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Abstract

We present a simple, yet flexible parameter synthesis approach for Cyber-Physical Systems (CPS).

The user defines the behavior of a CPS, a set of (un)safe states, and a generic template for an invariant

using Satisfiability Modulo Theories (SMT) formulas. Counterexample-Guided Inductive Synthesis

(CEGIS) is then used to compute values for open parameters and a concrete invariant to prove that all

unsafe states are unreachable. We present a proof-of-concept tool, optimizations, and first experiments.

1 Introduction

Cyber-Physical Systems (CPS) [12] integrate computing capabilities with monitoring and con-
trol of entities in the physical world. This interaction quickly results in a high complexity, even
for small systems. Subtle issues are easy to overlook by manual inspection and simulation,
calling for more rigorous (formal) methods. Methods that cannot only verify a given CPS but
also assist during its design are particularly appealing.

The crux in designing specific aspects of a CPS is often in finding suitable values for impor-
tant design parameters such that given requirements are satisfied. As an example, think of a
controller to keep some temperature within a certain range. A two-position controller (switch-
ing the heating on and off if certain temperature thresholds are exceeded) is easy to implement.
The difficulty lies in finding parameter values like the polling interval, the temperature thresh-
olds, the heating rate, etc. Especially in the presence of uncontrollable inputs or events from
the environment, corner cases can easily be overlooked when defining such parameters.

We thus propose a parameter synthesis approach for CPS that is based on formal methods.
The user characterizes the CPS behavior using Satisfiability Modulo Theories (SMT) formulas.
This includes a definition of how the CPS evolves over time, and the possible initial states. As
specification, the user defines unsafe states that must not be visited. Finally, the user provides
a template for an invariant to prove correctness. All these definitions can reference parameters
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for which the value is yet unknown. In particular, parameters can be used in the invariant to
specify only its abstract shape. E.g., for our temperature control example, the unsafe states
could be characterized by having a temperature t > 25◦C or t < 18◦C, the invariant could be
that the temperature resides within some interval [kl, ku], where kl and ku are open parameters,
and other design choices like the polling interval and the heating rate are open parameters, too.

Our approach automatically combines these ingredients into a compact correctness formula.
To increase the chances for proving unbounded correctness with the given invariant template,
we define a notion of n-step inductiveness, requiring the invariant not to hold always but only
every ≤n transitions (while only safe states can be visited in the meantime). Counterexample-
Guided Inductive Synthesis (CEGIS) [16], a technique for parameter synthesis in software, is
then applied to break the parameter synthesis problem into simple (unquantified) queries for
an SMT solver. We also propose optimizations to speed up convergence in our setting. There
are three possible outcomes: (1) the tool produces parameter values such that the CPS cannot
reach any unsafe state, (2) the tool reports that no such values exist, or (3) the computation is
aborted (e.g., because of a timeout or an incompleteness of the solver for the theories used).

Our approach is flexible. The user can pick the SMT solver and theory that is most suitable
for the problem at hand. For simple problems, linear arithmetic over the reals may suffice, and
a solver tailored towards such theories may yield the best performance. For highly non-linear
CPS, specialized SMT solvers like dReal [10] can be used. Our approach can also benefit from
user insights. If the tool fails to find a solution, the user can improve the invariant, the definition
of the CPS behavior, etc. Finally, our approach is simple, which makes it easy to extend and
to customize. SMT provides a rich tool infrastructure for such extensions, e.g., optimizing
solvers [4, 14] to minimize the cost of the solution regarding some quantitative metric.

Related work. Frehse et al. [9] present a counterexample-guided approach to parameter
synthesis, but consider only linear hybrid automata. It computes an underapproximation of
the set of good parameter configurations. Bogomolov et al. [5] compute a parameter region for
multiaffine hybrid automata using abstraction with linear hybrid automata. Cimatti et al. [7]
compute all good parameter configurations precisely for CPS that are modeled as symbolic
transition systems with linear constraints. Our approach computes only one parameter con-
figuration, which is potentially more efficient. Since we are synthesizing parameters anyway,
we also synthesize an invariant (from a user-given template) along the way, which enables rea-
soning about unbounded correctness using succinct formulas. We apply CEGIS [16] with some
optimizations to synthesize parameters for CPS, using an SMT solver as a black box. We only
require that the solver can compute satisfying assignments. Cheng et al. [6] present a more
sophisticated approach (like “CEGIS on steroids”) to solve formulas of the form ∃x :∀y :ϕ, uti-
lizing more advanced solver features. We can also use [6] instead of CEGIS in our approach.
Cheng et al. [6] also present examples, demonstrating that many design problems for CPS re-
duce to ∃∀-formulas. Some examples also use (templates for) invariants to reason about CPS
correctness. With our notion of n-step inductive invariants, we generalize this concept. We are
not aware of existing work using such invariants, but there are similarities to k-induction [15].

Contributions. In summary, the main contributions of this paper are (1) to provide a
flexible flow for CPS parameter synthesis based on existing algorithms and engines, (2) our
notion of n-step inductive invariants to reason about unbounded CPS correctness, and (3) a
proof-of-concept tool with optimizations and heuristics to improve the performance in practice.

Outline. The next section presents our approach from a user’s perspective and from an
algorithmic perspective. Section 3 discusses our tool and first experiments. Section 4 concludes.
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2 Parameter Synthesis Approach

2.1 A User’s Perspective

The SMT-LIB [2] standard defines a common language for SMT solvers. To maximize flexibility,
our approach operates on parameter synthesis problems that are defined directly in this format.

The user defines two datatypes, one to represent a state, and one to represent input. The
state Q is formed by a vector of state variables q = (q1, . . . , qa). Individual state variables
can be of different type (e.g., one variable may be a Boolean flag, another one a real value to
represent time or some other physical quantity, yet another one an enumeration type with 8
options). Similarly, the input I is defined using a vector of input variables i = (i1, . . . , ib). The
user can also define constants (of different type) to represent parameters of the CPS. We denote
the parameter variables by k = (k1, . . . , kc) and the set of all parameter valuations by K.

The user defines the dynamics of the CPS via a transition function T : Q × I × K → Q,
which defines the next state q′ = T (q, i, k) based on current state q ∈ Q, the input i ∈ I, and
the parameter values k ∈ K. Note that T defines q′ uniquely based on q, i and k. Uncertainties
about the next state need to be “externalized” by introducing additional input variables. Also
note that T does not restrict the formalism to discrete-time systems. Continuous time can
be modeled, e.g., by having one real-valued variable to represent the elapsed time (or several
such variables to represent multiple clocks). An input variable may define how much real time
elapses by an application of T . Thus, T can be thought of as defining possible sequences of
visible states rather than imposing discrete time steps.

The set of possible initial states of the CPS is defined with a function init : Q × K → B.
Similarly, safe : Q×K → B defines the safe states, and inv : Q×K → B characterizes the states
that satisfy a user-given invariant. All these functions can be defined in SMT-LIB syntax in a
rather straightforward way. Also note that all these functions can reference the parameters.

In order to formalize what it means for a CPS to be correct, we inductively define the set
reach(k) ⊆ Q of states that are reachable with parameter values k ∈ K as follows:

• All initial states are reachable, i.e., ∀q ∈ Q : init(q, k)→ q ∈ reach(k).

• If a state is reachable, then all of its possible successor states are reachable, i.e., ∀q ∈ Q :
∀i ∈ I : q ∈ reach(k)→ T (q, i, k) ∈ reach(k).

• No other state is reachable.

Our tool attempts to compute parameter values k ∈ K such that all reachable states are safe,
i.e., ∀q ∈ Q : q ∈ reach(k)→ safe(q, k). The next section explains how this works.

2.2 Under the Hood

Our parameter synthesis approach consists of two steps. First, we construct a correctness
formula correct : I ′ × K → B such that correct(i′, k) evaluates to true (only) if the CPS with
parameter values k ∈ K is correct when fed with input (sequence) i′ ∈ I ′. Second, we compute
parameter values k ∈ K such that ∀i′ ∈ I ′ : correct(i′, k) holds. Note that this inherently
involves handling alternating quantifiers (∃k :∀i′ : . . .). Since SMT solvers have their strengths
in solving unquantified formulas, we apply CEGIS [16] to split the problem into a sequence of
unquantified formulas for an SMT solver.

Defining the correctness formula. A common approach to define a correctness formula
from a transition function T is known as Bounded Model Checking (BMC) [3]: T is unfolded
for an increasing number of steps, while asserting that no unsafe state can be visited. This
approach is not only common for reactive systems but also applied to CPS (see, e.g., [11]). The
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Figure 1: Counterexample-Guided Inductive Synthesis (CEGIS) [16].

drawbacks are that (1) BMC only gives bounded correctness guarantees, and (2) can result in
large correctness formulas (containing many copies of T ). Thus, we rather follow an invariant-
based approach. By induction, a CPS cannot visit an unsafe state (and is thus correct) if

1. all initial states satisfy the invariant,

2. from a state that satisfies the invariant, the next state necessarily satisfies the invariant
as well, and

3. all states that satisfy the invariant are also safe.

In our setting, this insight can be used to define a correctness formula as correct1(q, i, k) =(
init(q, k)→ inv(q, k)

)
∧
(
inv(q, k)→ inv(T (q, i, k), k)

)
∧
(
inv(q, k)→ safe(q, k)

)
.

If we find parameter values k ∈ K such that ∀q ∈ Q, i ∈ I : correct1(q, i, k) holds, then these
parameter values induce a correct system. We can thus define correct from correct1 by setting
I ′ = Q× I, i.e., treat states as if they were uncontrollable inputs.

n-step inductiveness. The formula correct1 from the previous paragraph requires the
invariant to hold always. We call such an invariant 1-step inductive (because it holds again
after at most 1 step of T ). If the unsafe states are unreachable, it is always possible to find such
a 1-step inductive invariant (the set of reachable states can be used). Yet, the user provided
invariant template inv may be too restrictive to express such an invariant. We discovered such
cases in our experiments.1 There are two options: (1) the user can improve the invariant
template, and (2) we can relax the requirement that the invariant must hold in all steps.

For the second option, we define a notion of n-step inductiveness. It requires that, whenever
the invariant is satisfied, it will be satisfied again after at most n steps of T , no matter what
the inputs are. Additionally, all states that can be reached in the meantime must be safe. We
can formalize this requirement by defining correctn(q0, i1, . . . , in, k) =

(
init(q0, k)→ inv(q0, k)

)
∧
(
inv(q0, k)→ safe(q0, k)

)
∧
(
inv(q0, k)→

n∨
j=1

inv(qj , k)∧
j−1∧
l=1

safe(ql, k)
)

where qj is an abbreviation for T (qj−1, ij , k) for all j > 0. Similar to before, we want to find
parameter values k ∈ K such that ∀q0 ∈ Q :∀i1, . . . , in ∈ I : correctn(q0, i1, . . . , in, k) holds. We
can thus define correct from correctn by setting I ′ = Q× In.

CEGIS. Now that we have defined correct : I ′ × K → B, we can turn to computing
parameters k ∈ K such that ∀i′ ∈ I ′ : correct(i′, k) holds. We use Counterexample-Guided

1E.g., for our temperature control example, an invariant that only requires the temperature t to reside within
some interval [kl, ku] can never be 1-step inductive: No matter how ku is chosen, there exists a state with t
close to ku and heating on such that ku is exceeded after a step of T . However, after violating the invariant
temporarily, some application of T will turn the heating off eventually, so t will fall back into the interval [kl, ku]
after some number of steps. Thus, t ∈ [kl, ku] may still be an n-step inductive invariant for some kl, ku.
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Inductive Synthesis (CEGIS) [16], a technique that has been invented for parameter synthesis
in software. The basic idea of CEGIS is to refine candidate values for the parameters iteratively
based on counterexamples until a correct solution is found. This is illustrated in Figure 1. There
is a database D ⊆ I ′ of concrete input values, which is initially empty. In the first step of a
loop, parameter candidates kc are computed such that

∧
i′∈D correct(i′, kc) holds, i.e., the CPS

is correct for all inputs from the database D. In our case, an SMT solver is used to compute
such values kc as satisfying assignment to the formula

∧
i′∈D correct(i′, k), where k are the

parameter variables. If no such values exist (the formula is unsatisfiable), then this means that
the parameter synthesis problem has no solution, so the loop aborts. If values kc have been
found, the next step in the loop is to check whether they result in a correct CPS behavior
for all input values i′ ∈ I ′ (and not just those from D). In order to answer this question, we

use an SMT solver to check if ¬correct(i′, kc) is satisfiable (where i
′

are input variables that
are left open), i.e., if there exists an input for which the CPS is not correct. If the formula is
unsatisfiable, the values kc are a solution for the parameter synthesis problem and the algorithm
terminates. If the formula is satisfiable, we compute a satisfying assignment i′c and add it to the
database D. This has the effect that the candidate parameters computed in the next iteration
are “better” in the sense that they work for the input i′c as well. The loop is not guaranteed to
terminate (unless I ′ or K is finite). Once concrete parameter variables kc have been found, the
loop can be continued with the additional constraint k 6= kc in order to find other solutions.

We apply the CEGIS loop on correctn with increasing values of n until a solution is found.
User-given bounds on the maximum value of n, the number of iterations in the CEGIS loop, etc.,
can be imposed to ensure termination. Setting a timeout may be even more convenient. If the
SMT solver is incomplete for the theories being used (e.g., because the theories are undecidable
even for the unquantified case), it can happen that the SMT solver returns unknown as a result.
In such cases, we present the latest parameter candidate kc to the user and abort.

3 Implementation and First Experiments

We implemented our parameter synthesis approach as a proof-of-concept tool using Python 3
and conducted first experiments. All experiments were performed on a quad-core Intel R©
CoreTM i5-2520M CPU with 2.50GHz and 8GB RAM. Z3 [8] 4.3.1 was used as SMT solver.
Our tool as well as the input files for reproducing our experiments are available for download2.

Implementation. The proof-of-concept tool implements the CEGIS synthesis loop shown
in Figure 1. In contrast to CEGIS for parameter synthesis for software, in our case the domains
of continuous variables are infinite such that the termination of the CEGIS loop is in general
not guaranteed. We implemented a few simple heuristics to improve convergence. The first two
heuristics were designed such that our benchmarks terminate. The third heuristic was added
to improve the performance.

1. Counterexample randomization: To avoid generating too similar counterexamples, our
proof-of-concept tool attempts to randomize every second counterexample. In an iterative
loop, for each value of the counterexample, a random value of the same type is generated
and substituted. If the adapted counterexample still violates the correctness check, the
randomized value is kept. Otherwise, it is rejected.

2. Restart strategy : Inspired by the implementation of today’s CDCL SAT solvers, we im-
plemented a simple restart strategy. When a restart happens, all counterexamples are

2https://github.com/hriener/parsyn-cegis
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Benchmark Discrete State Space Continuous State Space

#Locations #Reals #Integers

thermal1-s2-safe 2 1 0
thermal2-s3-safe 3 1 2
water-s3-unsafe 3 1 0
water-s4-safe 4 1 1

Table 1: Benchmark characteristics.

removed from the database and the CEGIS synthesis loop starts from the beginning with-
out a priori knowledge. After each restart, the period of the restart is increased.

3. Demand for progress: Given two subsequent values ka and kb of the same parameter, we
measure their progress by progress(ka, kb) = ‖ka − kb‖. This measure is used to restart
the synthesis procedure when the CEGIS loop gets stuck by producing similar counterex-
amples, but counterexample randomization is not effective. In each iteration, for the last
pair of parameter values kc−1 and kc, the progress value progress(kc−1, kc) is computed. If
the progress value repeatedly falls below a fixed progress threshold δ, e.g., more than 10
times, a restart is initiated.

Experiments. We used our proof-of-concept tool to concretize the parameter values of in-
variant templates for a selected set of benchmarks. The counterexample randomization and the
restart strategy were enabled for all experiments such that the CEGIS loop always terminates
for the considered benchmarks. The restart threshold was set to 16 initially and incremented
by 16 on every restart. For the progress heuristic, we repeated the experiments twice with en-
abled and disabled heuristic, respectively, to analyze the speed-up. The fixed progress threshold
δ = 10−7 was configured.

Benchmarks. As benchmarks, we considered simple examples of hybrid systems from the
literature as SMT instances in the format described in Section 2.1. The examples include two
different temperature control systems (similar to [1]) and two version of a simple water tank
(similar to [13]). An overview of the benchmark characteristics is given in Table 1. The table
lists the number of discrete locations as well as the numbers and types of continuous variables
by the benchmark.

Results. Table 2 lists the averaged results over 100 runs for the benchmarks with different
values for n in correctn. The table is built as follows: the first two columns name the benchmark
and show the number of parameters to be synthesized. The next three columns show the average
number of SMT solver calls, generated counterexamples, and whether parameter values were
synthesized, respectively. The number of SMT solver calls includes the calls for parameter
synthesis, correctness checking as well as counterexample randomization. All results are as
expected, i.e., if we report ’Yes’ in the column ’Found’, parameter values for the invariant
template could be synthesized. Otherwise, if we report ’No’, no such parameter values exist.
The last four columns show the average amount of run-time required for CEGIS synthesis,
where tP is the time required for finding parameters, tC is the time for correctness checking,
tR is the time for counterexample randomization and Σ is the total time. For the upper half of
the table, the progress heuristic was disabled, and for the lower half enabled.

Discussion. The execution times for the benchmarks in our experiments are very low, even
though we do not use any sophisticated features of the underlying solver. Comparing the upper
and the lower half of the table shows that our progress heuristic gives a solid speed-up for the
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Benchmark |k| n #SMT #CEX Found Time

tP tC tR Σ
[s] [s] [s] [s]

thermal1-s2-safe 2 1 53.56 21.12 No 0.19 0.19 0.09 0.49
thermal1-s2-safe 2 2 34.69 14.16 Yes 0.12 0.15 0.06 0.33
thermal2-s3-safe 4 1 179.37 51.26 No 0.78 0.74 1.16 2.72
thermal2-s3-safe 4 2 528.28 150.96 No 4.22 3.43 6.50 14.29
thermal2-s3-safe 4 3 151.43 43.93 Yes 1.07 1.04 1.64 3.80
water-s3-unsafe 2 1 1663.14 664.92 No 57.96 31.42 28.00 117.92
water-s3-unsafe 2 2 25.88 10.07 No 0.13 0.14 0.06 0.34
water-s4-safe 2 1 32.00 11.00 Yes 0.09 0.11 0.09 0.30

thermal1-s2-safe 2 1 55.48 21.89 No 0.20 0.19 0.09 0.50
thermal1-s2-safe 2 2 35.41 14.46 Yes 0.12 0.15 0.06 0.34
thermal2-s3-safe 4 1 235.83 67.38 No 1.06 1.01 1.59 3.74
thermal2-s3-safe 4 2 580.95 166.02 No 4.67 3.82 7.14 15.85
thermal2-s3-safe 4 3 149.00 43.27 Yes 1.11 1.07 1.67 3.91
water-s3-unsafe 2 1 908.95 363.26 No 5.59 5.39 2.83 14.07
water-s3-unsafe 2 2 28.23 11.02 No 0.14 0.16 0.06 0.37
water-s4-safe 2 1 32.00 11.00 Yes 0.09 0.11 0.09 0.30

Table 2: Parameter synthesis.

water-s3-unsafe benchmark while there is only a minor effect on the performance of the other
cases. Note that the total solving time does not correlate with the number of steps (n), since
the time per solver call can vary.

4 Summary and Conclusion

We presented a simple and flexible parameter synthesis approach for CPS. The user defines the
behavior of the CPS, a set of (un)safe states, and a generic template for an inductive invariant
in SMT. Our approach then synthesizes the open parameters using CEGIS. We presented a
proof-of-concept tool, optimizations, and promising first experiments.
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