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Abstract

The various possible semantics of Dijkstra’s guarded commands are elucidated by means
of a new graph-based low-level, generic specification language designed for asynchronous
nondeterministic algorithms. The graphs incorporate vertices for actions and edges indi-
cating control flow alongside edges for data flow. This formalism allows one to specify, not
just input-output behavior nor only what actions take place, but also precisely how often
and in what order they transpire.

1 Introduction

The behavior of asynchronous algorithms can be specified using various formalisms, some more
precise than others. There may be events that must occur in a particular order; others may be
such that their relative order is immaterial; there may be sterile events along execution paths
that turn out to be unproductive. We propose a generic graph-based low-level specification
language for such algorithms and a graph-based operational semantics for describing their com-
putations. This allows one to infer, not just input-output behavior, nor only what actions take
place, but also how often and in what order they occur. Our goal is not to propose a new way
of programming, but rather a generic way of specifying behavior of constructs.

We require the ability, for example, to formally express the intention that if y = 0 and the
nondeterministic guarded conditional if y ≥ 0 → z ∶= 1 ⫾ y ≤ 0 → z ∶= −1 fi is executed, then
one or both of the guards are evaluated, in either order or simultaneously, whereas exactly one of
the assignments is executed. We want to contrast the computation of the parallel assignments
y ∶= 1 ‖ z ∶= −1 for which the order of execution matters not, and z ∶= 1 ‖ z ∶= −1 for
which the outcome depends on the order. Our interest is in operational semantics, so there is
a difference between if odd(x) then x ∶= 0 else x ∶= x − x fi and if odd(x) then x ∶= x − x

else x ∶= 0 fi despite the fact that outcomes are identical.
Our overall goal is a more precise, more flexible, and more general generic language for

describing asynchronous computations and algorithms than currently available. More precise,
on account of providing exact control over the order in which values are accessed and over the
number of accesses. Flexible, in that it allows arbitrary sequences of assignments and other
operations as part of a single step. More general, because it is designed to incorporate a range
of modes of choice and nondeterminism.

We use directed graphs to describe computations by setting down the actions performed
and the quasi-order in which they transpire. We work with the most basic, atomic actions,
namely, reads, writes, tests, and choices—some labeled with uninterpreted operation symbols.
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Figure 1: Guarded conditional, avoiding unnecessary tests. Control lines are red; data channels
are blue; probes are green. If r has already tested true before s is examined, then the latter
test is skipped. Likewise, if s tests true first, r is skipped. Even if both are true, only one of P
and Q obtains control.

Actions that occur “simultaneously” sit in the same equivalence class of this quasi-ordering.
The consecutive states of distributed processes might not be well defined, as the precise order
of actions on the state may be under-determined. Hence, the ordering may be partial. But the
graph records the effects of actions, and it preserves the order in which they occur to the extent
that subsequent behavior might depend on the order.

An algorithm will be presented as a finite directed graph whose vertices are actions on the
state. The initial state determines the memory locations accessed, their values, the outcomes of
tests, and any state changes. In addition to the usual edges describing control flow, there will
be data edges showing whence values are produced and where they may be used by subsequent
operations. See the appendix for examples of g.c.d. computations.

2 Motivation

Consider the simplest case of Dijkstra’s guarded commands [20], if r → P ⫾ s → Q fi. The
intention is as follows: (a) If only condition r holds true, then r will have to be evaluated, and
since it is true command P is then executed, and the whole statement succeeds. It may be that
the other guard s is also evaluated before, after, or at the same time (and found false); however,
Q is definitely not to be executed. (b) Likewise, if only s holds true, then s is evaluated, Q is
executed, and the statement succeeds. Even if r is also evaluated, P is not executed. (c) If both
r and s are true, then at least one—but maybe both—of r and s are evaluated but only one of P
and Q is executed, and the whole statement succeeds. (d) If neither r nor s is true, then both r

and s must be evaluated to determine that this is the case, but neither P nor Q is executed, and

31



Alternate Semantics of the Guarded Conditional Dershowitz

the whole statement fails (aborts). Explanations, such as the following, in which all guards are
always evaluated, are misleading: “Upon execution of a selection all guards are evaluated. If
none of the guards evaluates to true then execution of the selection aborts, otherwise one of the
guards that has the value true is chosen non-deterministically and the corresponding statement
is executed” [28]. A similar understanding is formalized in [12].

It is more than plausible, however, that an implementation would actually evaluate only
one guard if it turns out that the first one considered evaluates to true. The program in Fig. 1
depicts such an implementation. Solid red arrows indicate flow of control and the dashed blue
ones, flow of data. Yellow circular vertices are memory reads; pink diamonds are conditional
branches; black circles are conjunctions, all incoming are needed before all outgoing pass control;
and white circles are disjunctions, with only one outgoing edge getting control when one or more
incoming edges are live. The green arrows probe whether control has reached the point at their
tail. Only if that is not the case does control leave the red diamond control test and proceed
to examine the value of the guard r or s. If r is true but a probe shows that s is false, then
control moves to P . If s is true but a probe shows that r is false, then control moves to Q. If
the probes show that both tests yielded true, then a choice is made at the white circle, and
only one branch is executed.

Now consider the possibility (not entertained by Dijkstra) that the evaluation of one of the
guards (r and/or s) can fail or might not terminate. Different possible behaviors—now with
potentially different outcomes—may be understood; the question is which is intended, and how
to make that precise. The program in the figure will eventually try the other guard in such a
case.

Moreover, suppose the computation along one of the branches enters into a nonhalting
computation, as in if true → loop ⫾ true → abort ⫾ true → skip fi. We might want for
the other branches eventually to be attempted, as though all options are explored in parallel.
This gives rise to three options: (1) Any one branch is taken, with possible outcomes: looping,
failing, succeeding—as in the guarded command language [20]. (2) In case of explicit failure,
an alternate possible branch is chosen, leaving two possibilities: looping or succeeding, as
in Prolog [11] or Icon [22]. (3) All branches are attempted, so success is the only possible
eventuality, as in Dynamic Logic [27]. In short, the need to make the intended semantics of
programming instructions precise and explicit is inescapable. As we will see, incorporating
constructs that signal success or failure explicitly, for situations such as angelic choice, can
help resolve such ambiguities. See [27] for an analysis of Dijkstra’s intent and of some of the
alternatives.

3 Control Scenarios

In an asynchronous system, some details regarding the order of actions during execution may be
deemed irrelevant and should not be nailed down more than necessary by the semantics. Other
aspects of the order of actions may affect the outcome and need to made precise. Algorithms
specify the behavior of computations under different initial circumstances.

A computation may be thought of as traversing a finite or infinite directed graph—the
control graph, expressing the control order in which events transpire. So, its vertices are events,
each with a label drawn from some set of possible actions. A scenario comprises a (finite or
infinite) set V of event vertices, labeled by event types L, and a multiset E of control edges
over V . This defines a control (multi-)graph ⟨V , E,l⟩, with labeling l ∶ V → L. We shall draw
a red control edge, � ⟶ � from event � ∈ V to event � ∈ V if � is an immediate successor of
�. This means that � requires �, so it cannot occur before �. Thus, computation proceeds in
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steps, each of which involves one or more events.
A scenario proceeds along the (red) control edges of the control graph. Events on a cycle of

control edges are simultaneous. A dicut (directed cut) A∕B is a cut of a graph G = (V ,→), that
is, a bisection of its vertices (V = A ⊎ B), in which all edges → of G go in the same direction,
from preceding events A to succeeding events B: ∀a ∈ A, b ∈ B. b ̸→ a. Each cut divides the
graph into an past segment of the scenario—what has been done, and a future segment—what
still needs doing. (This is akin to the cuts in a distributed system that give consistent global
states; see [32], for instance.) A directed cut cannot cut a cycle, so simultaneous events must
all be on the same side.

A stage in a scenario is a dicut of the scenario’s control graph. Each step takes the scenario
from one stage to the next, that is to another stage whose additional events are wholly in the
future of the first, current stage and between which there is no other stage. Each stage may be
followed by any number of next stages. A move is a finite sequence of (one or more) transitions
from one stage to a possible next stage, such the transitions in an iteration of a loop. In this
way a (partial or complete) scenario may be decomposed into a sequence of moves.

A component in a scenario is a (nonempty) maximal strongly connected component of
simultaneous events in the control graph. The events in a component must all be part of the
same step, or else the order would be violated. Independent events, on the other hand, may
belong to the same step or to different steps. Thus, a single step will necessarily consist of one
or more pairwise incomparable components. There are no two strictly ordered events in a single
step.

A scenario may have finitely or infinitely many stages. Regardless, we require confluence,
insisting that, “All roads lead to Rome”: For any two stages in a scenario, there is always at
least one subsequent stage reachable from both, as will be shown in Lemma 3.1 below. This
is necessary for our notion of a scenario to be well defined. When there is more than one next
step, it should matter not which one is pursued. Hence, the specific choices taken to reach any
particular stage will not affect the ultimate result. In other words, a single scenario may embody
many different sequences of steps, but the outcome—to the extent there is any outcome—of
the scenario is independent of the choice of sequence.

The transitive closure of the relation → between events in a scenario is the control quasi-
ordering ≾, corresponding to reachability in the graph. For control (quasi-) ordering ≾, event �
(strictly) precedes event � and � (strictly) succeeds �, written � ≺ �, if � ≾ � but � ̸≾ �. Events
are equivalent, � ≃ �, when both � ≾ � and � ≾ �, and incomparable, � ⟂ �, when neither
holds. Events that are equivalent in this ordering occur simultaneously—understood literally
or figuratively. If they are incomparable in the ordering, we will refer to them as independent.
Events are said to be sequential or ordered if one strictly precedes the other in this quasi-
ordering. Two events are nonsequential if they are either simultaneous or independent. The
execution order of independent events is unknown or unknowable, but in any case must be
irrelevant to the outcome.

Consider a control graph (V ,→). A cut A∕B, where A,B ⊆ V , can be represented by A

alone since B = V ⧵ A. Such an A must be (downward) closed under ≾ (predecessor). The
control relation → induces a stage relation on cuts: A ⟿ A′ if A ⊆ A′ and ∀a′ ∈ A′. ∀v ∈

V ⧵ A. (v ↛ a′ ∨ v ≃ a′). This is the “next stage” relation. It respects the direction of control
edges: from events in the previous stage to all new events in the next stage. Simultaneous events
stay together; independent events need not. From one stage to the next, a set of nonsequential
events transpire.

Strong confluence (see [16]) follows from the definitions:

Lemma 3.1. If A ⟿ B and A ⟿ C, for stages A,B, C of some computation, then B ∪ C is
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also a stage of the scenario and A ⟿ B ∪ C, B
=

⟿B ∪ C, and C
=

⟿B ∪ C, where
=

⟿ is the
reflexive closure of ⟿.

This lemma is crucial. It means that the graph of a scenario has all the information needed
to determine its outcome, regardless of the precise sequence of steps that may have transpired
behind the scenes—provided that the order of independent actions does not matter. In the final
analysis, the same actions will have taken place, though not necessarily in the same sequence.
See Theorem 6.1 below.

Stages are naturally partially ordered by the reflexive-transitive closure ≤ of the stage rela-
tion ⟿. If A ≤ B for stages A,B, then stage B is reachable from stage A in the sense that there
is a sequence A = A0 ⟿ A1 ⟿ ⋯ ⟿ An = B, n ≥ 0, of stages such that each Ai has Ai+1 as
one of its possible next stages. A sequence of consecutive stages like A0 ⟿ A1 ⟿ ⋯ ⟿ An

is a run.
Given a graph quasi-ordering its events, and identifying a stage with its preceding events,

the stage order may be defined as a special case of the Egli-Milner powerset construction (see
[1, Def. 6.2.2]):

Definition 3.2 (Stage order). Given a control order ≾ on events V , two stages, A,A′ ⊆ V , are
ordered A ≤ A′ in the stage order if A ⊆ A′ and ∀a′ ∈ A′. ∃a ∈ A. a ≾ a′.

A full scenario begins with an initial stage. The empty cut ∅∕V is the unique lower bound
of the stage relation ≤, which is the initial stage. The full cut V ∕∅ is its unique upper bound.
When finite, a scenario has a single outcome, the unique final stage, with no stages following
it. However, in the case of an infinite graph that upper bound V ∕∅ is unreachable.

The central precept of the formalism espoused here is that an event only proceeds after it
receives control from all its immediate predecessors, much like (simple) Petri nets [35]. We have
no explicit notion of process or processor. The number of events that take place simultaneously
may vary arbitrarily during a computation. Control flow is an abstraction for both allocation
of processes as well as data dependencies.

4 State Semantics

A computation captures the salient aspects of the behavior of a single execution of a compu-
tational process. The behavior of a computation involves state changes. Thus, a computation
is a scenario wherein events are actions that act upon states. We wish to analyze concrete
computations in detail, be they algorithmic or not. By “algorithmic” we mean that they are
finitely describable. Later on, we will explore how one might specify algorithmic computations
by means of graphical programs.

The stages of a computation are associated with (global) states. At each stage, there is a
specific current state. The initial state is the current state of the initial stage; likewise, the final
state of a finite computation is the current state of its final stage. In this way, a computation
transforms the given initial state step by step.

But what do states look like? What exactly transpires during computation? And how
can we faithfully describe that? The state of a standard Turing machine is composed of three
parts: (a) the contents of the tape; (b) the positions of the reading heads on the tape; and
(c) the internal state (Turing’s “state of mind”). Similarly, the state of the computations
that we are envisioning consists of three components: (a) a shared memory store, containing
both the definitions of all builtin operations as well as the current values of all variables and
additional mutable data; (b) a service panel, which holds values that have been retrieved from
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the store and may be needed further down the line—like values held temporarily in processor
registers; and (c) a control panel, indicating where in the process control currently lies—like the
internal state of a Turing machine, or the program counter of von Neumann machines, or the
multiple program counters of multithreaded parallel execution. The service and control panels
are referred to together as the process’ “panel”.

The store comprises a set of locations in which values are stored, values that may be changed
along the way. Actions are designed to retrieve a stored value or to update it. Locations that
are not actively modified by a computation should hold invariant. States are global, as we
impose no restrictions on which values held in the state may be modified by which actions.
Only the control panel determines the next upcoming actions. The values in the service panel
determine the outcomes of those actions. Those outcomes produce values that show up in the
subsequent panel.

Let  be the set (or class) of states of some process and , the set of allowed (atomic)
actions on stores. Generically, an action requires some incoming control lines to be live for it
to execute, “live” in the sense that control has passed the action at its tail end. It may access
various locations in the store, use various values available in the service panel, modify the values
of various locations in the store, produce values for the subsequent service panel, and transfer
control to a subset of the outgoing control lines.

Events in a control graph are instances of actions, which act upon states during computation
and come in different flavors. Actions � ∈  are state-transition functions � ∶  →  . (In
a more general framework than the one dealt with in this paper, events may be partial or
multivalued functions.) Some actions change the store. Other actions might have no impact
on the store, but instead may provide data needed for decisions or affect only the panel to be
used by subsequent events.

The graph formalism applies equally well regardless of the internal complexity of actions.
But, as we are interested in foundational issues, we turn to basic, atomic actions. As Alan
Turing observed in the pencil and paper domain [40], there are three kinds of basic actions of
importance in computations: reads, writes, and choices. Read : Query and retrieve a value from
the state, or—put another way—apply some operation known to the state to some arguments.
Write: Request and store a value within the state, or—viewed alternatively—update the way
future queries are to be answered. Decide* : Choose what to do next on the basis of a retrieved
value. Read and write actions act on states. Reads access values known to the state, but leave
the store as is. In the Turing-machine framework, only a bounded number of cells are available
for inspection in any one step, and each cell contains one of a given finite set of symbols. In
more general algorithmic frameworks, stored values may come from an infinite set, such as the
natural numbers. Accessed values may become part of the panel part of the state, as we will
see. Writes modify values; so, they change the store. Reads also serve the purpose of guiding
decisions as to how to proceed; the next action depends on what was read.

Considerations of what constitute universal atomic actions underlying generic algorithmic
computation led to Gurevich’s design of abstract state machines (ASMs). These serve as a
most generic model of sequential computation, able to precisely describe arbitrary classical (i.e.
deterministic, non-parallel, non-distributed, non-interactive) algorithms, whether effective or
not [24, 15]. The reading and writing of a tape of symbols in which a Turing machine engages
are generalized to accessing and storing values f (a1,… , an) for a set Σ of operations f . We
build upon this insight.

The salient aspects of stores, as in the ASM framework [24], are captured by (first-order)
logical structures. Let Σ be the vocabulary of stores—including all the symbols in reads, writes,
and choices—and let  be the domain (universe) of values contained in locations of the store
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and panel. The stores of states interpret each of the symbols f in Σ as an operation JfK over
 . These operations may have fixed or variable arity. The value JfK(ā) = Jf (ā)K ∈  of f ∈ Σ

at ā ∈  ∗ (U∗ are the sequences of elements taken from  ), as interpreted by a state � ∈  ,
resides at location f (ā). Let the set of all locations be  = {f (ā) | f ∈ Σ, ā ∈  ∗}, where the
length of the sequence of elements ā of  matches the arity of the operation symbol f ∈ Σ, if
its arity is fixed. Nullary operations are scalars with arity 0, so we traditionally write c rather
than c(). When an operation f , such as addition, is of variable arity, we may treat it as a
family of operations, f0, f1, f2,… , one per possible arity. With the above in mind, stores may
be viewed as specific assignments of values to locations:  = U. We also include data channels
in the set  of locations

Reads are labeled by a function symbol f ∈ Σ, take values ā for the coördinates of the
location being explored, and produce a value b = Jf (ā)K. We can represent the read vertex
fully by indicating the action and its outcome as follows: f (ā)⊢b. Writes are also labeled by
a function symbol g ∈ Σ, take values ā for the coördinates of the location being explored, plus
a value b ∈  to be assigned, and change the value of f at ā in the current state to be b,
whenceforth Jf (ā)K = b. Thus, writes can be to arbitrary locations, not just to scalars. We
represent the write vertex by f (ā) ↦ b. Choices are labeled by a scalar symbol c and take one
value, which is compared to the value of c.

To summarize, the set of all possible actions on stores, reads and writes, respectively, are

 =
{
f (ā)⊢b | f ∈ Σ, ā ∈  ∗, b ∈ 

}
∪
{
f (ā) ↦ b | f ∈ Σ, ā ∈  ∗, b ∈ 

}

We assume a set D ⊆ U of designated domain elements, such as a truth value T (standing for
“true”), and dedicated constant symbols in the vocabulary for each. We will also insist that the
values assigned to those dedicated symbols are immutable (never changed by an assignment).
These are needed for conditionals.

5 Flow of Values

The arrows of control graphs only indicate the order in which actions are performed. But each
of the values used by those reads and writes must come from somewhere—not pulled magically
out of a hat. We can just say that any value that is consumed by a read or a write must of
necessity have been produced earlier—in the control order—by a read.

At this point, we have not yet insisted that the connection be explicit between the read that
produces a value and the action that uses it. The complete description of a process should also
indicate where each consumed value was produced, since any particular value could have been
read from many different locations. For this purpose, we will be employing “channels”. These
may be named or numbered for convenience, in which case an algorithm can only use a finite
vocabulary to refer to them.

To cope with the dataflow aspect of computation, we need to add another layer of edges to
the graph, drawn from the producer of a value to each of its uses. If event � produces a value
and a subsequent event � uses it, then we draw a (dashed) blue edge � → �. These edges form
a dag, as they must be acyclic. We will refer to these data-edges as channels ; they represent
conduits for the transmission of produced values for subsequent use. They may correspond to
messages passed from one process to another, or to some other mechanism of data transfer. So,
they serve as a form of short-term memory. The number of channels coming in to a read action
matches the operation’s arity—if it has one—and determines the location that is looked up in
the operation’s table of values (its graph). A write action has one more channel, for the newly
assigned value.
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Figure 2: From left to right: (a) Graph with (dotted blue) channels and their values; (b)
behavior graph with both (solid red) control and (dotted blue) data edges; (c) variant with
simultaneous reads encircled; (d) simplified version, with dual-purpose dashed blue edges.

Channels are necessary for indicating how values move about during a computation. They
cannot be supplanted by writes and reads. Whereas programming languages involve terms,
graphical programs connect the function symbols in a term with each other to indicate how
subterms contribute values to larger terms.

We will draw round read vertices, square writes, and rhombic choices, each labeled with the
relevant operation. For example, here is a read of the value of the (unary) operation f (which
requires one argument), a write to some (binary) operation g (which requires two arguments
plus a new value for the location), and a choice point that depends on an incoming value being
(that of nullary operation) c:

f g c

$

$

$

$

$

$

Here, the (blue) dollar signs signify incoming operands and the green one, an outgoing value.
Reads f (ā) with result b have incoming channels for each of the components of ā and optional

outgoing channels carrying b. Scalar (zeroary) reads have no inputs. Writes f (ā) ∶= b have
incoming channels for the ā and also for b, but no outgoing channels. Incoming channels to
reads and writes are fixed in number and ordered. Outgoing channels can be manifold and are
not ordered (as we are dealing, for now, with the single-output case); the same output value
goes down all the output channels.

In Fig. 2(a), one can see (dotted blue) channels showing the flow of data from vertex to
vertex. The result of the square-root is produced once but used twice, once by its direct
successor and again by its grandchild, the division. The outcome of the test is transmitted to
the choice node but goes no further. (When the test is for truth, T , we omit the designated
constant.) The division awaits the choice. The channel label is the value at its two ends, which
must agree for the edge to be sensible (see Section 6). Since the order of operands matters (as
in division here), channel edges must connect to specific ports of vertices. We should think of
each vertex v ∈ V as being a finite set of indexed ports vi to which channels are connected.
Accordingly, an edge e in the data graph can be represented as (uj ,l, vi), where uj is a port of
vertex u, vi is a port of v, and l ∈  is the value of the channel. Both u and v are also vertices
of the control graph. (See, for example, [2] for graphs with ports.) The second subfigure has
control edges included, but omits channel values.

Significantly, the value sent along a channel might no longer exist in stored memory by time
it is used. On the other hand, one cannot consume a value before it is produced. So there must
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⋮

Figure 3: Gates: (a) control probe, (b) bypass probe, and (c) shuttle valve.

be a (red) control path (consisting of one or more edges) wherever there is a (blue) channel.
Therefore, it will be frugal to combine data and control and omit the control edge when both
are present. Henceforth, we use dashed blue for double-duty control-cum-data edges and solid
red for control-only edges. Dotted blue will remain data sans control. So instead of the full
diagram of Fig. 2(b), we can use the simpler one on the right. The middle graph shows how we
handle simultaneous operations.

The behavior graph for an individual computation is the combination of control edges from
the control graph and the labeled data edges of the dataflow graph. It describes what happens
and why: on which prior actions does a particular action depend; whence does an action obtain
the values it requires. The vertices are those of the control graph, which is a superset of those
in the data graph, but with ports as in the data graph. In other words, G = (V ′

c
, Ec ∪Ed ), where

G is the behavior graph, (Vc, Ec) is the control multigraph, (Vd , Ed) is the labeled multigraph of
the data, Vd ⊆ Vc (ignoring ports), and V ′

c
is Vc enhanced with the ports of Vd . We point out

that the cuts that defined stages (in Section 3) are also directed cuts of these enhanced graphs,
since data edges always respect the control order.

A metaphor: The red, control arrows are like electric wiring; they are needed to power the
actions. We will sometimes call them wires and use on/off or live/dead to refer to the two
possible states of wire. The blue, data arrows are like plumbing; they supply the necessary
resources. We call them “channels”. Showing both types of arrows (long red controls; short
blue channels), the central three action vertices look like this:

f g c

⏐⏐
↓↓

↓
⏐⏐
↓

⏐⏐
↓

⏐⏐
↓

↓ ↓

←

⏐⏐
↓

⏐⏐
↓

→ ⟶

An action can be taken only after control reaches the incoming red arrow. This can be long
after the input values are ready on the channels.

It is advantageous to add the possibility of a junction action ∙ that is just a “no-op”; it does
nothing more than pass control to all outgoing edges after receiving control from all incoming
edges. It serves as a “handshake”: before proceeding, all the incoming processes must complete.
In addition, we need to consider that algorithms make nondeterministic choices, which leave
their mark on individual computations. Accordingly, we incorporate circles ◦ in computation
graphs to indicate the points at which such choices occurred. As it turns out, it is crucial to
also have choices ⧫ that depend on whether a control line-is active (has already received power
from its predecessors) or inactive (has not). We will call this a probe; see Fig. 3(a), with its
thick green test line.

6 Constraints on Computations

The following assumptions are needed for computation graphs to be sensible:
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A. Ordered reads of the same location produce the same value, unless a write intervenes.

B. After a write, all reads of that location result in the value that was written, unless
another write intervenes.

C. The value of a location does not change unless there is a write to that location.

D. The values of designated symbols are constant.

E. Nonsequential reads of the same location retrieve the same value.

F. Nonsequential writes to the same location store the same value.

G. The value retrieved by a read is the same as the value stored by a nonsequential write.

H. A channel has matching values at its two ends.

I. Every input value of a read or a write must be an output value of some preceding read.

J. All outgoing channels of an action carry the same value.

K. The two ends of each channel are ordered by control.

L. All cuts cross a bounded number of control lines and channels.

M. There are only finitely many function symbols appearing in an algorithm.

N. Actions have bounded indegree.

We are insisting that if a read and write for the same location are nonsequential, the value
retrieved by the read is the same as the value stored by the write. This demand is somewhat
weaker than what is usually assumed, namely that reads and writes to the same location are
always sequential, since only contradictory simultaneous behavior is precluded by the postu-
late: “Writing a word into or nondestructively reading a word from this store are undividable
operations; i.e., when two or more computers try to communicate (either for reading or for
writing) simultaneously with the same common location, these communications will take place
one after the other, but in an unknown order” [19].

Given an initial state and a graphical algorithm, one can extract all possible computation
graphs; see the example in the appendix.

Thanks to the noninterference imposed by the above conditions and by virtue of Lemma 3.1,
we can assert the following:

Theorem 6.1. For a given pre-state and finite computation meeting the above conditions, the
identical post-state is obtained regardless of the choices of next stage taken along the way.

7 Compositions

For composition and decomposition, we make use of the drag model of graph rewriting [17, 18],
in which directed graphs also have partial, dangling edges coming in and out of vertices. A
sprout −−∙ (a broken edge ending in a filled-in circle) can be connected to a root ◦→ (an arrow
starting with an open circle). There are two roots at the top of the example in Fig. 8 and one
sprout at the bottom. Data and control flow from the roots towards the sprouts (the reverse
of the convention in [17]).

Scenarios can be composed to form larger scenarios. To compose two scenarios, we re-
quire a switchboard, which is a mapping that specifies which sprouts connect with which roots.
For our purposes, roots and sprouts have identifiers (such as the edge they derive from when
decomposed), so the switchboard matches them accordingly.

Definition 7.1.

a. A cut or stage of a behavioral graph or subgraph is its decomposition into two drags.
Each edge crossing the cut is bisected into a sprout and a root.
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b. A slice of a behavioral graph is the drag obtained by applying two consecutive cuts, one
stage just “above” and a next stage just “below”. In other words, it is the subdrag
between two cuts that are related by one step of the stage relation ⟿.

c. A minimal slice is a slice that cannot be sliced further.

d. The maximal slice is a slice that is not a slice of a larger slice.

e. A scenario is the composition of (countably many) slices.

f. A step in a scenario is the transition from some stage to one of its possible next stages.

g. A move is a finite sequence of (one or more) steps, such as in one iteration of a loop.

Simultaneous events must all be in the same slice; sequential events may never be. Any
nonempty subset of the components of a maximal slice can be executed next.

Given an initial state and a finite sequence of slices of a computation, it is straightforward
to compute the final post-state.

Moves (single slices or more) of a scenario can have both roots and sprouts. And a switch-
board can connect sprouts to roots of more than one scenario. Thus, in general, composition
may create new cycles in the graph. A sequential composition is one in which the switchboard
connects in one direction only, as in our example. A special case is when no connections are
made and the two scenarios lie side by side, all events in one being incomparable control-wise
to all events in the other.

This all gives us three modes of composition: (1) If S and T are scenarios, then S ; T is
their sequential composition, with sprouts of S hooking up with roots of T . (2) When there
are no connections, and the events of S are independent of those in T , we write S ‖ T , which
is identical to T ‖ S. (3) When S and T are each strongly-connected, meaning that the events
in each are all simultaneous, then S & T (= T & S) is their strongly-connected composition,
with some sprout of S connected to any root of T and vice-versa, making all the events in both
simultaneous. Which sprout and which root matters not.

8 Graphical Programming

Until now, we have concentrated on the graphical description of individual computations. In
reality, each computation is guided by some process that determines how it is to proceed
depending on the particulars of the state and the vagaries of choices. Not every computational
process, however, is algorithmic in the sense that the process is amenable to a finite and complete
description.

The notion that algorithmic computations can be described as one big loop is one of the
“folk theorems” of computer science, harking back to Kleene’s normal form for recursive pro-
grams [30]. It is also central to the ASM formalism [24]. And it serves us here.

Given the description of an algorithm or a non-algorithmic procedure plus a starting state,
we would want to be able to construct the corresponding computation. So, how shall we
express algorithms and procedures? What better way than graphs that reflect all possible
computations?

Processes may be described by graphs, which may be finite or infinite. Unlike computation
graphs, alternative computation paths are included in process graphs, with the addition of ver-
tices for conditional choice, as well as for the various forms of nondeterministic choice. Whereas
an algorithm describes the choices to be made, behavioral graphs describe the consequences of
each of those choices.

The program schemata we have seen so far are choiceless, and loopless, corresponding to
straightline programs. More general programs or procedures involve choices. Choice may be
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Figure 4: Choice constructs: (a) conditional; (b) angelic; (c) demonic; (d) angelic with bypass.

deterministic—involving tests and leading to only one possibility in any given state. Choice
may also be nondeterministic, in which case there may be more than one possible outcome, as
we will see.

Consider the case where a program segment is prefaced by a conditional. Then we must
first of all include the graph of the evaluation of the conditional. Depending on the resultant
value, the execution of a particular branch is included in the resultant computation. In any
case, control passes from the conditional to the chosen branch.

The algorithm itself needs to include all alternatives, only one of which is taken each time
that choice point is encountered during a computation. We are using a diamond for conditional
choice. There should be control exits for each designated value, plus one for all other domain
values.

The standard conditional programming construct, if e then P else Q fi, for Boolean-valued
expression e, translates into the diagram in Fig. 4(a). The dotted rectangles represent subgraphs
for algorithm segments, P and Q, only one of which is performed.

The conditional action described above decides which outgoing wire gets control based on
the value of an incoming channel. In addition, we need to be able to probe a wire to see if
it is hot (live) or cold (not live) and decide how to proceed accordingly. We use a simple red
diamond for this probe vertex, shown in Fig. 3(a). After control arrives on top, the (green-
colored) control wire coming in from the left is probed. If the probe is active, then control
continues below; if it is off, then control passes to the right. Thus, probes act like binary-valued
channels. However, control need not have reached the probe for an off value to be seen. It
bears stressing that once probed, the outcome is fixed and will not change even if the probed
wire changes status. So, only when the algorithm is ready to perform the test should power be
provided on the upper incoming wire.

Since it is not a control wire that is used for sequencing, we color the probe green. In
computations, we use dashed arrows for the wire when it is hot and dotted when it is cold. It
is a mechanism that allows for lookahead to check if control already reached some point via
another route. Indeed, a probe can create a loop. In a computation graph, we can use a dotted
arrow to indicate that it was not live when probed.

We need logical connectives to obtain all manner of dependencies in computations. We have
already seen the black-dot junction, with its all-in, all-out behavior. When it has only one exit,
we call it a conjunction, since it acts like logical-and. For disjunction, we use a simple circle
◦, as at the bottom of each of the constructs in Fig. 4. If any of its incoming control edges
is active, then control passes to the outgoing edge. Note that this is unlike anything we have
seen till now, since the action does not require all incoming control lines to be active. There
is an element of choice here: Control may choose to proceed through this vertex at any time
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Figure 5: Graphical Python program with a conditional value and shuttle valve.

as long as there is at least one live incoming wire. Bear in mind, that if—at a subsequent
stage—control comes again to the disjunction along some other incoming wire, the disjunction
is not taken again.

Negation is a simple instance of the probe with only the false exit. If the incoming probe
is hot, the outgoing wire is cold; and vice versa. The probe is made after control reaches the
vertex.

A conditional test chooses how control proceeds based on the value in some channel. The
dual notion is to choose a value based on a probe of control. Consider the following assignment
with a conditional value—in Python syntax: z = t if z= (t ∶= y) else t + t. We need a way to
model the conditional choice of the value (y or y + y) to assign to z. We call this choice node
a (shuttle) valve, depicted in Fig. 3(c). After (red) control arrives on top, the (green) control
line on the left is probed. If it is on, then the value in the left incoming (blue dotted) channel
is passed to the outgoing channel on the bottom; if off, then the value in the (blue dotted)
right channel is passed on. In either event, control is passed on along with the chosen value.
Of course, the relevant value must be available; the other value need not. With this type of
action, the graph corresponding to the above Python program with its conditional value is as
shown in Fig. 5. Only after the conditional test and the addition, if needed, is the valve used
to channel the chosen value to the assignment.

Loops in a process may be indicated by a (thick dotted) dangling sprout at the bottom of
program graph that connects back to a root at the top to form the loop. See examples in the
appendix.

9 Nondeterministic Choices

We are particularly interested in modeling multiway nondeterministic choice, where there are
more than one possible next state. Unlike probabilistic choice, which we ignore, nondetermin-
istic choice is capricious with no assumed distribution for the alternatives.

Traditionally, two flavors of nondeterminism are considered: demonic and angelic. Choices
can be made both between paths of action or between flows of values. In its rawest form,
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“angelic” means that a successful choice is made if there is one, while “demonic” means (for
us) that a failing choice, when there is one, is always a viable (though not required) option.

In demonic choice (this is the mild sense of “don’t know”), one branch or the other is
chosen for execution, a priori, oblivious of the possible outcomes of either choice. Only the
chosen branch contributes to the actual behavioral graph. If any branch can go on forever, then
the composite computation might, too. See Fig. 4(c).

In the alternate, angelic (don’t care, erratic) version of behavior under choice, the “right”
choice—if any—is always taken somehow. To implement such a choice, one can try alternatives
until at least one completes. In that case, the control graph includes one complete computa-
tion and other (perhaps partial) ones—in parallel. If any one terminates, then the combined
computation does, too. Control, in this case, passes from the successful alternative to the con-
tinuation of the computation. This kind of choice requires an infrastructure for communication
if we do not want the computation to continue down useless, and potentially infinite, paths. If
any interim results do not agree along the alternate paths, then provision must also be made
for the chosen path’s effects to win out.

Both varieties, demonic and angelic, of choice can be expressed in our framework. In the
demonic case, one outgoing branch is chosen for the computation, regardless of what may
happen as a consequence. In the angelic case, it may be that some branches are sterile, or it
may be that different branches yield different outcomes. We model this by means of multiple
incoming edges and/or channels. If control arrives via at least one, then control will pass
onward. If multiple values arrive via channels, then exactly one is chosen to be passed on. See
Fig. 4. (If part of the computation languishes, the exact form of the behavioral graph may
depend on the vagaries of the execution mechanism, an eventuality we ignore here.)

So one should assume the worst when programming demonically. If some path leads to
failure, that could be the one chosen, in which case the computation as a whole would fail. In
any event, the computation needs only reflect the fact that an arbitrary choice was made. This
is just a switch with a single root.

Angelic choice is something very different. The underlying idea is that a successful path
is always taken, as long as any one of the choices leads to success. It is in this sense, for
example, that a nondeterministic Turing machine accepts an input if any sequence of choices
ends in acceptance. For angelic nondeterminism to work as advertised, all branches ought to be
actively pursued (unless curtailed explicitly by the success or commitment of another branch;
see below). This may be reflected simply as in Fig. 4(b). Both P and Q are started, and when
either concludes, control passes to the exit on bottom. Nothing here dictates the speed in which
the computations of the two alternatives proceed. However, there must not be any potential
conflicts between P and Q, or else synchronization between them needs to be added.

The problem with plain angelic choice is that it is not very angelic: unnecessary work
is performed along alternate paths. In reality, traversing all paths simultaneously is often
uncalled for. In Fig. 4(b), both P and Q will proceed uninterrupted until completion, even
though once one completes, the other serves no purpose and could have been abandoned.
Avoiding duplication can be achieved by means of a bypassing probe, as illustrated in Fig. 4(d).
More generally, multiple success signals (control reaching the bottom) may be collected as in
Fig. 3(b). If there are any, then computation along the branch with the probe is interrupted
and instead it terminates (with no downward exit from the probe). Otherwise, computation
proceeds downward.

One could, instead, entertain the idea of trying alternatives in some order, one by one, and
backtracking to the next alternative only upon failure. This only works if no path leads to
an infinite computation that does not succeed, while another succeeds, since then this “depth-
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first” approach can miss its objective. Assuming this is not the case, some management is
still required. Should some store-changing actions along the failing or unnecessary path be
undesirable, then the program must undo them.

In angelic contexts, explicit failure means that other alternatives—if any—are to be explored.
Failure, however, is not a primitive, since it requires communication. Nonetheless, we want to
ensure that we can implement failure as well as explicit success (or commitment). Signalling
failure should cause another alternative to be pursued. It should also terminate the failing
path. This can be achieved easily by a disjunction of failure points, as shown above. If failure is
detected at any point in the path of one alternative, then the next alternative obtains control.
Success, on the other hand, means that no other alternative needs not be pursued.

In this way, if a program is trying several alternatives at the same time—as in an angelic
setting—and at some point one alternative succeeds, then the rest of that computation may pro-
ceed, while the other contingent actions should be blocked. Moreover, at that point, unexecuted
preparatory steps of the disregarded alternatives can also be abandoned.

Choice can be combined with other atomic actions to provide various nondeterministic
constructs that are of use. Consider our erstwhile incompatible assignments z ∶= 1 ‖ z ∶=

−1 from the Introduction. We have disallowed any possibility of parallel components with
conflicting writes (Section 6). So, they cannot be performed together; one must precede the
other. Hardware normally precludes both assignments executing simultaneously. Simultaneous
accesses to a single location are eschewed; an order on competing reads and writes involving
the same memory location will be imposed at the hardware level. All the same, the behavioral
graph needs to reflect the intended semantics, by forcing an ordering of the writes one after the
other. But which of the two possible orders need not be specified. This is depicted in Fig. 6(a).

Another type of choice is provided by a gate that lets only one control line through even if
both are active. When only one is active when probed, the corresponding action is chosen, and
the other is abandoned. This is shown in Fig. 6(b).

All said and done, given a graphical algorithm and an initial state, it is straightforward to
derive the actual computation and the associated sequence of state changes.

10 Guarded Commands Revisited

Specifying the intent of Dijkstra’s guarded commands [20] requires a mix of conditional, se-
quential, parallel, and demonic composition.

An implementation of the guarded conditional if r → y ∶= 0 ⫾ s → y ∶= 1 fi. might test
r before s, or vice-versa, or both simultaneously. The latter case (common in the literature),
namely, that first all the conditions are evaluated and then an oblivious choice is made among
the enabled branches, translates into the procedure on the left of Fig. 7. No choice is needed
when only one branch is enabled; a conjunction suffices. If neither r nor s is true, then only the
control lines in the middle subfigure are taken. If both are true, then a choice must be made,
as in the computation on the right.

In general, the number of different orders in which the guards may be examined is counted
by the exponentially-growing Fubini numbers [38, #670]. It is infeasible to program each
alternative separately, and choose among them. The nondeterministic paradigm proposed here
obviates that issue.

If one wants more realistically to allow for the possibility that only one of the tests, r and
s, needs to be executed when it is found to succeed, then probes can be brought into play, as
shown earlier in Fig. 1. Once one of them succeeds, the other is blocked—provided it has not
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Figure 7: Guarded conditional. (a) Program; (b) computation when both guards are false; (c)
when both are true and the right path is taken.

already been taken. When both are tested and found true, then a nondeterministic choice is
made as to how to continue.

Consider now a three-case conditional if p → s ⫾ q → t ⫾ r → u fi. Suppose p and q are
true but r diverges. With a breadth-first, angelic policy, exactly one of s and t is executed, and
control passes on to the next statement. With a depth-first, non-angelic policy, an additional
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possibility is that neither is executed, and the whole statement diverges on account of r. In
either case, failure of the chosen branch, be it s or t, would mean failure of the whole conditional.

Similar interpretations can be given to Dijkstra’s guarded do loop, repeating its body until
no guard is found to be true. Dijkstra eschewed fairness; see [3, §§4,8]. A limited degree of
fairness can be achieved with an appropriate implementation [23].

11 Retrospective

We have built upon an enormous body of prior research and design. Control edges and data
edges have been around since the advent of flowcharts (“process charts”) circa 1921 by Lillian
and Frank Gilbreth [21]. This led to the ASME standard, with operation and flow process
charts, in 1947 [4]. Control and data edges are also prominent in the Petri net formalism
for asynchronous computation, first conceived by Petri in 1939 [35, Foreword]. Data edges
also made appearances in Karp and Miller’s work in 1966 [29], in Sutherland’s graphical data-
flow programming system of 1966 [39], and subsequently with Dennis’s Data Flow Graphs [13]
and other enterprises. Combinations of control and value edges are to be found in various
specification languages, including the Structured Analysis and Design Technique (SADT) in
1969 [37], the operational semantics of the Vienna Design Language (VDL) around the same
time (see [31]), the Programmer’s Apprentice project at MIT in the late 1970s [36], and Plotkin’s
Structural Operational Semantics from 1981 [33]. Vertices in these formalisms represent com-
plex operations in general. The literature on distributed systems studies control graphs and the
states represented by cuts in depth; for one discussion in the 1980s, see [32]. Partial orderings
were suggested by Pratt [34].

We gained much insight into the fundamentals of algorithmic computation from abstract
state machines (ASMs), conceived by Yuri Gurevich in 1993 [24]. In their most basic mani-
festation, ASMs are sets of conditional parallel assignments, expressing a single step of an al-
gorithm. Gurevich [25] showed that any sequential (deterministic, non-interactive) algorithm,
be it effective or conceptual, can be described step-by-step and state-by-state by an ASM. The
issue of axiomatizing and modeling, in that framework, contingent memory accesses and truly
undefined instances of operations, such as division by zero, which—whenever accessed—never
respond (corresponding perhaps to nonterminating function calls), was explored and formalized
in [6, 5]. That work also suggested an intra-step partial ordering of memory accesses, which
helped inspire the control quasi-ordering here. ASMs with bounded nondeterminism have been
studied [26]; asynchronous ASMs were investigated in [10]. The fundamentals of interaction
were also studied in [7, 8, 9] within that framework.

12 Conclusion

The generic framework presented here allows for precise descriptions of computations and of
algorithms. The proposed graphical language makes it easy to express arbitrary sharing of
data and non-structured control flows. Its low-level operations and control primitives make
it suitable for specifying the intended semantics of programming constructs, rather than for
programming in the large [14].
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A Example: Greatest Common Divisor

Imagine a state that stores two integer-valued variables, x and y, and also incorporates the
wherewithal to perform standard operations on the integers. Fig. 8 is the graphical description
of a program that repeats the following instructions:

• If x ≥ y > 0, then subtract y from x.

• If x ≤ y, then swap the values of x and y.

• If both conditions hold (i.e. x = y > 0), then do either action (but not both).

• If neither condition holds (x > y = 0), then halt.

This program sometimes terminates with the greatest common divisor (g.c.d.) of the initial
values of x and y as the current value of x (when y = 0). Or it may (but need not) loop forever
with x = y, in which case their common value is the g.c.d.

The graphical programminimizes memory access: The memory location holding 0 is accessed
only once during the whole computation; x and y, once per iteration. When both guards hold,
and x = y > 0, an arbitrary choice is made (at the circular vertex in the middle) whether to
subtract y from x or to swap the two.

Suppose, for example, that x = 3 and y = 6. Starting at the top, the values of 0, x, and
y are retrieved from the store. The comparisons 6 > 0, 3 ≥ 6, and 3 ≤ 6, reading from left
to right, yield T , F , and T , respectively. Taking the appropriate exits from the tests below
the comparisons, gives the situation displayed in Fig. 9(right). There are no directed paths
between those comparisons or between those tests, so the relative order in which they are made
is immaterial. Control reaches the two assignment boxes near the bottom, and y ∶= 3 and
x ∶= 6, again with no order imposed. Vertices in the program that are not reached in the
computation have been erased.

In the above version, no attempt is made to avoid testing a guard even if another branch
has been committed to. Adding tests that probe control wires to determine whether the need
for a test has been obviated, results in a graph algorithm, as shown in Fig. 10, with lots of
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Figure 8: A graphical scheme representing a version of Euclid’s greatest common divisor algo-
rithm by repeated subtraction that need not halt. Control lines are solid red; data channels
with control are dashed blue; black dots are conjunctions; white dots are disjunctions; blue
squares are assignments; yellow circles are memory accesses; and pink diamonds are conditional
branches (testing for truth, T ). The thick dotted root and sprout indicate the repeated loop.

extra wiring in the middle. The solid red rhombi near the top are conditionals that transfer
control depending on whether the incoming (green) thick line, called a “probe”, is live (hot)
or not (cold). When a branch is found to be unnecessary, either because another branch has
succeeded or because one conjunct has already been found false, a choice is made whether to
go ahead regardless. In the sample iteration in Fig. 11, for x = 6 and y = 3, the fact that the
tests y > 0 and x ≥ y are tested first and hold true allows the program to skip testing x ≤ y

altogether. The store gets updated with x ∶= 6 − 3.
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Figure 9: The first (left) and second (right) iterations of the algorithm in Fig. 8, with x = 3 and
y = 6 at the outset. The first swaps the values so that x = 6 and y = 3; the second subtracts y
from x, leaving x = y = 3.
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Figure 10: A spaghetti-like version of
greatest common divisor that has the op-
tion of not performing all comparisons each
iteration. If the left (center) comparison is
performed first and fails, then the middle
(left) path has the choice whether to test
anyway. If the rightmost is performed and
succeeds, the other two have the option of
skipping. Probes of control lines are thick
green.
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Figure 11: The second iteration, with
x = 6 and y = 3 at the beginning and
x = y = 3 at the end. Red arrows are con-
trol lines that were taken. Blue channels
show data flow. Hot probes are dashed
green; cold ones are dotted.
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