 −1 0 −1 0 T5

0 1 0 1 1 T6

Du =

A B C D E


1 −1 −1 0 0 Tu1

0 0 2 −1 −1 Tu2

0 1 −1 0 2 Tu3

0 0 0 1 −1 Tu4

−2 2 0 1 0 Tu5

Both Dox1
T and Dox2

T must return [0 0 0 0 0 0]T and Dux1
T and Dux2

T never return [0
0 0 0 0]T because both x1 and x2 have to be subject to the conservation laws. The algorithm
uses Do and Du in order to find possible solutions which satisfy these features.

5.2 Analysis of the Search Parameters

We set the search range = 2, so the algorithm assumes that each entry of solutions can be
-2, -1, 0, 1, or 2. Since the number of elements n = 5, there are 55 = 3125 possible points in
the search range. From Result 1, as the number of try limits increases, the number of searched
vectors(or points in the search range) also increases in the long run. However, locally, there
are some exceptions. For example, with try limit = 35, the algorithm checked 1936 points, but
with try limit = 40, the algorithm checked only 1925 points. The try limit varies the contents
of the record saving vectors that the algorithm has checked, and depending on what kind of
vectors are in the record, the search direction can be changed. The worst situation occurs when
x is updated, the updated x is still equal to some x in the record. In this case, the algorithm
can keep updating x more smoothly and accomplish an efficient amount of search with try limit
= 35 rather than with 40.

Although higher try limits tend to search a larger space, excessively high try limits do not
tend toward optimality. For this data set, try limit = 15 seems to be optimal since it leads seven
possible solutions with only 1574/3125 searched cases like much higher try limits do. On the
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other hand, with try limit = 19, the algorithm found only four possible solutions even though it
searched 1632 cases and the algorithm always found seven possible solutions with much higher
try limits. These results imply that there could exist a ”nice” try limit for a given data set,
but try limit must be large enough depending on the data.

search range = 2, stage limit = 50
try limit Checked Solutions Time(sec)
10 1274 5 18.21
11 1398 5 20.31
12 1479 4 23.08
13 1486 5 25.36
14 1523 6 27.83
15 1574 7 30.79
16 1603 5 33.55
17 1643 6 35.16
18 1651 5 37.06
19 1632 4 39.77
20 1686 7 43.45
25 1801 6 52.45
30 1796 7 62.96
35 1936 7 79.46
40 1925 7 86.92
45 1960 7 103.91
50 1980 7 107.40

Result 1: Comparison between different try limits

search range = 2, try limit = 15
stage limit Checked Solutions Time(sec)
10 730 3 2.03
15 1023 4 4.42
20 1283 4 7.43
25 1416 5 11.43
30 1493 5 15.35
35 1533 7 21.90
40 1554 7 23.20
45 1572 7 27.32
50 1574 7 30.45
55 1579 7 35.05
60 1581 7 39.65

Result 2: Comparison between different stage limits

The Result 2 shows that as the stage limit increases, the number of checked cases also
increases but the increasing tendency slows down and the algorithm is unable to find more
than seven possible solutions after stage limit > 35. This result implies that the algorithm can
explore only a specific subset of all possible cases corresponding to the try limit. This is because
the algorithm follows two basic rules; 1) the difference matrix information (which entries should
be updated) and 2) try limit (when the algorithm should give up finding a solution on each
stage). Hence, in terms of the number of searched vectors, increasing the try limit is more
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efficient than increasing the stage limit, and the stage limit can be adjusted based on the size
of a given data set.

5.3 Possible solutions

For this experiment, we made imaginary phenomenal objects;

A = [1 1]T , B = [1 0]T , C = [2 0]T ,
D = [0 1]T , E = [-1 -1]T

and these objects follow only ”two” conservation laws. Also, we made data of transformations
based on these objects’ quantities. However, the algorithm found ”seven” possible solutions
using the transformations as the input data. The Result 3 shows seven possible solutions found
by the Algorithm, which means that these solutions satisfy all conservation laws we assumed.
Since [solution]*(-1) always satisfies the difference matrix conditions, in the real world, it is
hard to distinguish between a solution and the solution*(-1) based on conservation laws only.

Possible solutions(found order)[
A B C D E

]
Identity[

0 0 0 0 0
]

Trivial solution[
1 0 0 1 −1

]
Exact solution x2[

1 1 2 0 −1
]

Exact solution x1[
−1 0 0 −1 1

]
x2 ∗ (−1)[

−1 −1 −2 0 1
]

x1 ∗ (−1)[
0 1 2 −1 0

]
Unknown[

0 −1 −2 1 0
]

Unknown∗(−1)

Result 3: Possible solutions found by the algorithm

The Result 3 can be significant in real applications. In this experiment, a possible solution[
0 1 2 −1 0

]
and its negative are not actual solutions because we assume each object is

subject to only two conservation laws. However, practically, it is possible that an unknown so-
lution indicates the existence of the unknown relationship between phenomenal objects. Thus,
in practical applications, it is desirable to find as many possible solutions as possible. How-
ever, as the number of phenomenal objects increases, the running time of the algorithm also
dramatically increases because a larger data set requires a combination of higher try limit and
stage limit, and also verifying conservation laws requires matrix multiplications for each case.
It is not realistic to increase stage limit and try limit indefinitely. At some point, we have to
stop running the algorithm and analyze its intermediate output to approximate solutions for
the large data set.

5.4 Elementary Particles in Physics

Here we apply the algorithm to real data from the world of elementary particle interac-
tions(Table 1).
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Input: Elementary particle reactions
Observed reactions Unobserved reactions
p+ p → p+ p+ π0 p → ē+ γ

p+ p → p+ π + n p → π + π0

p+ π → π + p p → π + γ

π̄ + p → π̄ + p p → π + π + π̄ + π0 + π0

π̄ + p → π0 + n p+ p → Λ̄ + Λ̄

π̄ + p → p+ π + π̄ + π̄

γ + e → γ + e

e+ p → e+ p

π0 → γ + γ

π̄ → µ+ ν̄µ

π → µ̄+ νµ

µ → e+ νµ + ν̄e

n → p+ e+ ν̄e

π̄ + p → Λ +K0

Table 1: The set of elementary particle reactions([7])

It is known that in the interactions presented in this data set, particle interactions are
constrained by five conservation laws; conservation of electron-Lepton number, muon-Lepton
number, tau-Lepton number, Baryon number, and strangeness number. In other words, each
particle can be represented by the five-dimensional vector as following;

A =[0 0 0 1 0]T , B =[0 0 0 0 0]T , C =[0 0 0 0 0]T

D =[0 0 0 1 0]T , E =[0 0 0 0 0]T , F =[0 0 0 0 0]T

G =[1 0 0 0 0]T , H =[0 1 0 0 0]T , I =[0 -1 0 0 0]T

J =[0 -1 0 0 0]T , K =[0 1 0 0 0]T , L =[-1 0 0 0 0]T

M =[0 0 0 1 -1]T , N =[0 0 0 0 1]T , O =[-1 0 0 0 0]T

P =[0 0 0 1 1]T

For convenience, we substitute Roman letters for the Greek symbols that are conventional
in particle physics. Each alphabet member represents an identical particle. For example, ’A’
is p, ’B’ is π0, ... respectively. Also, the first entry is electron-Lepton number, the second is
muon-Lepton number, the third is tau-Lepton number, the fourth is Baryon number, and the
fifth is Strangeness number. Combining these vectors’ entries, we get possible solutions for each
conservation law as following;

x1=[0 0 0 0 0 0 1 0 0 0 0 -1 0 0]: Electron-Lepton #

x2=[0 0 0 0 0 0 0 1 -1 -1 1 0 0 0]: Muon-Lepton #

x3=[0 0 0 0 0 0 0 0 0 0 0 0 0 0]: Tau-Lepton #

x4=[1 0 0 1 0 0 0 0 0 0 0 0 1 0]: Baryon #
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x5=[0 0 0 0 0 0 0 0 0 0 0 0 -1 1]: Strangeness #

Each entry represents an identical elementary particle. Each solution x1 to x5 constructs the
solution matrix X as a row of X. Also, in this experiment, we ignore particles O and P because
they do not appear in observed reactions. Since the observed set includes 14 elements, the total
number of possible cases is 514 = 6, 103, 515, 625 for search range = |2|(The candidate of each
entry is -2, -1, 0, 1, or 2). The algorithm reads Table 2, which is the modified version of Table
1. The algorithm first constructs a difference matrix Do for observed reactions and a difference
matrix Du for unobserved reactions as we explained in the section VI.1.

Input: Elementary particle reactions
Observed reactions Unobserved reactions
A A → A A B (A → O F)ignored
A A → A C D A → C B
A C → C A A → C F
E A → E A A → C C E B B
E A → B D (A A → P P)ignored
E A → A C E E
F G → F G
G A → G A
B → F F
E → H I
C → J K
H → G K L
D → A G L
E A → M N

Table 2: Particle reactions in Roman alphabet

To converge on the exact solutions, the algorithm keeps recording vectors that are more than
75% close to exact solutions. For example, if a vector X passed 75% of the guiding constraints
provided by the observed reactions, we assume the vector X is much closer to exact solutions
rather than ones that do not. Of course this is not exactly true because we ignore the un-
observed set, but as we mentioned in section 3, within limited time, directly searching the
solutions is almost hopeless. The Result 4 shows the result of the first attempt with parameter
conditions. At this point, the algorithm was not able to find any exact solutions.

stage limit = 150
try limit = 20
search range = 2
Checked 41021 cases
Time: 9386.402 seconds
More than 75 % passed records:138
Result 4: 75% passed partially correct solutions

Here, we analyze 138 outputs, which have passed 75 % of rows of the observed difference matrix
in order to gain clues for reducing search range and finding entries of the exact solutions.
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Result 5: Frequency of values of each element

Result 6: Positive vs Negative frequency

Result 5 shows the frequency of values(-2, -1, 0, 1, or 2) of each elemental particle within
138 records, which have been found by the algorithm in the Result 4. The Result 6 is a sim-
pler version of Result 5 to check positive/negative trends of each particle. Since the algorithm
updates a vector based on the difference matrix information, from the 75% passed records, we
could guess the region of the search space for each particle’s vector is located. Above all, if
the gap between negative and positive frequency of a particle is small enough(here, say 0 or
1), we could say that the negative/positive trend of its vector seems to be ”balanced,” which
means that the algorithm keeps searching a possible solution for the particle symmetrically with
respect to the zero-vector or just searching along with the zero-vector. Thus, such a particle
can be a zero vector with high probability.
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Positive/Negative Trend
oi − 0 + Trend Solution
A 23 90 25 + [0 0 0 1 0]

B 0 138 0 Balanced [0 0 0 0 0]

C 38 62 38 Balanced [0 0 0 0 0]

D 42 56 40 − [0 0 0 1 0]

E 38 63 37 Balanced [0 0 0 0 0]

F 0 137 1 Balanced [0 0 0 0 0]

G 56 50 32 − [1 0 0 0 0]

H 47 46 45 − [0 1 0 0 1]

I 56 49 33 − [0 -1 0 0 0]

J 59 24 55 − [0 -1 0 0 0 ]

K 46 35 57 + [0 1 0 0 0]

L 45 17 76 − [-1 0 0 0 0]

M 62 20 56 + [0 0 0 1 -1]

N 59 23 56 − [0 0 0 0 -1]

Result 7: Positive vs Negative trend

The Result 7 explains the Result 6 numerically. In this case, we could expect particle B,
C, E, and F to be zero vectors and actually they are. Even though the tendency from Table
3 is not accurate enough to determine every particle’s location, at least we can conclude B
and F are clearly a zero vector since their frequency of zeros are extremely high. So, we as-
sume that B = [0 0 0 0 0] and F = [0 0 0 0 0]. In addition, from Result 5, it seems that we
could reduce the search range because -2 and 2 appeared a few times for each particle’s entries.
Thus, the algorithm sets search range = |1|. Also, instead of 75%, the algorithm tries to find
100% passed solutions that satisfy all observed reactions. The Result 8 shows the result of the
second attempt with new parameter conditions. The algorithm found 12 possible solutions,
which can satisfy the matrix Do. Unfortunately, the difference matrix Du did not work as well
as we expected this time because Du does not have enough information for most of the particles.

stage limit = 140
try limit = 84
search range = 1
Checked 33837 cases
Time: 25324.840 seconds
More than 100 % passed records:12
Result 8: 100% passed solutions

In the following 12 outputs Result 9 shows, we identify solutions that can be interpreted as the
identification of conserved quantities that are independently known. we have considered finding
the exact solution x*(-1) is equivalent to finding the exact solution x. We will discuss the gap
between experimental results and exact solutions later.
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[A B C D E F G H I J K L M N]

[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[ 0 0 0 0 0 0 1 -1 1 1 -1 -1 -1 1]

[ 0 0 0 0 0 0 -1 1 -1 -1 1 1 1 -1]

[ 0 0 0 0 0 0 1 1 -1 -1 1 -1 1 -1]

[ 0 0 0 0 0 0 -1 -1 1 1 -1 1 1 -1]

[ 1 0 1 0 -1 0 0 -1 0 1 0 -1 -1 1]

[ 0 0 0 0 0 0 1 -1 1 1 -1 -1 1 -1]

[-1 0 -1 0 1 0 0 1 0 -1 0 1 1 -1]

[ 0 0 0 0 0 0 -1 1 -1 -1 1 1 -1 1]

[ 0 0 0 0 0 0 1 0 0 0 0 -1 -1 1]

[-1 0 -1 0 1 0 0 1 0 -1 0 1 -1 1]

[ 0 0 0 0 0 0 1 -1 1 1 -1 -1 0 0]

Result 9: Possible solutions

5.5 Discussion of the Output

1. x3 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0]: conservation of tau-Lepton number

Coincidentally, in this reaction set, this is one of the exact solutions even though it is a
trivial one.

2. Grouping of Particles

If we extract specific possible solutions from the output and rearrange them as following,
we can see some relationships between particles.

Possible Solutions

A B C D E F G H I J K L M N
0 0 0 0 0 0 1 0 0 0 0 -1 -1 1
0 0 0 0 0 0 1 -1 1 1 -1 -1 0 0
0 0 0 0 0 0 1 -1 1 1 -1 -1 -1 1
0 0 0 0 0 0 -1 1 -1 -1 1 1 -1 1
0 0 0 0 0 0 -1 1 -1 -1 1 1 1 -1
0 0 0 0 0 0 -1 -1 1 1 -1 1 1 -1
0 0 0 0 0 0 1 1 -1 -1 1 -1 1 -1
0 0 0 0 0 0 1 -1 1 1 -1 -1 1 -1

Result 10: Rearranged Output

Especially, zero entries of the first and second solutions in Result 10 are significant clues
to realize the relationship between particles. There are three groups; {G, L}, {H, I, J,
K}, and {M, N}. Each of them is related to x1 = [0 0 0 0 0 0 1 0 0 0 0 -1 0 0]; conser-
vation of electron-Lepton number, x2 = [0 0 0 0 0 0 0 1 -1 -1 1 0 0 0]; conservation of
muon-Lepton number, and x5 = [0 0 0 0 0 0 0 0 0 0 0 0 -1 1]; conservation of Strangeness
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number respectively. This result implies that a possible solution could contains the key
to multiple conservation laws.

3. Difficulty of Searching due to Zero Vectors

Since zero vectors; B, C, E, and F assembled in one place, It seems that the algorithm
tends to consider their adjacent particles; A and D as zero vectors too. Because of this
unbalanced searching, it is hard to find x4 = [1 0 0 1 0 0 0 0 0 0 0 0 1 0]; conservation of
Baryon number, which contains nonzero entries for A and D. To avoid this issue, we could
introduce an additional row operation such as interchange of two rows of the matrix Do

in the middle of searching.

4. Efficiency

In terms of efficiency of the algorithm, based on the difference matrix information, the
algorithm only checked 33,837 cases out of 314 = 4, 782, 969 cases(with search range =
|1|) and found these useful results. If the reaction sets contain more information, the
algorithm could get more accurate results directly.

6 Conclusion

The difference matrix of reactions provides the efficient search direction to find elemental
vectors. By checking the trend of each element, we can reduce the search range and recognize
zero vector elements. If some elements have a huge entry, this method does not work well
because the required search range can be too huge. Also, if observed reaction data provides
enough information for every element, to find each elemental vector, further constraints are
not required. What the definition of “enough information” is will be a further research topic.
The efficient combination of try limit and stage limit based on statistical theories also will be
a further research topic.
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