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Abstract

The purpose of uncertainty propagation is the quantification of input data uncertainties on
the output results. This involves understanding (i) how uncertainty is represented in the
model structure and the input data ? (ii) how are uncertainties propagated in the model ?
(iii) Which uncertainties affect mostly the model outputs ? The propagation analysis be-
gins with the identification and characterization of the uncertainties of the input data. The
aim of this work is to estimate the uncertainties pertaining the parameters of a 2D mor-
phodynamic model so as to characterize the probability distribution P

[
h(x, y, t) ≤ hcritical

]
of the water depth h(x, y, t) over the Gironde Estuary, where hcritical is a critical threshold
of the water depth h(x, y, t) that allows navigation. To handle this purpose, we propose
an original approach that includes sediment parameters and bathymetry data, through the
use of probabilistic methods, imprecise probability and non-linear regression. The pro-
posed strategy offers flexibility to handle the variability of these data are also suitable for
data-driven applications since the uncertainty quantification can also be conducted from a
small set of parameters of the 2D morphodynamic model.

1 Introduction

This present work is part of a mulltidisciplinary project aiming at improving the capacity of
the navigation channel on the Gironde estuary. The Port of Bordeaux receive ships and has to
cope with the natural estuarian constraints, such as sedimention (clay and sand). In order to
satisfy the demand of the market for increasing ships size, while ensuring navigation safety, the
water-depth evolution h(x, y, t) in the estuary needs to be predicted with a certain accuracy.

In environmental sciences, experts are regularly confronted with inaccurate or incomplete
knowledge of the data needed to model a physical phenomenon. Numerical predictions are
usually tainted with uncertainties. The propagation of uncertainties on the input data through
simulations might affect strongly the simulation results, and thus the estimation of h(x, y, t). It
is necessary to quantify the contributions of input uncertainties to the morphodynamic model
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results to appraise the sensitivity of the model to these parameters. Uncertainty analysis can
help finding the input parameters that cause the largest output uncertainty, and can identify the
most uncertain locations and the most uncertain time periods in hydro-mophodynamic model
predictions.

The origin of uncertainties is diverse and may be related (i) to the measurement errors
carried out to calibrate the numerical model (ii) limited available measurements, which make it
difficult, for example, to estimate spatial heterogeneity in sediment properties (iii) to governing
equation’s assumption. Thus, it may be that the only information on the value of a parameter θ
involved in a model is an interval between the maximum and minimum values [min,max] of the
θ. The value of this parameter is generally imprecise. Such information does not express random
variability but inaccuracy. The parameter can be a random variable described by a single
probability distribution (Gaussian, Log-Gaussian, etc) but generally the available measurements
do not allow defining this distribution. The quality and quantity of available information
determine the type of uncertainty representation.

In the probabilistic framework, the parameters of a model can be represented in a coherent
way by a single probability distribution. For example, the sediment grain size d follows generally
a log-normal distribution and the uncertainty is propagated using the Monte Carlo method.
Nevertheless, the assumption about the nature of the probability distribution can lead to errors
if the available information is incomplete. The selection of the true probability distribution is
thus limited by the incomplete or inaccurate nature of the information. For an experimental
context, sufficient data can not be available for a single model. In this case, an approach is
used for a given variable where the mean and standard deviation are assumed. To represent
inaccurate and incomplete information, formal frameworks for the representation of information
have been developed: (i) the p-boxes: pair of high and low cumulative probabilities [2] (ii) the
theory of belief functions of Shafer [5] (iii) the theory of possibilities [1].

Probability and p-box theory are used in this work to represent the data uncertainty. These
theories are flexible in relation to the quantity and quality of available information. This
report is organized as follow. The most important parameters of the 2D morphodynamic
model under consideration and the uncertainties associated are described in Section 2. The
characterization of the probability density distributions of the sediment size d50 and d90 are
presented in Section 3. Section 4 is dedicated to the characterization of the probability density
distributions of the settling velocity Ws for cohesive sediment. Section 5 presents the method
used to handle the nugget effect due to measurement errors in the bathymetry to generate
multiple random sets of the bathymetry.

2 Model inputs

The uncertainty propagation analysis begins with the identification and characterization of
the uncertainties of the input data. The most important parameters to consider in a 2D
morphodynamic model are: (i) the grain size diameters d50, d90, and (ii) parameters associated
to the sediment transport, such as the settling velocity Ws, dimensionless critical shear stress
for particle motion Θc, critical shear velocity for clay deposition u∗c,clay, critical shear stress for
erosion τce and Krone-Partheniades erosion law constant M .

3 Grain size distribution analysis

Herein we present the methodology for estimating:
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- the evolution of the percentage of cohesive and non-cohesive sediments for each area of
the Gironde estuary from years 2000 to 2016. Cohesive properties appear for fine particle
(silts and clay), with a diameter less than 63µm, depending on the physico-chemical properties
of the fluid and salinity [7]. From the mean diameter and grain size distribution, two types
of bed material are considered: cohesive, for which d50 < 63µm and non-cohesive, for which
63µm < d50 < 2mm.

- the probability density distribution of d50 and d90 for each area of the Gironde estuary.

Our approach combines probability bound analysis to represent the uncertainty of the data
and an estimation by maximum likelihood of its pdf. This methodology was applied for the
four parts describing the Gironde estuary. The results obtained for the grain size analysis are
represented with (i) pie charts for the evolution of the percentage of cohesive and non-cohesive
sediments and (ii) graphs of the pdfs for the median size d50 and the d90. We present here the
results obtained for the fluvial part, as shown in Figures 1(a), 1(b) and 4. In order to analyze
the temporal variability of the proportions of cohesive and non-cohesive sediments through the
years, the data d of all sites for one area are gathered together for each year. Figure 1(a) shows
17 CDFs min and max of d for all the years 2000 to 2016 for the fluvial part of the estuary.
Since the sediment size Φ = log10(d) becomes imprecise, its distribution becomes an imprecise
CDF. In each area of the estuary, for every year, the data d are represented with a p-box that
are included themselves between a minimal and maximal CDF. The distance between these two
CDFs represents the uncertainty due to the imprecise variable Φ. For the fluvial part, one can
see that Φ = [−3,−0.6] with few outside values. For φ90, this distance becomes larger with
values comprised between 3 and 0. Therefore there is a large imprecision on the data d. Under
the assumption that Φ follows a Gaussian distribution Φ ∼ N

(
µΦ, σ

2
Φ

)
, one can write

p(Φ) =
1√

2πσ2
Φ

exp

−1

2

(
Φ− µΦ

σΦ

)2
 (1)

where the mean µΦ and the variance σ2
Φ are determined from all measurements used to defined

the distribution. µΦ and σ2
Φ are given as:

µΦ =
∑
i

pi
(
Φi + Φi+1

)
/2 σΦ =

√∑
i

((
Φi + Φi+1

)
/2− µΦ

)2
(2)

where pi is the weight percentage in each Φ interval and
(
Φi + Φi+1

)
/2 is the mid point of each

Φ interval. Since for one area and one year Φ is represented by a p-box, the distribution p(Φ)
is imprecise, and becomes a p-box:

Φ ∼ N
([
µΦ, µΦ

]
,
[
σ2

Φ, σ
2
Φ

])
(3)

where the support of the p-box is given by Φ ∈
[
Φ,Φ

]
since the range of the measured d is

[0, 2] mm. For ine area, and seventeen years, seventeen p-boxs Φ are available. Since one p-box

Φ is a parametric p-box, the next step find the one PDF in Φ ∈
[
Φ,Φ

]
, among all the probability

densities that the p-box prescribes, that is most likely to have produced the data. The maximum
likelihood method is used to find µΦ and σΦ characterizing the probability distribution that
bettter describes the p-box (3). Natural sediments in estuaries and coastal areas are usually
characterised by a mixture of sand, mud and organic matters. This heterogeneity can be
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modeled by a mixing of cohesive and non-cohesive sediments. A sand-mud mixture can be
therefore represented by two classes of bed material: the mud fraction and the sand fraction.

The non-cohesive sediment is represented by the median diameter d50. The settling velocity
Ws is assumed a function of the relative sediment density (s = 1.65) and grain diameter d.
For cohesive sediment (with grain diameter d ≤ 63µm), the settling velocity Ws is a function
of various parameters and needs to be specified through measurements. The percentage of
cohesive and non cohesive sediment in the area of the estuary are established by the quantiles
P[d ≥ 63µm] and P[d ≤ 63µm] of this probability distribution (Figure 4). Based on these results,
one can see that the 2D morphodynamic model used for the uncertainties propagation must
handled mixed sediment transport. Nevertheless, more insight should be conducted on these
results, especially the abrupt changes between the percentages of cohesive and non cohesive
sediments trough the years. For example, the fluvial part in 2011, the sediment is mainly
cohesive whereas it remains mostly non-cohesive in 2013. At the end of this procedure, a vector
of Φ50 quantile is estimated, representing d50 for all years for one area. Since the limited
available information does not allow estimating robustly too many parameters, the Bayesian
Information Criterion (BIC) is used to find the probability distribution of the vector that
contained d50 for all years, as shown in Figure 1(b) for the fluvial part. The d50 and the d90

distributions exhibit quite different shapes and supports. Contrary to the d50 pdf, the d90 pdf
tends to be more uniform. The pdf mode of the d50 is located on lower values of the sediment
size.

4 Sediment settling velocity analysis

Hereafter, we present the methodology estimating the regression model Y = f(X) when X and
Y are given and thus characterize the pdfs of X and Y . The purpose is to handle the variability
of the data through the sampling of pdfs of the coefficients of the model f . The proposed
strategy is based on two sets of experimental values of two sediment-related parameters X and
Y . A nonlinear regression model is used to relate the set of response variables Y = {yi}ni=1 to the
set of explanatory variables X = {xi}ni=1. The nonlinear regression model g that map variables
Y to variables X is assumed to take the form yi = g(xi, β)+σεi. The vector Y = (y1, y2, · · · , yn)
is a vector of iid (independent identically distributed) Gaussian random variables and indexed
by the m-dimensional parameter θ =

(
β, σ2

)
with θ ∈ Θ. Consequently, an estimate of the

mean response at the point of interest x0 is ŷ = g(x0, β̂) and the γ = 95% Wald confidence
interval on the mean response at the point x0 is ŷ± 1.96 · se(ŷ). Figure 2 shows the predictions
of the mean settling velocity for cohesive sediment with confidence intervals at 95% for the
nonlinear model described hereafter. A transition occurs concentrations larger than 3g · L−1.
This regime corresponds to the hindered regime for which we use a new piecewise continuous
model:

Ws =

{
a1C

b1 for C < 3g · L−1

a2C
b2 for C ≥ 3g · L−1

The distributions of the parameters ai, bi are given by ai ∼ N (âi, σ
2
âi

) et bi ∼ N (b̂i, σ
2
b̂i

), for

i = 1, 2.
This methdology was also applied to the critical Shield number Θc = f(D∗) of non-cohesive sed-
iment, where D∗ is the adimensional particle diameter given by D∗ =

(
d50/0.9

)((
s−1

)
g
)
ν−2/3

)
,

the critical shear stress for erosion τc,e = f(C) of cohesive sediment and the Krone-Partheniades
erosion law constant M = f(C), for cohesive sediment.
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(a)

(b)

Figure 1: 1(a) CDFs of the granulometry data d for the fluvial part for all years 2000 to 2016.
Red : upper CDFs, Blue : lower CDFs 1(b) Probability densities for the d50 and d90 for the
fluvial part of the Gironde estuary.

5 Bathymetry analysis

In spatial interpolation, the nugget effect can be attributed to measurement errors and/or
spatial sources of variation at distances smaller than the shortest sampling interval. The
bathymetry is then modelled applying Universal Kriging [3]. Kriging was originally introduced
as a spatial interpolation method in the earth sciences, and is also known as Gaussian Process
regression in machine learning. At every measurement points x, the Kriging simultaneously
provides an approximation of a partially observed function z, the kriging mean predictor µ(x),
and a measure of prediction uncertainty, the kriging variance σ2(x). The principle of Universal
Kriging is to see z(x, y) as one realizations of a random process Z(x), and to make optimal lin-
ear predictions of Z(x) given the observations values (noisy or not) at the measurement points
x. In the Universal Kriging framework, Z is generally assumed to be of the form:

Z(x) = µ(x) +G(x) =

n∑
i=1

βifi(x) +G(x) (4)

where fi are known basis functions and G is a centered Gaussian process. In order take account
of the nugget effect of measurement error in z, the bathymetry is first perturbed by Gaussian
noise, in each node of the mesh used for the simulation of the 2D hydrosedimentary model.
The kriging variance is used to construct confidence interval around the estimates. Under the
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Figure 2: Predictions of the mean settling velocity Ws with confidence intervals at 95% (cohesive
case), as a function of the sediment concentration C.

assumption that the error distribution at location x is Gaussian with zero mean and variance
σ2, the 95% confidence interval for Z(x) with kriging estimate z∗(x) is calculated as:

P[Z(x) ∈ z∗(x)− 1.96σ(x), z∗(x) + 1.96σ(x)] = 95% (5)

which gives upper and lower bounds for a 95% confidence interval to construct confidence
envelope maps. They represent the kriging model estimation of the 95% range of potential
values for any location. A set of nmap maps of the bathymetry spatial distribution is generated
by sampling a random field Z∗(x) with a truncated Gaussian distribution of support [z∗(x)−
1.96σ(x), z∗(x) + 1.96σ(x)]:

Z∗(x) ∼ TruncatedGaussian
(
z∗, σ(x), [z∗(x)− 1.96σ(x), z∗(x) + 1.96σ(x)]

)
(6)

This overall procedure is repeated with n different levels of noise to generate bathymetry n ×
nmap maps of the bathymetry with the Universal Kriging. Figure 3(a) shows the original
bathymetry of the Gironde estuary and Figure 3(b) shows a random field of the bathymetry
generated from our method. These maps will jointly used as inputs with the other uncertain
parameters in the Monte-Carlo simulations of the 2D hydrosedimentary model to estimate the
uncertainties that pertained the water depth h(x, y, t).

6 Conclusion

A new methodologie processing sediment data, hydrosedimentary parameters and bathymetry
data, through the use of probabilistic method, imprecise probability and non-linear regression,
was presented. The main findings of our work are: (i) the highlight of the main parameters of
the 2D morphodynamic models : mainly granulometry parameters (such as the sediment size
d50, d90 and parameters related to the cohesive properties of the sediment), (ii) the evolution
of the percentage of cohesive and non-cohesive sediments for each area of the Gironde estuary
through the years 2000 to 2016, (iii) characterization of the probability density distribution of
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(a) (b)

Figure 3: 3(a) Original bathymetry of the Gironde estuary. 3(b) Random field Z∗(x) of the
bathymetry generated from our method.

d50 and d90 for different areas of the Gironde estuary, (iv) the 2D hydrosedimentary model used
for uncertainties propagation must handled mixed sediment transport (v) the characterization
of the probability density distributions of the critical Shields number Θc, the settling velocity
Ws for cohesive and non-cohesive sediments, the critical shear stress for erosion τce and the
Krone-Partheniades erosion law constant M for cohesive sediment, (vi) a new model for the
settlingWs for cohesive sediment, (vii) the generation of multiple sets of the bathymetry z of the
estuary that handle the nugget effect due to measurements errors, (viii) numerical codes using
OpenTurns uncertainty library [4] to process the data in Sections 2,3,4,5. Theses strategies
offer flexibility to handle the variability of these experimental data are also suitable for data-
driven applications since the uncertainty quantification can also be conducted from a small set
of the most important parameters of the 2D morphodynamic model under consideration. They
also allow to generate random sample of inputs, using their estimated probability distributions.
In order to quantify the impact of the inputs uncertainties on the estimation of the water-
depth h(x, y, t), the Monte Carlo method will be used to propagate these samples in a 2D
morphodynamic model [6].
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Figure 4: Percentage of cohesive � and non-cohesive sediment � in the fluvial part of the
Gironde estuary for the years 2000 to 2016.
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