
Definition of a Mathematical Language Together with its
Proof System in Event-B

Jean-Raymond Abrial

Marseille
jrabrial@neuf.fr

1 Introduction

Our application domain with the B Method and Event-B is the modeling and develop-
ment of industrial (embedded) systems. We have been working in this area for more
than 20 years. More is described in [1] where the evolution from Z to B and Event-B is
described with full details.The starting application of this approach was the driverless
metro system for the metro line 14 in Paris: the B Method was used in the develop-
ment of the safety critical part of the corresponding controller. In the B Method and in
Event-B, the prover part is absolutely central together with the notion of refinement. In
fact, at the beginning in the nineties, the Atelier B tool was developed together with the
line 14 system itself. Later, Event-B [2] and the corresponding Rodin Platform [3] was
developed with some heavy fundings from the European Commission.

In order to explain how all this emerged technically, this paper first contains an
important definition of the Mathematical Language we used in Event-B. This done in
section 2. The reason for this important section is that we want to explain how we can
interface our platform [3] with many different provers. The idea is quite simple: all the
provers we use are first order predicate calculus with equality provers. The idea is then
to translate set theoretic statements into predicate calculus statement as explained in
sub-section 2.6.

Section 2 is made of six sub-sections. The first one contains a preliminary defi-
nition of sequents, inference rules, and proofs. Then we have the presentation of our
Mathematical Language. It is defined as follows: the Propositional Language (section
2.3), the Predicate Language (section 2.4), the Equality Language (section 2.5), and the
Set-theoretic Language (section 2.6). Each of these languages will be presented as an
extension of the previous one.

In section 3, we develop some of the technologies used in the Rodin Platform [3]
prover: the connection to some external automatic provers in section 3.1, the idea of
reasoners and tactics in section 3.2, the notion of tactic profiles in section 3.3, the inter-
active prover in section 3.4, and finally the “Theory” plug-in in section 3.5.

Various sections (4 to 8) give then more information and comments on our approach
with the proving system of Event-B. “Some Results” in section 4, “Using Proofs” in
section 5, “Comparison of Proofs” in section 6, and finally “Trends and Open Problems”
in section 7. We conclude in section 8.

2 A Mathematical Language Formal Construction

This section is essentially a reprint of chapter 9 of [2]

2.1 Sequent Calculus

Definitions In this section, we give some definitions which will be helpful to present
the Sequent Calculus.
(1) A sequent is a generic name for “something we want to prove”. For the moment,
this is just an informally defined notion, which we shall refine later in section 2.1. The
important thing to note at this point is that we can associate a proof with a sequent. For
the moment, we do not know what a proof is however. It will only be defined at the end
of this section.
(2) An inference rule is a device used to construct proofs of sequents. It is made of two
parts: the antecedent part and the consequent part. The antecedent denotes a finite set of
sequents while the consequent denotes a single sequent. An inference rule, named say
R1, with antecedent A and consequent C is usually written as follows:

A

C
R1

It is to be read:

Inference Rule R1 yields a proof of sequent C as soon as we have proofs of each
sequent of A.

The antecedent A might be empty. In this case, the inference rule, named say R2, is
written as follows:

C
R2

It is to be read:

Inference Rule R2 yields a proof of sequent C.

(3) A theory is a set of inference rules.
(4) The proof of a sequent within a theory is simply a finite tree with certain constraints.
The nodes of such a tree have two components: a sequent s and a rule r of the theory.
Here are the constraints for each node of the form (s, r): the consequent of the rule r is
s, and the children of this node are nodes whose sequents are exactly all the sequents of
the antecedent of rule r. As a consequence, the leaves of the tree contain rules with no
antecedent. Moreover, the root node of the tree contains the sequent to be proved. As
an example, let be given the following theory involving sequents S1 to S7 and rules R1
to R7:

2

S2
R1

S7

S4
R2

S2 S3 S4

S1
R3

S5
R4

S5 S6

S3
R5

S6
R6

S7
R7

On figure 1 you can see a proof of sequent S1:

S2 R1 S3 R5 S4 R2

S6 R6S5 R4 S7 R7

S1 R3

Fig. 1. A Proof

As can be seen, the root of the tree contains sequent S1, which is the one we want to
prove. And it is easy to check that each node, say node (S3,R5), is indeed such that the
consequent of its rule is the sequent of the node. More precisely, S3 in this case, is the
consequent of rule R5. Moreover, we can check that the sequents of the child nodes of
node (S3,R5), namely, S5 and S6, are exactly the sequents forming the antecedents of
rule R5.

This tree can be interpreted as follows: In order to prove S1, we prove S2, S3, and
S4, according to rule R3. In order to prove S2 we prove nothing more, according to
rule R1. In order to prove S3 we prove S5 and S6, according to R5. And so on. This
tree can be represented horizontally: this is indicated on figure 2. We shall now adopt
this representation.

Sequents for a Mathematical Language We now refine our notion of sequent in
order to define the way we shall make proofs with our Mathematical Language. Such
a language contains constructs called Predicates. For the moment, this is all what we
know about our Mathematical Language. Within this framework, a sequent S, as defined

3

S1 R3



S2 R1

S3 R5



S5 R4

S6 R6

S4 R2 S7 R7

Fig. 2. Another Representation of the Proof Tree

in the previous section, now becomes a more complex object. It is made of two parts: the
hypotheses part and the goal part. The hypothesis part denotes a finite set of predicates
while the goal part denotes a single predicate. A sequent with hypotheses H and goal G
is written as follows:

H ` G

This sequent is to be read as follows:

Goal G holds under the set of hypotheses H

This is the sort of sequents we want to prove. It is also the sort of sequents we shall
have in the theories associated with our Mathematical Language. Note that the set of
hypotheses of a sequent might be empty and that the order and repetition of hypotheses
in the set H is meaningless.

Initial Theory We now have enough elements at our disposal to define the first rules
of our proving theory. Note again that we still don’t know what a predicate is. We
just know that predicates are constructs we shall be able to define within our future
Mathematical Language. We start with three basic rules which we first state informally
and then define more rigorously. They are called HYP, MON, and CUT. Here are their
definitions:

– HYP: If the goal P of a sequent belongs to the set of hypotheses of this sequent,
then it is proved.

4

H, P ` P
HYP

– MON: In order to prove a sequent, it is sufficient to prove another sequent with the
same goal but with less hypotheses.

H ` Q

H, P ` Q
MON

– CUT: If you succeed in proving a predicate P under a set of hypotheses H, then P
can be added to the set of hypotheses H for proving a goal Q.

H ` P H, P ` Q

H ` Q
CUT

2.2 Rule Schema

Note that in the rules defined in the previous section, the letter H, P andQ are, so-called,
meta-variables. The letter H is a meta-variable standing for a finite set of predicates,
whereas the letter P and Q are meta-variables standing for predicates. Clearly then
each of the previous “rules” stands for more than just one rule: it is better to call them
rule schemas. This will always be the case in what follows.

2.3 The Propositional Language

In this section we present a first simple version of our Mathematical Language, it is
called the Propositional Language. It will be later refined to more complete versions:
Predicate Language (section 2.4), Equality Language (section 2.5), Set-theoretic Lan-
guage (section 2.6).

Syntax Our first version is built around five constructs called falsity, negation, conjunc-
tion, disjunction, and implication. Given two predicates P andQ, we can construct their
conjunction P ∧ Q, their disjunction P ∨ Q, and their implication P ⇒ Q. And given
a predicate P , we can construct its negation ¬P . This can be formalized by means of
the following syntax:

5

predicate ::= ⊥
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate

This syntax is clearly ambiguous, but we do not care about it at this stage. Only note
that conjunction and disjunction operators have stronger syntactic priorities than the
implication operator. Moreover, conjunction and disjunction have the same syntactic
priorities so that parentheses will always be necessary when several such distinct oper-
ators are following each other. Also note that this syntax does not contain any “base”
predicate (except ⊥): such predicates will come later in sections 2.5 and 2.6.

Enlarging the Initial Theory The initial theory of section 2.1 is enlarged with the
following inference rules:

H, ⊥ ` P
FALSE_L

H, ¬Q ` P

H, ¬P ` Q
NOT_L

H, P, Q ` R

H, P ∧Q ` R
AND_L

H ` P H ` ¬P

H ` ⊥
FALSE_R

H, P ` ⊥

H ` ¬P
NOT_R

H ` P H ` Q

H ` P ∧Q
AND_R

H, P ` R H, Q ` R

H, P ∨Q ` R
OR_L

H, P, Q ` R

H, P, P ⇒Q ` R
IMP_L

H, ¬P ` Q

H ` P ∨Q
OR_R

H, P ` Q

H ` P ⇒Q
IMP_R

6

As can be seen, each kind of predicates, namely falsity, negation, conjunction, dis-
junction, and implication, is given two rules: a left rule, labelled with _L, and a right
rule, labelled with _R. This corresponds to the predicate appearing either in the hypoth-
esis part (left) or in the goal part (right) of the consequent of the rule.

It is important to notice that we do not “define” the various propositional calculus
operators with any kind of “truth table”. We rather say how sequents involving such
operators can be proved.

Derived Rules Besides the previous rules the following derived rule (among many
others) is quite useful. It says that for proving a goal P it is sufficient to prove it first
under hypothesis Q and then under hypothesis ¬Q.

H, Q ` P H, ¬Q ` P

H ` P
CASE

For proving a derived rule, we assume its antecedents (if any) and prove its consequent.
With this in mind, here is the proof of derived rule CASE:

H ` P CUT



H ` Q ∨ ¬Q OR_R H,¬Q ` ¬Q HYP

H, Q ∨ ¬Q ` P OR_L



H, Q ` P
assumed
antecedent

H,¬Q ` P
assumed
antecedent

Methodology The method we are going to use to build our Mathematical Language
must start to be clearer: it will be very systematic. It is made of two steps: first we
augment our syntax. Then either the extension corresponds to a simple facility. In that
case, we give simply the definition of the new construct in terms of previous ones. Or
the new construct is not related to any previous constructs. In that case, we augment our
current theory.

Extending the Proposition Language The Proposition Language is now extended by
adding one more construct called equivalence. Given two predicates P and Q, we can
construct their equivalence P ⇔ Q. We also add one predicate: >. As a consequence,
our syntax is now the following:

7

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate

Note that implication and equivalence operators have the same syntactic priorities so
that parentheses will be necessary when several such distinct operators are following
each other. Such extensions are defined in terms of previous ones by mere rewriting
rules:

Predicate Rewritten

> ¬ ⊥

P ⇔ Q (P ⇒ Q) ∧ (Q ⇒ P)

The following derived rules can be proved easily:

H ` P

H, > ` P
TRUE_L

H ` >
TRUE_R

Note that rule TRUE_L can be proved using rule MON but the reverse rule (exchanging
antecedent and consequent), which holds as well, cannot. We leave it as an exercise to
the reader to prove these rules.

2.4 The Predicate Language

Syntax In this section, we introduce the Predicate Language. The syntax is extended
with a number of new kinds of predicates and also with the introduction of two new
syntactic categories called expression and variable. A variable is a simple identifier.
Given a non-empty list of variables x made of pairwise distinct identifiers and a predi-
cate P , the construct ∀x·P is called a universally quantified predicate. Likewise, given
a non-empty list of variables x made of pairwise distinct identifiers and a predicate P ,
the construct ∃x·P is called an existentially quantified predicate. An expression is ei-
ther a variable or else a paired expression E 7→ F , where E and F are two expressions.
Here is this new syntax:

8

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate
∀var_list · predicate
∃var_list · predicate

expression ::= variable
expression 7→ expression

var_list ::= variable
variable, var_list

This syntax is also ambiguous. Note however that the scope of the universal or existen-
tial quantifiers extends to the right as much as they can, the limitation being expressed
either by the end of the formula or by means of enclosing parentheses.

Predicates and Expressions It might be useful at this point to clarify the difference
between a predicate and an expression. A predicate P is a piece of formal text which
can be proved when embedded within a sequent as in:

H ` P

A predicate does not denote anything. This is not the case of an expression which always
denotes an object. An expression cannot be “proved”. Hence predicates and expressions
are incompatible. Note that for the moment the possible expressions we can define are
quite limited. This will be considerably extended in the Set-theoretic Language defined
in Section 2.6.

Inference Rules for Universally Quantified Predicates The universally and existen-
tially quantified predicates require introducing corresponding rules of inference. As for
propositional calculus, in both cases we need two rules: one for quantified assumptions
(left rule) and one for a quantified goal (right rule). Here are these rules for universally
quantified predicates:

9

H, ∀x · P, [x := E]P ` Q

H, ∀x · P ` Q
ALL_L

H ` P

H ` ∀x · P
ALL_R

(x not free in H)

The first rule (ALL_L) allows us to add another assumption when we have a uni-
versally quantified one. This new assumption is obtained by instantiating the quantified
variable x by any expression E in the predicate P : this is denoted by [x := E]P . The
second rule (ALL_R) allows us to remove the "∀" quantifier appearing in the goal. This
can be done however only if the quantified variable (here x) does not appear free in the
the set of assumptions H: this requirement is called a side condition. In the sequel we
shall write x nfin P to mean that variable x is not free in predicate P . The same notation
is used with an expressionE. We omit in this presentation to develop the syntactic rules
allowing us to compute non-freeness as well as substitutions. We have similar rules for
existentially quantified predicates:

H, P ` Q

H, ∃x · P ` Q

XST_L
(x not free in H and Q)

H ` [x := E]P

H ` ∃x · P
XST_R

As an example, we prove now the following sequent:

∀x · (∃y · Px,y) ⇒ Qx ` ∀x · (∀y · Px,y ⇒ Qx)

where Px,y stands for a predicate containing variables x and y only as free variables,
and Qx stands for a predicate containing variable x only as a free variable.

∀x · (∃y · Px,y) ⇒ Qx

`
∀x · (∀y · Px,y ⇒ Qx)

ALL_R
ALL_R
IMP_R

∀x · (∃y · Px,y) ⇒ Qx

Px,y

`
Qx

CUT . . .

10

. . .



∀x · (∃y · Px,y) ⇒ Qx

Px,y

`
∃y · Px,y

XST_R

∀x · (∃y · Px,y) ⇒ Qx

Px,y

`
Px,y

HYP

∀x · (∃y · Px,y) ⇒ Qx

Px,y

∃y · Px,y

`
Qx

ALL_L
IMP_L

∀x · (∃y · Px,y) ⇒ Qx

Qx

Px,y

∃y · Px,y

`
Qx

HYP

The proof of the following sequent is left to the reader:

∀x · (∀y · Px,y ⇒ Qx) ` ∀x · (∃y · Px,y) ⇒ Qx

2.5 Introducing Equality

The Predicate Language is once again extended by adding a new predicate, the equality
predicate. Given two expressions E and F , we define their equality by means of the
construct E = F . Here is the extension of our syntax:

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate
∀var_list · predicate
∃var_list · predicate
expression = expression

expression ::= variable
expression 7→ expression

Note that we shall use the operator 6= in the sequel to mean, as is usual, the negation of
equality. The inference rules for equality are the following:

11

[x := F]H, E = F ` [x := F]P

[x := E]H, E = F ` [x := E]P
EQ_LR

[x := E]H, E = F ` [x := E]P

[x := F]H, E = F ` [x := F]P
EQ_RL

It allows us to apply an equality assumption in the remaining assumptions and in the
goal. This can be made by using the equality from left to right or from right to left.
Subsequent rules correspond to the reflexivity of equality and to the equality of pairs.
They are both defined by some rewriting rules as follows:

Operator Predicate Rewritten

Equality E = E >

Equality of pairs E 7→ F = G 7→ H E = G ∧ F = H

The following rewriting rules, within which x is supposed to be not free in E, are easy
to prove. They are called the one point rules:

Predicate Rewritten

∀x · x = E ⇒ P [x := E]P

∃x · x = E ∧ P [x := E]P

2.6 The Set-theoretic Language

Our next language, the Set-theoretic Language, is now presented as an extension to the
previous Predicate Language.

12

Syntax In this extension, we introduce some special kind of expressions called sets.
Note that not all expressions are set: for instance a pair is not a set. However, in the
coming syntax we shall not make any distinction between expressions which are sets
and expressions which are not.

We introduce another predicate the membership predicate. Given an expression E
and a set S, the construct E ∈ S is a membership predicate which says that expression
E is a member of set S.

We also introduce the basic set constructs. Given two sets S and T , the construct
S×T is a set called the Cartesian product of S and T . Given a set S, the construct P(S)
is a set called the power set of S. Finally, given a list of variables xwith pairwise distinct
identifiers, a predicate P , and an expression E, the construct {x · P |E} is called a set
defined in comprehension. Here is our new syntax:

predicate ::= . . .
expression ∈ expression

expression ::= variable
expression 7→ expression
expression× expression
P(expression)
{ var_list · predicate | expression }

Note that we shall use the operator /∈ in the sequel to mean, as is usual, the negation of
set membership.

Axioms of Set Theory The axioms of the set-theoretic Language are given under the
form of equivalences to various set memberships. They are all defined in terms of rewrit-
ing rules. Note that the last of these rules defines equality for sets. It is called the Ex-
tensionality Axiom.

Operator Predicate Rewritten Side Cond.

Cartesian product E 7→ F ∈ S × T E ∈ S ∧ F ∈ T

Power set E ∈ P(S) ∀x · x ∈ E ⇒ x ∈ S
x nfin E
x nfin S

13

Operator Predicate Rewritten Side Cond.

Comprehension E ∈ {x · P | F } ∃x · P ∧ E = F x nfin E

Equality S = T S ∈ P(T) ∧ T ∈ P(S)

As a special case, set comprehension can sometimes be written {F |P }, which can
be read as follows: “the set of objects with shape F when P holds”. However, as you
can see, the list of variables x has now disappeared. In fact, these variables are then
implicitly determined as being all the free variables in F . When we want that x represent
only some, but not all, of these free variables we cannot use this shorthand.

A more special case is one where the expression F is exactly a single variable x, that
is {x · P | x }. As a shorthand, this can be written {x |P }, which is very common in
informally written mathematics. And then E ∈ {x |P } becomes [x := E]P according
to the second "one point rule" of section 2.5.

Elementary Set Operators In this section, we introduce the classical set operators:
inclusion, union, intersection, difference, extension, and the empty set.

predicate ::= . . .
expression ⊆ expression

expression ::= . . .
expression ∪ expression
expression ∩ expression
expression \ expression
{expression_list}
∅

expression_list ::= expression
expression, expression_list

Notice that the expressions in an expression_list are not necessarily distinct.

14

Operator Predicate Rewritten

Inclusion S ⊆ T S ∈ P(T)

Union E ∈ S ∪ T E ∈ S ∨ E ∈ T

Intersection E ∈ S ∩ T E ∈ S ∧ E ∈ T

Difference E ∈ S \ T E ∈ S ∧ ¬ (E ∈ T)

Set extension E ∈ {a, . . . , b} E = a ∨ . . . ∨ E = b

Empty set E ∈ ∅ ⊥

Generalization of Elementary Set Operators The next series of operators consists
in generalizing union and intersection to sets of sets. This takes the forms either of an
operator acting on a set or of a quantifier.

. . .

expression ::= . . .
union(expression)⋃
var_list · predicate | expression

inter(expression)⋂
var_list · predicate | expression

Operator Predicate Rewritten Side Cnd.

Generalized union E ∈ union (S) ∃s · s ∈ S ∧ E ∈ s
s nfin S
s nfin E

Quantified union E ∈
⋃

x · P | T ∃x · P ∧ E ∈ T x nfin E

15

Operator Predicate Rewritten Side Cnd.

Generalized intersection E ∈ inter (S) ∀s · s ∈ S ⇒ E ∈ s
s nfin S
s nfin E

Quantified intersection E ∈
⋂

x · P | T ∀x · P ⇒ E ∈ T x nfin E

The last two rewriting rules require that the set inter(S) and
⋂
x · P | T be well defined.

This is presented in the following table:

Set construction Well-definedness condition

inter (S) S 6= ∅

⋂
x · P | T ∃x · P

Binary Relation Operators We now define a first series of binary relation operators:
the set of binary relations built on two sets, the domain and range of a binary relation,
and then various sets of binary relations.

. . .

expression ::= . . .
expression↔ expression
dom(expression)
ran(expression)
expression←↔ expression
expression↔→ expression
expression↔↔ expression

16

Operator Predicate Rewritten Side Cnd.

Binary relations r ∈ S↔ T r ⊆ S × T

Domain E ∈ dom (r) ∃y · E 7→ y ∈ r
y nfin E
y nfin r

Range F ∈ ran (r) ∃x · x 7→ F ∈ r
x nfin F
x nfin r

Total relations r ∈ S←↔ T r ∈ S↔ T ∧ dom (r) = S

Surjective relations r ∈ S↔→ T r ∈ S↔ T ∧ ran (r) = T

The next series of binary relation operators define the converse of a relation, various
relation restrictions and the image of a set under a relation.

expression ::= . . .
expression−1

expression� expression
expression� expression
expression�− expression
expression�− expression
expression[expression]

Operator Predicate Rewritten Side Cnd.

Converse E 7→ F ∈ r−1 F 7→ E ∈ r

Domain restriction E 7→ F ∈ S � r E ∈ S ∧ E 7→ F ∈ r

Range restriction E 7→ F ∈ r � T E 7→ F ∈ r ∧ F ∈ T

17

Operator Predicate Rewritten Side Cnd.

Domain subtraction E 7→ F ∈ S �− r ¬E ∈ S ∧ E 7→ F ∈ r

Range subtraction E 7→ F ∈ r �− T E 7→ F ∈ r ∧ ¬F ∈ T

Relational Image F ∈ r[U] ∃x · x ∈ U ∧ x 7→ F ∈ r
x nfin F
x nfin r
x nfin U

Let us illustrate the relational image. Given a binary relation r from a set S to a set T ,
the image of a subset U of S under the relation r is a subset of T . The image of U under
r is denoted by r[U]. Here is its definition:

r[U] = { y | ∃x · x ∈ U ∧ x 7→ y ∈ r }

This is illustrated on figure 3. As can be seen on this figure, the image of the set {a, b}
under relation r is the set {m,n, p}.

S T

r

b

a
m

d

c

s

r

q

n

p

Fig. 3. Image of a Set under a Relation

Our next series of operators defines the composition of two binary relations, the over-
riding of a relation by another one, and the direct and parallel products of two relations.

18

expression ::= . . .
expression ; expression
expression ◦ expression
expression�− expression
expression⊗ expression
expression ‖ expression

Operator Predicate Rewritten Side Cnd.

Forward
composition E 7→ F ∈ f ; g ∃x · E 7→ x ∈ f ∧ x 7→ F ∈ g

x nfin E
x nfin F
x nfin f
x nfin g

Backward
composition E 7→ F ∈ g ◦ f E 7→ F ∈ f ; g

Given a relation f from S to T and a relation g from T to U , the forward relational
composition of f and g is a relation from S to U . It is denoted by the construct f ; g.
Sometimes it is denoted the other way around as g ◦ f , in which case is is said to be the
backward composition.

Operator Predicate Rewritten

Overriding E 7→ F ∈ f �− g E 7→ F ∈ (dom (g)�− f) ∪ g

Direct product E 7→ (F 7→ G) ∈ f ⊗ g E 7→ F ∈ f ∧ E 7→ G ∈ g

Parallel product (E 7→ F) 7→ (G 7→ H) ∈ f ‖ g E 7→ G ∈ f ∧ F 7→ H ∈ g

The overriding operator is applicable in general to a relation f from, say, a set
S to a set T , and a relation g also from S to T . When f is a function and g is the
singleton function {x 7→ E}, then f �− {x 7→ E} replaces in f the pair x 7→ f(x)
by the pair x 7→ E. Notice that in the case where x is not in the domain of f , then
f �− {x 7→ E} simply adds the pair x 7→ E to the function f . In this case, it is thus
equal to f ∪ {x 7→ E}.

19

Functional Operators In this section we define various function operators: the sets of
all partial and total functions, partial and total injections, partial and total surjections,
and bijections. We also introduce the two projection functions as well as the identity
function.

expression ::= . . .
id
expression 7→ expression
expression→ expression
expression 7� expression
expression� expression
expression 7� expression
expression� expression
expression�� expression
prj1
prj2

Operator Predicate Rewritten

Identity E 7→ F ∈ id E = F

Partial functions f ∈ S 7→ T f ∈ S↔ T ∧ (f−1 ; f) ⊆ id

Total functions f ∈ S→ T f ∈ S 7→ T ∧ S = dom (f)

Partial injections f ∈ S 7� T f ∈ S 7→ T ∧ f−1 ∈ T 7→ S

Total injections f ∈ S � T f ∈ S→ T ∧ f−1 ∈ T 7→ S

Partial surjections f ∈ S 7� T f ∈ S 7→ T ∧ T = ran (f)

Total surjections f ∈ S � T f ∈ S→ T ∧ T = ran (f)

20

Operator Predicate Rewritten

Bijections f ∈ S �� T f ∈ S � T ∧ f ∈ S � T

First projection (E 7→ F) 7→ G ∈ prj1 G = E

Second projection (E 7→ F) 7→ G ∈ prj2 G = F

Lambda Abstraction and Function Invocation We now define lambda abstraction,
which is a way to construct functions, and also function invocation, which is a way to
call functions. But first we have to define the notion of pattern of variables. A pattern of
variables is either an identifier or a pair made of two patterns of variables. Moreover, all
variables composing the pattern must be distinct. For example, here are three patterns
of variables:

abc

abc 7→ def

abc 7→ (def 7→ ghi)

Given a pattern of variables x, a predicate P , and an expression E, the construct
λx · P |E is a lambda abstraction, which is a function. Given a function f and an
expression E, the construct f(E) is an expression denoting a function invocation. Here
is our new syntax:

expression ::= . . .
expression(expression)
λ pattern · predicate | expression

pattern ::= variable
pattern 7→ pattern

In the following table, l stands for the list of variables in the pattern L.

21

Operator Predicate Rewritten

Lambda abstraction F ∈ λL · P |E F ∈ {l · P |L 7→ E}

Function invocation F = f(E) E 7→ F ∈ f

The function invocation construct f(E) requires a well-definedness condition, which
is the following:

Expression Well-definedness condition

f(E) f−1 ; f ⊆ id ∧ E ∈ dom(f)

3 Prover Technologies Used in the Rodin Platform

3.1 Connecting to Various External Provers

On the Rodin Platform [3], we use various “external” provers. As explained in the
introduction, the connection to these external provers is made by mans of a translation of
the set theoretic statement (defining the predicate to be proved) into a predicate calculus
statement. As a very simple example, suppose we have to prove a statement like S ⊆ T
where S and T stand for some set expressions. It is translated as follows: ∀x· x ∈
S′ ⇒ x ∈ T ′ where S′ and T ′ stand for the translations of S and T respectively.

The external provers we have on the Rodin Platform are the, so called, Predicate
Prover (an internally developed predicate calculus prover) and some SMT provers (Alt-
Ergo, CVC3, VeriT, Z3) [7]. There is even a plug-in for translating Event-B sequents to
an embedding in HOL which allows to perform proofs with the Isabelle proof assistant.

3.2 Reasonners and Tactics

The text of this section is a copy from [6].
Like the rest of the Rodin platform, the prover has been designed for openness.

The main code of the prover just maintains a proof tree in Sequent Calculus and does
not contain any reasoning capability. It is extensible through reasoners and tactics. A
reasoner is a piece of code that, given an input sequent, either fails or succeeds. In case
of success, the reasoner produces a proof rule which is applied to the current proof tree
node.

Reasoners could be applied interactively. However this would be very tedious. Rea-
soner application can thus be automated by using tactics that take a more global view of

22

the proof tree and organise the running of reasoners. Tactics can also backtrack the proof
tree, that is undo some reasoner applications in case the prover entered a dead-end.

The core platform contains a small set of reasoners written in Java that either im-
plement the basic proving rules (HYP, CUT, FALSE_L, etc.), or perform some simple
clean-up on sequents such as normalisation or unit propagation (generalised modus-
ponens). These reasoners allow to discharge the most simple proof obligations. As al-
ready explained, they are complemented by reasoners that link the Rodin platform to
external provers, such as those of Atelier B (ML and PP) and SMT solvers (Alt-Ergo,
CVC3, VeriT, Z3, etc.) [7].

3.3 Tactic Profile

As explained in the previous section, the Rodin Platform is provided with some ele-
mentary tactics including calls to external provers. Such tactics can be put together in,
so-called, tactic profiles. The user can define several such profiles and attach them in-
teractively (in the Rodin Platform preference framework) to the prover. These has the
effect of automatising proofs.

3.4 Interactive Proofs

When the automatic treatment of the prover fails, the user can perform an interactive
proof. The idea is to give the possibility to the user to call some elementary tactics
explicitly. In practice, this is done by clicking on some emphasised symbols either on
the goal part or the hypothesis part of the sequent to be proved.

For example, if the following sequent H ` S⊆T is to be proved, then by clicking
on the emphasised symbol⊆, the sequent to be proved is transformed to H ` ∀x· x ∈
S ⇒ x ∈ T . The user can then click on the emphasised symbol ∀: this has the effect
of transforming the present sequent to H ` x ∈ S ⇒ x ∈ T . Finally, by clicking on
the emphasised symbol⇒, we obtain the following sequent H, x ∈ S ` x ∈ T , and
so on. As can be seen, activating interactively the sequent to be proved, has the effect
of decomposing gradually this sequent into smaller ones.

3.5 Theory Plug-in

The text of this section is a copy from the paper [6]. This plug-in of the Rodin Platform,
defined in [4], allows one to extend the basic mathematical operators of Event-B. These
operators are polymorphic. They can be defined explicitly in terms of existing ones. As
examples of these extensions, we can define the concept of well-foundedness, that of
fixpoint, that of relational closure, and so on.

It is also possible to give some axiomatic definitions only. An interesting outcome
of this last feature allows one to define the set of Real numbers axiomatically. More-
over, the user of this plug-in can add some corresponding theorems, and inference or
rewriting rules able to extend the provers. It is also possible to define new (possibly re-
cursive) types. This very important plug-in has been developed by Issam Maamria and
Asieh Salehi in Southampton University.

23

4 Some Results

The most common proof generating deduction tools are the Predicate Prover (developed
internally) and also the SMT provers we mention earlier (Alt-Ergo, CVC3, VeriT, and
Z3). We are very happy with these provers. In the future we will probably try other proof
systems although it is not decided yet which ones. In section 3.4 we gave a small exam-
ples of an interactve proof. Here is another example, that of the proof of the following
sequent:

r ∈ S↔ T ` A1 ⊆ A2 ⇒ r[A1] ⊆ r[A2]

where r[A1] or r[a2] stand for the images of the set A1 or A2 under the relation r. The
automatic proof goes as follows. Each line contains first an indication of the inference
rule (or sometimes the rewriting rule) that is applied, then the goal of the sequent is
shown after the “:” symbol (the hypotheses of the sequent are not shown):

⇒ in goal : A1 ⊆ A2 ⇒ r[A1] ⊆ r[A2]
remove ⊆ in goal : r[A1] ⊆ r[A2]

remove ∈ in goal : ∀x · x ∈ r[A1] ⇒ x ∈ r[A2]
∀ goal (frees x) : ∀x · (∃x0 · x0 ∈ A1 ∧ x0 7→ x ∈ r) ⇒ . . .
⇒ in goal : (∃x0 · x0 ∈ A1 ∧ x0 7→ x ∈ r) ⇒ (∃x0 · x0 ∈ A2 ∧ x0 7→ x ∈ r)
∃ hyp (∃x0 · x0 ∈ A1 ∧ x0 7→ x ∈ r) : ∃x0 · x0 ∈ A2 ∧ x0 7→ x ∈ r
∃ goal (inst x0) : ∃x0 · x0 ∈ A2 ∧ x0 7→ x ∈ r
∧ goal : x0 ∈ A2 ∧ x0 7→ x ∈ r
∀ hyp p (inst x0) : x0 ∈ A2

hyp : x0 ∈ A1
hyp : x0 ∈ A2

hyp : x0 7→ x ∈ r

Notice that the goals are optional. In this case, we would obtain the following proof:

⇒ in goal
remove ⊆ in goal

remove ∈ in goal
∀ goal (frees x)
⇒ in goal
∃ hyp (∃x0 · x0 ∈ A1 ∧ x0 7→ x ∈ r)
∃ goal (inst x0)
∧ goal
∀ hyp p (inst x0)

hyp
hyp

hyp

As can be seen, the proof indentation reflects the tree structure of the proof. In an
interactive proof, the user can easily navigate within this tree. By pointing to a node in
the tree, the user can also get more details about the usage of the inference rule used in
that node. It can also hide some parts of the tree or do some copy/paste of some sub-tree
when a similar sub-proof is needed somewhere. The user can also “review” a node in

24

the tree without providing a proof for it yet. It is very convenient when applying the
cut rule in order to define a local lemma (to be proven later). We are satisfied with the
generated proofs: they are detailed enough. However these proofs are not intended to
be read, just used at some specific moment in the proof process. The simple proof we
have just shown is clearly already a bit difficult to read. It is very frequent to have far
bigger proofs, which are thus totally unreadable. In the shown proof, the entire sequent
is not shown, it could have been of course, but it’ll make the proof even more difficult
to read.

At the moment, we are very satisfied with the system at hand. In fact, the introduc-
tion of SMT solvers into our proving system was a big step forward. Notice that these
provers can be mentioned explicitly in a tactic profile, resulting in many proofs, that
were not done automatically before this introduction, now becoming automatic proofs.

Concerning model-checking, it is already present in the Rodin Platform. It is called
PROB [5]. It has been developed in the University of Duesseldorf in Germany. We see
it has a very useful complement to our proof system. It is particularly interesting when
the user finds some difficulties in doing a proof. Using the model-checker can easily
help finding some counter-examples showing that the user tries to prove something that
cannot be proven.

5 Using Proofs

Proof are used to discharge proof obligations generated by the proof obligation gener-
ator, a tool the Rodin Platform. This tool generates many different proof obligations,
among which the more important are invariant proof obligations and refinement proof
proof obligations. All this is defined in great details in [2].

Witnesses are directly defined in our models, thus avoiding many existential proofs.
The only important properties we extract from a proof is whether it has been done au-
tomatically or interactively, or if it not discharged or has some reviewed nodes still in
it. Out of this, we determine some important statistics calculated on all the proofs of an
entire development. As an example, the B development for the Paris metro line 14 gen-
erated 27,800 proofs. the system developed for the Charles de Gaule airport generated
43,600 proofs. More recently the development of an embedded system formalising an
aircraft landing system with Event-B generated 2328 proofs on the Rodin Platform. All
these proofs were discharged automatically.

The construction of code out of the last refinement of a model is independent of the
proofs. We are filtering the last refinement of a model in order to determine whether it
can be translated into code. The system for the line 14 metro system generated 86,000
lines of ADA. For the CDG shuttle, 158,000 lines of ADA were generated.

The proofs are not explicitly attached to the generated code but all proofs of a devel-
opment can be consulted directly on the Rodin Platform, together with the mentioned
statistics.

25

6 Comparison of Proofs

The question of comparing proofs is not relevant in our domain. The quality of a proof
(essentially its length and the number of explicit quantified variable instantiations) is an
important qualitative factor. This quality is a good indication of the overall quality of the
corresponding formal model. The proportion of automatic proofs is also an important
factor of the overall quality of the model.

7 Trends and Open Problems

Our current trend is to experiment with the “Theory” plug-in that has been developed
recently (see section 3.5). Our idea is to incorporate more and more the usage of this
plug-in in our future developments. In particular, this plug-in allows us to incorporate
an axiomatisation of the Real Numbers. This very important for extending the usage of
Event-B to model hybrid systems.

Within the next ten years, our vision is to develop more systems using this formal
approach, thus reducing the need for programming and replace it by the need to proving.

8 Conclusions

In this paper, we describe the proving approach we developed over the years in order to
model computerised systems using a formal method (Event-B) based on refinement.

References
1. J-R. Abrial. From Z to B and then Event-B: Assigning Proofs to Meaningful Programs. In

E.B. Johnsen and L. Petre, editors, IFM, volume 7940 of Lecture Notes in Computer Science,
pages 1Ð15. Springer, 2013.

2. J.R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University
Press 2010.

3. http: //www.event-b.org Rodin Platform
4. M. Butler and I. Maamria. Practical theory extension in Event-B. In Zhiming Liu, Jim Wood-

cock, and Huibiao Zhu, editors, Theories of Programming and Formal Methods, volume
8051 of Lecture Notes in Computer Science, pages 67 to 81. Springer Berlin Heidelberg,
2013.

5. M. Leuschel and M. Butler. ProB: An Automated Analysis Toolset for the B Method. Inter-
national Journal on Software Tools for Technology Transfer 2008.

6. L. Voisin and J.R. Abrial The Rodin Platform Has Turned Ten ABZ 2014
7. D. Deharbe, P. Fontaine, Y. Guyot, and L. Voisin. SMT solvers for Rodin. In Proceedings

of the Third International Conference on Abstract State Machines, Alloy, B, VDM, and Z,
ABZ’12, pages 194 to 207, Berlin, Heidelberg, 2012. Springer-Verlag.

26

