
Various Techniques used to Improve the Performance
of Proxy Caching

Jitendra Singh Kushwah#1
Department of Computer Science & Engineering

ITM Group of Institutions
Gwalior, India

jsk2474@gmail.com

Dr. Sitendra Tamrakar#2
Department of Computer Science & Engineering

NMREC
Hyderabad, India

drsitendra@gmail.com

Abstract—Proxy caching is utilized to increase access of user to
general web content. Multiple system utilizes multiple cache for
well performance. Cache of Multi-level usually works via
testing the minimum lead cache. Uncertainty you miss a minor
cache than the next vast level cache. This paper will study L1
cache such as the primary memory with L2 cache like the
secondary form of memory of the proxy server. LRU takes into
account the replacement of page algorithm. Previously, LRU
technique used to eliminate the cold caching pollution. But it is
not much efficiently work so we overcome this problem. In this
paper, there we used three techniques such as LRU, AVL Tree
and Binary Search Tree. The performance has been done over
these techniques on the basis of access time. The result shows
in the form of tables and graphs that shows, AVL tree is best
among these techniques.

Keywords—Proxy Server, LRU, AVL tree, Binary Search Tree,
Access time.

I. INTRODUCTION
This period is an Internet period. As number of the users’

increases, each user can not be efficiently satisfied. So to
overcome the problem connected to the server and the
client between the proxy servers. The critical need for each
user is to have a quick response time. Caching in the proxy
server for a quick response to the user. The cache will help
you to keep your network bandwidth correct and more
efficient for network traffic. Helps quickly access the
cache page handles on the proxy server. The rapid form of
growth of the multimedia streaming applications, the
servers of multimedia type on Internet and wireless
network have a huge role in traffic. To get better efficiency
of the content delivery service in multimedia form , there
is a growing tendency for multimedia content distribution
techniques deployment like multimedia proxy and media
replacement. The multimedia proxy is an efficient
technique for solving network traffic and reducing latency
through caching the well known content around the client.
To date, there are certain tasks related to the multimedia
proxy in the Internet. [1] The caching proxy is being a kind
of Internet / n/w caching system which make capable to a
proxy server to protect the most recent as well as frequent
webpage requests and data that require more than one
client machines. This is a way to accelerate the web page
as well as website requests by protecting content &
resources locally in proxy server. Caching proxy which
can be called web proxy caching. The caching proxy is

primarily improving website access time, enabling data
download reduction and decreasing bandwidth usage.
Caching proxy works when a proxy server is an example
or is used to analyze or store certain proportions of data for
frequently used websites and / or Internet-based resources.
The proxy server will recover and deliver the data
immediately to any web page that matches the data stored
locally in a proxy cache or when performing a client
request for a resource. The source stored on a local proxy
server will be delivered very quickly and requests less
bandwidth to be downloaded.

II. CLIENT-SIDE WEB CACHING
Cache initiate in web intermediates between browsers, user
agent & source server. Usually, a cache is in browser as
well as proxy. A browser cache client. If you check dialog
by Preferences of few type of modern web browser (such
as Internet Explorer or Mozilla), you will most likely
monitor a "Cache" setting. Because many users visit the
same web site, this is useful for a browser to download the
latest pages set. Users can also interact with the web
browser in presence of the cache of web browser, with
special buttons, not just web pages but also by back,
forward, refresh as well as URL rewinding. On the other
hand, a cache of proxy is being located on a proxy. It
facilitates in similar principle, but it's a great deal. Proxy of
around serve of hundreds or thousands of users in similar
way. Because size of cache is being limited, a cache
restore policy is required to knob the cache content. If an
object is stored, the cache will be filled, so it will decide
which object to replace the space with the new material.
The availability policy goal the finest use of cache space
available is to get better form of hit rates as well as
reducing the load on original server [10].

III. ARCHITECTURE OF LRU-BASED WEB CACHE
The LRU-base containment of web cache of a cache
manager and cache core. Displayed in architecture image
A. A. Cache Manager (CM) is being responsible for
creating a web cache, so it is called a factory of cache.
When web cache service starts, CM that will start with an
example of CM web cache, such as the CM cache, the
default storage path (build sure the client data be accessed
on the web cache or not) and the CM value. Web is an

mailto:jsk2474@gmail.com
mailto:drsitendra@gmail.com

integral part of the web cache system, which consist of 3
models:

 Cache Listener Model
Cache listener is been used mainly so as to respond to
requests after client that offer both REST full (reference
state form of transfer) services POST & GET services.
While getting a GET / POST request, LRU will format the
data being received for mode of cache, also send stream of
data to client after calculating LRU type cache data.

 LRU Cache Model
It’s to calculate its component. In given model, LRU
algorithm also enables the cache to upgrade cache
capabilities, enhance the cache capacity and implement the
in-cache objects so as to create space for the novel ones
when an interface is available to the cache listener model.
If the requested area from the cache.

 Cache Map
Responsible for just storing caching data (web materials).
Cache data consist the content, full name, with the time of
data storage. In paper, we have suggested as well as
implemented a data structure for caching data retention.
Since it's type of a map, we call it as cache-map. This can
be explained in detail in next section [6].

Fig 1.The Architecture of Web Cache System

IV. LRU-DISTANCE ALGORITHM
LRU-Far Algorithm is of a variant of the LRU, that
attempts to avoid cold cache waste of proxy type caching.
The LRU unit attempts to change cache behavior by disks
of novel objects at the bottom of the stack, as shown in
Figure 1. Only once accessible cache can be accessed only
by giving the opportunity to be saved in cache. Distance D
is based on the no: of objects at bottom of cache stack. For
example, if D is 10, it will be 10th item to be ejected from
an object cache once available. However, if this material is
being accessed again for second time, it migrates to most
recent use into stack. Therefore, the LRU-away algorithm
seeks to minimize the cool cache waste created by "one

timers" by only removing once-only objects in a short time
than in traditional LRU.

V. RELATED WORK
This paper analyzes the nature of the algorithm of various
media. Instead of using alternatives (LRU), fewer uses
(LFU) and first out (FIFO) are considered algorithms. The
replacement algorithm of MFRR suggests for LNG, which
works best for 16% better than the existing algorithms
considered in this paper. This paper suggests a new
replacement policy instead of the L2, which is called
AF2LRU (the average frequency used, most recently). The
simulation results show that MFMR and AF-LRU are
about 28% more than the current pairing regent algorithm.
[1].

In this paper, we provide wireless internet surveys for a
variety of servers to provide cache transition for one server
and server selection. Multiple projections of the video
proxy are considered. We designed a unified price metric
to measure video projection performance on wireless
internet. The defined unified cost is based on the matrix.
The new novel algorithm for a single server, and the new
server selection of video servers, we intend to improve the
performance of the latency and end load. Video quality as
well as startup latency. Simulation o/p show that better
performance than cache reboot algorithm and sever
selection schemes. [2].

Gonzalez and et. al [3] three basic coaching algorithms
developed specifically for GD Size, GDSF, and GD etc.
LRU, LFU, LFUDA etc.

Tejaswi Agarwal et al. [5] Proxy servers are deployed
more by organizations for operational benefits; however,
major intervention on open source proxy servers still exists
in decreasing client authentication in proxy mode.
Technically, a block mode isn’t designed for the
authentication of client, but it should be implemented in
some organizations. In given paper we have focused on
WWW, with an authentication proposal for the transparent
level proxy users making use of external scripts that
display current transparency proxy authentication
credentials and its defects and Internet protocol addresses.
The most authentic Http source proxy server has been
activated by this authentication system.

Rachid et al [7] A strategy called class-based LRU
suggested. The C-LRU Rescue Base is based on a size-
and-large basis, aimed at performing good and small
materials in the cache of large and small documents. LRU
based on the caching structural class is a change of the
standard LRU.

Praveen Kalla et al. [8] A technology (LRU-SEQ) has been
designed to minimize conversion energy in instructional
cache sub-banks by redirecting the custom cache to the

final bank. By continuing to reinstate continuous entry, this
policy will reduce the interbank transformation and the
bank will likely increase the risk of shorts for a long time
(thus lowering leakage energy). The project reduces the
average energy to 23 percent.

[9] This paper suggests a novel kind of way to improve
performance of proxy server by adjusting cache content in
a certain way. This type of L1 cache is being used to retain
its web pages and references of the web pages in L2 cache.
This will reduce memory access time by average of proxy
server.

In this study [11], we can evaluate web caching strategy
performance , taking into consideration the successful rate
earned for the realities of large consumer users. We focus
on scores in a class of being recently used (SG-LRU)
strategies. LRU Policy combines a simple update attempt
to maintain the vast content of important type in cache
based on the score function of predefined type . Several
times-confirmed Zipf request patterns about access to be
popular web form of platforms for the video streaming as
well as further content types are evaluated by caching
efficiency with simulations. In full coverage of basic
parameters, we analyze the achievement of a specific web
caching strategy of a typical independent request model
(IRM) for a potential hit rate. In some cases, the results for
specific caching tactics are confirmed by the fact that the
results of the hit rate are 10% -20% higher than LRU.
Furthermore, IRM Evaluations, over time, compare the
results to the Dynamic Request Pattern with the use of
Wikipedia statistics that has been recently added to over
1000 page requests. To demonstrate the influence of
popularity of different objects in caching efficiency and to
enhance the popularity and to activate score based caching
techniques.

VI. PROPOSED METHODOLOGY
Previous methodology examined the LRU for the caching
by reducing the pollution in cold cache. Instead of this,
there are many drawbacks and these would be overcome
by the AVL and Binary Search Tree. Firstly, there is a
description regarding these techniques for better
understanding.

AVL Tree:
AEL Tree GM a self-balancing binary search tree found.
Adelson-Velsky, E.M. Landisin 1962. In honor of this
discovery, this tree is named 'AVL'. An AVL In the tree,
the height of two of the two sub-trees of a node may vary.
Because of this behavior, AVL. The tree's height is also
called a balanced tree. The ALL tree is going to improve a
bigger performance, let's see how we can expand the
process of adding a new key to the tree. We know that all
the new keys add the leaves to the tree, and the rest of a
new leaf element is zero, and there is no new need for the
node added now. But once the new leaves are added, the

parent balance should be updated. These new leaves
influence how the parent balance component, and how the
leaf node is the right child or a proper child. If node of new
type is right child, the parent's balance sheet becomes less.
If new node is being of the left child, the parents' balance
sheet will increase. This relationship can be applied to the
new grandparent's grandmother, perhaps to all the
ancestors of the tree.
For the page replacement, there we used AVL Tree
methods to eliminate the problem easily. Initially, generate
two memories(i.e. primary & secondary) from the cache
into equal parts. Distribution of the data performed into
these memories according to their usage. In primary
memory, the most useful data has been shifted using AVL
Tree method for better and faster fetching of the data. In
secondary memory, LRU has been used to store the least
useful data. The proposed algorithm is as follows:

Proposed Algorithm:
Step 1: Start
Step 2: Divide cache into primary and secondary
Step 3: If (request for object)

Search object into primary memory
Call (AVL TREE)

Step 4: If (object found)
Then send them

Else
Search into secondary memory
Call (LRU)

Step 5: If (object found)
Move into primary memory
Then send them

Step 6: Repeat for every new request
Step 7: Exit

With AVL Tree:

1. Initially put new data
2. Each data should be placed at height with value 1
3. if new node added

1. its parents height increased by value 1
2. each node’s height get updated

4. Calculate Balance Factor (BF) using formula:
BF = Height of left subtree –Height of right

subtree
5. If BF = -1/0/1

Then tree is balanced
Else

Perform rotation
6. Exit

Now, if we want to compare AVL tree with simple binary
search tree (BST) without balancing, then AVL will
consume more memory (each node has to remember its
balance factor) and each operation can be slower (because
you need to maintain the balance factor and sometimes
perform rotations). Since there is the added overhead of

checking and updating balance factors and rotating nodes,
insertion and deletion in AVL trees can be pretty slow
when compared to non-balanced BST's.WE can perform
any operation in O(log(n)) only so the data retrieval rate is
also fast as compared to binary search tree.AVL tree is
also self-balancing tree.

Fig. 2 Flowchart of Proposed Algorithm

VII. ANALYSIS & DISCUSSION
In the result analysis, table formed for considering various
cache sizes. There are multiple attributes taken to illustrate
the access time of the base and propose technique. Links
contains URL of the websites and their access time is
calculated for both the techniques. There 14 websites are
taken to evaluate the access time and page number is used
for consideration. Here, we consider two techniques such
as LRU, AVL tree.

 Cache Size=10
Table 1: Access Time for Cache size = 10

S. No. Page
No.

Links LRU
Access
Time

AVL
Access
Time

1 1 Google.com 2 1
2 2 Gmail.com 2 0
3 3 Facebook.com 2 0
4 4 Twitter.com 2 1
5 5 W3schools.com 2 1
6 6 Irctc.co.in 5 1
7 7 Youtube.com 5 0
8 8 Hotstar.com 4 1
9 2 Gmail.com 7 1
10 1 Google.com 6 1
11 3 Facebook.com 7 1
12 9 Instagram.com 6 0
13 10 Linkedin.com 8 0
14 4 Twitter.com 4 1
Total 62 9
Average 4.43 0.64
Base and Propose both Page Fault Counter=10

Fig 3. Comparison graph at cache size 10

Start

Divide cache into primary &
secondary

if (request for
object)

Search object into primary
memory

Send it

if (object
found)

Call AVL Tree

Search object into
Secondary memory

Move into main Memory

if (object
found)

Call LRU

Send it

Repeat for every new request

Exit

Yes

No

No

Yes

Yes

No

 Cache Size=15
Table 2: Access Time for Cache size = 15

S.No. Page
No.

Links LRU
Access
Time

AVL
Access
Time

1 1 Google.com 1 1
2 2 Gmail.com 1 0
3 3 Facebook.com 2 0
4 4 Twitter.com 4 0
5 5 W3schools.com 3 0
6 6 Irctc.co.in 4 0
7 7 Youtube.com 2 2
8 8 Hotstar.com 0 0
9 9 Instagram.com 1 3
10 10 Linkedin.com 2 3
11 11 Onlinesbi.com 21 0
12 12 Wikipedia.org 20 4
13 13 icicibank.com 2 1
14 14 Rediff.com 2 2
15 15 Paytm.com 25 0
16 3 Facebook.com 24 0
17 12 Wikipedia.org 28 0
18 2 Gmail.com 27 0

Total 169 16
Average 9.39 0.89
Base and Propose both Page Fault Counter=15

Fig 4. Comparison graph at cache size 15

 Cache Size=20

Table 3: Access Time for Cache size = 20
S.No. Page

No.
Links LRU

Access
Time

AVL
Access
Time

1 1 Google.com 1 7
2 2 Gmail.com 1 0
3 3 Facebook.com 0 0
4 4 instagram.com 3 0
5 5 hotstar.com 1 0

6 6 Rediff.com 8 0
7 7 wikipedia.com 3 0
8 8 linkedin.com 8 0
9 9 icicibank.com 8 0
10 10 stackoverflow.com 9 0
11 11 W3schools.com 4 1
12 12 irctc.co.in 19 1
13 13 amazon.com 20 1
14 14 quora.com 11 1
15 15 whatsapp.com 10 0
16 16 naukri.com 25 0
17 17 Paytm.com 17 1
18 18 Wordpress.com 14 1
19 19 Yatra.com 1 0
20 20 Jeevansathi.com 9 0
21 13 Amazon.com 3 0
22 1 google.com 3 0
23 6 rediff.com 3 1
24 10 Stackoverflow.com 1 1
Total 182 15
Average 7.58 0.625
Base and Propose both Page Fault Counter=20

Fig 5. Comparison graph at cache size 20

 Cache Size=30

Table 4: Access Time for Cache size = 30
S.No. Page

No.
Links LRU

Access
Time

AVL
Access
Time

1 1 Quikr.com 1 1
2 2 Ibibo.com 0 0
3 3 Answers.com 3 0
4 4 Clickindia.com 13 0
5 5 Airtel.in 1 0
6 6 Hindu.com 1 0
7 7 Guruji.com 1 0
8 8 Justdial.com 13 0
9 9 Shaadi.com 17 0
10 10 Twitter.com 20 0

11 11 Jeevansathi.com 23 0
12 12 Yatra.com 40 1
13 13 Wordpress.com 15 0
14 14 Paytm.com 47 0
15 15 naukri.com 16 0
16 16 whatsapp.com 32 0
17 17 quora.com 6 0
18 18 amazon.com 7 0
19 19 irctc.co.in 4 0
20 20 W3schools.com 3 0
21 21 stackoverflow.com 4 1
22 22 icicibank.com 4 0
23 23 linkedin.com 7 0
24 24 wikipedia.com 2 0
25 25 Rediff.com 3 1
26 26 hotstar.com 3 1
27 27 instagram.com 2 0
28 28 Facebook.com 3 1
29 29 Gmail.com 4 0
30 30 Google.com 5 0
31 12 Yatra.com 3 1
32 23 Linkedin.com 4 1
33 11 Jeevansathi.com 4 1
34 6 Hindu.com 4 1
35 29 Gmail.com 9 1
36 28 Facebook.com 4 1
Total 328 12
Average 9.11 0.33
Base and Propose both Page Fault Counter=30

Fig 6. Comparison graph at cache size 30

Fig 7: Average Access Time of LRU and LRU+AVLTree

Conclusion
The World Wide Web or the Internet is being global
system of being computer n/w of being interconnected.
WWW is a n/w of networks involving millions of the
private form, public form, academic, as well as
government n/w. Because of cache memory on the proxy
server, the client may be satisfied with speed access speed.
Large caches have better hit races. Several computers
make use of different cache levels to address this
temptation, small fast caches reserved for short-term
caches. A proxy server that generates all requests as well
as replies has been typically c/d a gateway / tanning proxy
sometimes. A proxy server can be established in various
points of local computer user's, user or targeted servers or
Internet. From the above, we get that AVL generate better
result in less access time.

References

[1] Gupta, R., &Tokekar, S. (2009). Pair of Replacement Algorithms
MFMR and AF-LRU on L1 and L2 Cache for Proxy Server. 2009
Annual IEEE India Conference.doi:10.1109/indcon.2009.5409421.

[2] Zhe Xiang, Qian Zhang, &Wenwu Zhu. (n.d.). Cache replacement
and server selection for video proxy across wireless Internet.
Proceedings of the 2003 International Symposium on Circuits and
Systems, 2003. ISCAS ’03. doi:10.1109/iscas.2003.1206102.

[3] F.J. Gonzalez- Canete, E Casilari, Alicia Trivino - Cabrera,
“Characterizing Document Types to Evaluate Web Cache

Replacement Policies”,International conference on Information
Technology ITNG 2007.

[4] K.SureshBabu,SwethaMadireddy “Survey of Proxy Creates

Continuous Location Based Spatial Queries for Mobile Clients by
Exploiting Spatial and Temporal Locality” IJCSMC, Vol. 3, Issue.

9, September 2014, pg.141 – 147, ISSN 2320–088X.
[5] Tejaswi Agarwal, Mike Leonetti, “Design and Implementation of an

IP based authentication mechanism for Open Source Proxy Servers
in Interception Mode”, Vol.4, No.1, Advanced Computing: An

International Journal (ACIJ), January 2013.
[6] N. P. Jouppi, “Improving Direct mapping Cache Performance by the

Addition of a Small Full Associative Cache and Prefetch Buffers,”

In Proceedings of the 17th International Symposium on Computer
Architecture, Seattle, USA, 1990, pp.364-373.

[7] Boudewijn R. Haverkort, Rachid El Abdouni Khayari, Ramin
Sadre: A Class-Based Least Recently Used Caching Algorithm for
World-Wide Web Proxies. Computer Performance Evaluation /
TOOLS 2003: 273-290.

[8] P. Kalla, X. S. Hu and J. Henkel, “LRU-SEQ: A Novel
Replacement Policy for Transition Energy Reduction in Instruction

0

2

4

6

8

10

10 15 20 30

A
cc

e
ss

 T
im

e

Cache Size

LRU

LRU+AVLTree

Caches”, in Proceedings of the 2003 IEEE/ACM International

Conference on Computer-aided design, pp. 518 – 522, November
2003.

[9] Niranjan, Y., Tiwari, S., & Gupta, R. (2013). Average memory
access time reduction in multilevel cache of proxy server. 2013 3rd
IEEE International Advance Computing Conference
(IACC).doi:10.1109/iadcc.2013.650681.

[10] Krishnamurthy, B., Rexforrd, J.: Web Protocols and Practice:
HTTP/1.1, Networking Protocols,Caching and Traffic
Measurement. Addison-Wesley, Reading (2001).

[11] Gerhard Hasslinger KonstantinosNtougias Frank Hasslinger Oliver
Hohlfeld, Performance Evaluation for New Web Caching
StrategiesCombining LRU with Score Based Object Selection, 978-
0-9883045-1-2/16 $31.00 © 2016 ITC.

	I. Introduction
	II. Client-Side Web Caching
	III. Architecture of LRU-Based Web Cache
	IV. LRU-Distance Algorithm
	V. Related work
	VI. Proposed Methodology
	VII. Analysis & Discussion

