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Estimated U.S. Internet Protocol Traffic, 2000-2017 (Exabytes per Month)
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Source: Cisco Visual Networking Index (VNI) and USTelecom Analysis. A DVD is assumed to store a two-hour movie.
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Examples: Consumer analytics, real-time sensing and monitoring
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Gateway device Analytics
Information and Analytics
1. Consumer analytics 2. Sensor-driven decision 3. Real-time monitoring

making
Monitoring and profiling user Monitoring the behaviors of
behavior on the Internet Analytics for business persons, things, or data
Learning user models for intelligence through space and time
targeted ads
Examples:

Examples: Examples: Inventory and supply chain
Clickthrough analysis Smart factories management
Location-aware Production trends
recommendations Computation & storage trends Security analytics
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Edge actuators

Data storage

CLOUD
—~
‘MM
.

Gateway device Analytics

controller

—)

Edge sensors

Examples: Process automation, Closed loop decision making,
Complex autonomous processes



controller

Edge sensors
& actuators

Automation and control

1. Process automation

Controlling the behaviors of
persons, things, or data
through space and time

Examples:
Software-based process control
Smart factories

Gateway device

2. Closed-loop decision making

Feedback control of
consumption for resources

Examples:

Networked smart energy
management

Smart buildings

Health monitoring

CLOUD

Data storage

=

g

3. Complex autonomous
systems

| -

Analytics

Automatic control in open
and uncertain environments

Examples:

Autonomous cars & traffic
networks

Robotic swarms, disaster
management




Potential economic impact of loT in 2025, including consumer surplus, is $3.9 trillion to $11.1 trillion

Size in 20257

$ billion, adjusted to 2015 dollars

Settings

g‘ -))) Human

Retail
~ environments

| Offices

-
AN

ﬁ 7 Worksites

170-
1,590

| e m———
| ————

1,210-
3,700

B Lowestimate [ | High estimate

Total = 33-9 trillion—-11.1 trillion Malor app“caﬂons

Monitoring and managing iliness, improving
wellness

Energy management, safety and security,
chore automation, usage-based design of
appliances

Automated checkout, layout optimization,
smart CRM, in-store personalized
promotions, inventory shrinkage prevention

Organizational redesign and worker
monitoring, augmented reality for training,
energy monitoring, building security

Operations optimization, predictive
maintenance, inventory optimization, health
and safety

Operations optimization, equipment
maintenance, health and safety, loT-
enabled R&D

Nt A
Q Vehicles

Cities

Outside

1 Includes sized applications only.
NOTE: Numbers may not sum due to rounding.

SOURCE: McKinsey Global Institute analysis
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Condition-based maintenance, reduced
insurance

Public safety and health, traffic control,
resource management

Logistics routing, autonomous cars and
trucks, navigation



This Talk:
Programming abstractions, Models,
and Analyses for developing
Large-scale loT Systems

Part I: A language abstraction
Part II: Some verification problems



Dynamics Level Modeling the world: ODEs, “Classical” control and
Uncertainty signal processing: AD
converters, PID controllers




Lok N

Programming Environment

. Streams and stateful transformations of

streams

Asynchronous concurrency, real-time
Uncertainty as “first-class” object
Heterogeneous computing platforms
Distributed infrastructure



Domain-Specific Languages

Control: Simulink/Stateflow

Synchronous hardware: Esterel/Lustre
Systems & Networking: Click

Data processing: Apache Spark Streaming

This Talk: ThingFlow, a DSL for loT



Example: A Temperature Controller
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Simple ThingFlow Example

* Periodically sample a light sensor
e \Write the sensed value to a file

* Every 5 steps, send the moving average to a message
queue

sensor.connect(file_writer(’file’))
sensor.transduce(MovingAvg(5)).connect(mqtt_writer)



III

“Traditional” Event-driven Style (Callbacks)

def sample_and_process(sensor, mqtt, xducer, compcb, errcb):
try:
sample = sensor.sample()
except StopIteration:
final_event = xducer.complete()
if final_event:
mqtt.send(final_event,

lambda:
mqtt.disc(lambda: compcb(False), errcb),
errchb)
else:
mqtt.disconnect (lambda: compcb(False), errcb)
return

event = SensorEvent(sensor_id=sensor.sensor_id,
ts=time.time(), val=sample)

csv_writer (event)

median_event = xducer.step(event)

if median_event:

mqtt.send(
else:
compcb (Tru

1. Separate connecting streams with handling of runtime
def loop(event . . . L.
def compcb (m situations: distinct control flows for normal, error, and

if : - .
T et 1o end-of-stream conditions not required
else:
print("al
event_loo 2

. . . ’ H —_
defmenetos Inversion of control avoided: programmer’s view = data
print("Got flow in the system

event_loop
event_loop.c
lambda: sa

3. Scheduling is provided by the infrastructure




With Coroutines

async
def sample_and_process(sensor, mqtt, xducer):
try:
sample = sensor.sample()
except Stoplteration:
final_event = xducer.complete()
if final_event:
await mqtt.send(final_event)
await mqtt.disconnect()
return False
event = make_event(sensor.sensor_id, sample)
csv_writer(event)
median_event = xducer.step(event)
if median_event:
await mqtt.send(median_event)

return T

def loop(evq

coro = sa] 1. No more callbacks, but interconnection still mixed with

task = ev
def done_d
exc =
if exc

control situations

rais§ 2. Choice to use asynchronous calls propagates through

elif f.
pring
even effects

else:
even

the program: implementation decisions have global

task.add_



ThingFlow Features

e Streams of “things”

— Input things introduce streams of events into the system
(e.g., sensors)

— Output things consume streams of events (e.g., actuators)
e Filters =
Both input and output things =

Stream transformers

Output
Thing




ThingFlow Features

s

* ThingFlow Programs = Graphs of stream transformers
connecting input/output ports

— Basic construct: A.connect(B, inport=outport)

— Syntactic sugar: default ports, chaining filters, combinators
A.map(f) — map the output stream on A using function f
A.transduce(M) — transduction by machine M

* Asynchronous, push-semantics
— explicit scheduling



ThingFlow Controller

kalman = Kalman(A, B, C, Q, R) # Kalman filter
pid = PID(Kp, Ki, Kd) # PID controller
pid.connect(kalman, port_mapping=(’default’, ’input’))
_ = Sensor() .transduce (kalman) \

.transduce (pid) \

.connect (Actuator())

Filter chaining



ThingFlow Controller

Actuator

g = Gyro()
k1 = Kalman(...)
pf = ParticleFilter(I={’gyro’, ’camera’})
g .transduce (k1) .delay () \
.connect(pf, port_mapping=(’default’,’gyro’))
c = Camera()
c.connect(pf, port_mapping=(’default’,’camera’))
pf .connect(Controller(...))



ThingFlow Controller

g = Gyro(Q)
k1 = Kalman(...)
= i i =4 ) ) )
cC = Camera() pf = ParticleFilter(I={’gyro’, ’camera’})

g.transduce (k1) .delay()\
, . t(pf, port_mapping=(’default’,’gyro’
c.connect (mgtt_writer) Za“’“g“ecc(ip port_mapping=(’default’, gyro’))

C=

c.connect(pf, portsuapping=(’default’,’camera’))
pf .connect(ControllerthS))
mqtt_reader(...)



ThingFlow Implementation

* Python3 library
— CPython: standard Python implementation

— MicroPython: “bare metal” implementation for
embedded systems

https://github.com/mpi-sws-rse/thingflow-python



Semantics = Comm. State Machines

Event streams




In Each Step...

Event streams

NEnn




In Each Step...

Event streams




In Each Step...

Infinite-state system: Semantics: Infinite-state Markov

| decision process:

1. Events are infinite-state:
events can be chosen from an |- Scheduler picks policy
infinite set (e.g., real-valued
signals) |- State evolves probabilistically

based on chosen filter

2. Filters are infinite-state: the
internal state of filters can be || (under measureability
infinite (e.g., a Kalman filter) Hassumptions)

3. Queues can be unbounded |

Core language: Prob streams
4. Probabilistic: The filter

transition function can be
probabilistic

Reading from prob streams = sampling
from the distribution




The ThingFlow Scheduler

Responsible for scheduling “things”

— Periodic observations (sensor sampling)

— Non-periodic events (e.g. socket readiness)
— Inter-thing events

Abstraction over low level details
— Threading, Order of scheduling

Different implementations
— On top of Python’s asyncio scheduler for Cpython
— Custom, power-saving implementation for ESP8266

ThingFlow programs must be explicitly scheduled to
perform their tasks!



Simple ThingFlow Example

* Periodically sample a light sensor
 Write the sensed value to a file
* Every 5 steps, send the moving average to a message queue

=

1
W sensor = LuxSensor()
sensor.connect(file_writer(’file’))

. ingAvg(5)).connect(matt_writ
Default scheduler: Push an event entirely |88/ connectimatt.writer)

through the graph before handling the r(asyncio.get_event_loop())

next input periodic(sensor, 2)

-- Can replace async calls by sync calls U




Solar Heater Example

o AT\

Hot

water —>
Water
temp
sensor

Between
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House




Initial

Solar Heater Example:
Controller State Machine

Tow / OFF

Between / OFF

Normal

Thin / ON

THIGH / ¢

31



Solar Heater Example: Code

Thign = 110 # Upper threshold (degrees fahrenheit)
T = 90 # Lower threshold

low
sensor = TempSensor (gpio port=1)

# The dispatcher converts a sensor reading into
# threshold events

dispatcher = sensor.transduce (RunningAvg (5)) \
.dispatch ([ (lambda v: v[2]>=Ty,,, 't_high'),
(lambda v: v[2]<=T, ., "t low')])
controller = Controller ()

dispatcher.connect (controller, port mapping=(’'t high’,’t high'"))
dispatcher.connect (controller, port mapping=('t low', 't low'))
dispatcher.connect (controller, port mapping=('default’, 'between'))

actuator = Actuator ()
controller.connect (actuator)

32



Lighting Project: Motivation

f out of town for the weekend, don’t want to
eave the house dark

Replay lights “similar” to normal lighting
pattern




Lighting Replay Application

Lux Sensors

Data
Capture

Smart Lights

Analysis and
Machine
Learning

Player
Application




Lighting Replay Application

Lux Sensors

Captured sensor
data

HMM state machines

'y

Smart Lights

)

Data
Capture

Analysis and Plaver
—> Machine [—> .y .
. Application
Learning
A

=

[

y
— g



ESP8266
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Ing Diagram
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Raspberry PI
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Raspberry Pi: Wiring Diagram

/ ) TSL2591
Lux Sensor\

Cathode

Resistor (short lead)

(long lead)

GPIOO

3.3V

0000000000000
>4 D00 - QOODDOIO = VODOOD =

Raspberry Pi A+ / B+ and Raspberry Pi 2 physical pin numbers

(Hcerio @Ground ()aav @sv (e,

GND




Lighting Replay Application: Capture

Raspberry Pi
(Dining Room)

Front Bedroom Sensor Node

ESP8266

Data
Capture

App

Influx

Back Bedroom Sensor Node

\

ESP8266




ESP8266 Code (ThingFlow)

from thingflow import Scheduler, SensorAsOutputThing
from tsl2591 import Tsl2591

from mqtt_writer import MQTTWriter

from wifi import wifi_connect

import os

#f Params to set

WIFI_SID= ...

WIFI_PW-= ...

SENSOR_ID="front-room"

BROKER='192.168.11.153' The MQTT writer is connected to

the lux sensor.

wifi_connect(WIFI_SID, WIFI_PW)

sensor = SensorAsOutputThing(TsI2591())

writer = MQTTWriter(SENSOR_ID, B R, 1883,
'remote-se

sensor.connect(writer)

Sample at 60 second intervals

sched = Scheduler()
sched.schedule_periodic(sensor, SENSOR_ID, 60)
sched.run_forever()

See https://github.com/mpi-sws-rse/thingflow-examples/blob/master/lighting_replay_app/capture/esp8266_main.py



Raspberry Pi Code (ThingFlow)

\ETe
to Dispatch
events

InfluxDB InfluxDB

(front (back
room) room)

InfluxDB
(dining
room)

https://github.com/mpi-sws-rse/thingflow-examples/blob/master/lighting_replay_app/capture/sensor_capture.py



Lighting Replay Application: Analysis

Raspberry Pi
(Dining Room)

Flat HMM

| )

Jupyter Notebook



Preprocessing the Data
(ThingFlow running in a Jupyter Notebook)

RENER
Writer
(smoothed
series)

Pandas
Writer
(raw series)

Fill in
missing
times

Sliding
Mean

Capture

NEL
reader.fill_in_missing_times() Indexes

.passthrough(raw_series_writer)
.transduce(SensorSlidingMeanPassNaNs(5))
.select(round_event_val)
.passthrough(smoothed_series_writer)
.passthrough(capture_nan_indexes)
.output_count()




Data Processing: Raw Data

Front room, last day

/ gaps
s

Y




Data Processing: Smoothed Data

Front room, last day



Data Processing: K-Means Clustering

Front room, last day



Data Processing: Mapping to on-off values

Front room, last day



Hidden Markov Models (HMMs)

Markov process

— State machine with probability associated
with each outgoing transition

— Probabilities determined only by the current
state, not on history

Hidden Markov Model

— The states are not visible to the

observer, only the outputs (“emissions”).

In a machine learning context:

— (Sequence of emissions, # states) => inferred
HMM

The hmmlearn library will do this for
us.

— https://github.com/hmmlearn/hmmlearn

O==04

Example Markov process
(from Wikipedia)



Slicing Data into Time-based “Zones”

Max(sunset+60m, 9:30 pm)

. E —  Zone
Sunrise ‘l'—

30 Minutes '

before ~
sunset
i i i— on—off-vailue
O 1 1 1 2 1 3 1
5 | .
; o0~ 4: i i



HMM Training and Prediction Process

Training

1. Build a list of sample subsequences for each zone
2. Guess a number of states (e.g. 5)

3. For each zone, create an HMM and call fit() with the
subsequences

Prediction

For each zone of a given day:

* Run the associated HMM to generate N samples for an N minute
zone duration

e Associated a computed timestamp with each sample



HMM Predicted Data

Front room, one day predicted data

«_

“Front room, one week predicted data | ‘

18:00 21:00



Lighting Replay Application: Replay

Raspberry Pi
(Dining Room)

HMM

Front Room
Smart Light

e §

Player
Script

ZigBee
HTTP
. e
Philips \

WiFi Hue
Router Bridge
and
Switch

Back Room
Smart Light



Logic of the Replay Script

* Use phue library to control lights
* Reuse time zone logic and HMMs from analysis

e Pseudo-code:

Initial testing of lights

while True:
compute predicted values for rest of day
organize predictions into a time-sorted list of on/off events
for each event:
sleep until event time
send control message for event
wait until next day

https://github.com/mpi-sws-rse/thingflow-examples/blob/master/lighting_replay_app/player/lux_player.py



ThingFlow: Analysis

Bad news: Communicating finite-state machines + FIFO
gueues = everything is undecidable!

Decidable verification in special cases: finite-state
events & filters, ordering of messages ignored

Analyzing a filter: Abstraction & approximation of
infinite-state probabilistic processes

— algorithms with guaranteed error bounds

Open: Tools and analyses for Thingflow programs
— Asynchrony, Hybrid systems, Uncertainty, Distribution



Analysis of ThingFlow
Two example analyses for subcases:

i> Analyzing event flows: Provenance Analysis
[Joint work with Roland Meyer & Zilong Wang]

2. Analyzing a filter: Abstracting infinite-state

Markov processes

[Joint work with Sadegh Soudjani and Alessandro
Abate]



Provenance

Information about the source and access history
of an object

“All inputs to controller are sanitized”

LS




Provenance for ThingFlow

* Associate principals with filters

* Provenance of a message =

Principals who have sent the message
chronologically

* Provenance domain =
Strings over principal names



Provenance Verification Problem

Given a Thingflow program P, a stream x, and a regular
set R of provenances,

are the provenances of all events in x always in the set R
along all executions of P?

Assumptions: Finitely many events, finite-state filters, and
ordering of events in queues ignored

Note: The system is still infinite-state!

Example: All inputs to controller have passed through a
sanitizer and then a state estimator



Provenance Verification Problem

Given a Thingflow program P, a stream x, and a regular
set R of provenances,

are the provenances of all events in x always in the set R
along all executions of P?

Assumptions: Finitely many events, finite-state filters, and
ordering of events in queues ignored

Note: The system is still infinite-state!

Basic abstraction: For each stream, each kind of event,
count how many events are currently in the stream



In Each Step...

Event streams

. . Finite state

Finitely many possibilities

Counting abstraction



®

Unbounded Events: Petri Net

Finite set of places ‘
Finite set of transitions —
Places marked with tokens @

State: Marking

Step: consume tokens from
sources, put tokens into
targets of a transition

Defines an infinite state
system



The Benefits of Petrification

Petri nets have nice decidable properties:

Coverability problem (is some place
markable?) is decidable

Theorem [Rackoff,Lipton] The coverability
problem for Petri nets is EXPSPACE-complete.



From ThingFlow to Nets

* A place for each filter state

* A place for each queue and each event type
— Count how many events of each type in a queue

With provenances, we do not get a Petri net:
Unboundedly many provenances =>
unboundedly many places



Unbounded Provenances: Automata

* Define equivalence classes w.r.t. the states of
DFA for the regular set of provenances.

The validity of the provenance property
depends on states of the spec automaton, not
concrete provenances.

* Define a counter for each queue, event, and
state of the spec



Reduction

Program + Provenance DFA =>__, Petri net

poly

— Control flow can be modeled by Petri net
— Each counter is a place in the Petri net

Provenance verification problem =
Coverability problem of Petri nets



Main Theorem

Provenance verification problem for

finite-state ThingF

ow programs (when

ordering is ignorec
complete.

) is EXPSPACE-



Linear Temporal Logic

* Provenance verification = Invariants

* Provenance linear temporal logic:

“Whenever event in x has provenance R, eventually
an event in y has provenance S”

Theorem: ProvlTL decidable for finite-state
Thingflow programs (when ordering is
ignored)



Analysis of ThingFlow
Two examples of decidability in special cases:

1. Provenance Analysis
[Joint work with Roland Meyer & Zilong Wang]

§> Analyzing a single filter: Abstracting infinite-

state Markov processes

[Joint work with Sadegh Soudjani and Alessandro
Abate]



Discrete-Time Markov Process

* State space S
* Transition kernel T(ds” [ s) = t(s’ | s) ds’

T(C|s)=Pr[s' e C|s]

* N-step safety problem: Given s,, T, and a set
A, find the probability that the system stays in
A up to N steps

— Can formulate as a Bellman iteration (but without
any closed form)



Markov Chain Abstraction

TN
£

* Finite-state Markov chain = Representatives
from a partition of the infinite-state space

* Transitions:

P(v;,v;) :/ t(s' | v;)ds'
A

J



Main Result

If t(. [ s)is Lipschitz continuous with constant h,
one can bound the probability of error between
the original model and the finite-state

abstraction:

sy (A) — poy (As)| < NLho

in A for N steps of A for N steps 6 = Diameter of
in abstraction abstraction




Infinite to Finite MDPs

* Bounds are very weak!
— Compared to Monte Carlo simulation

* Open: Better bounds?

* Open: Verification for MDP + asynchronous
concurrency?



Analysis of ThingFlow

Two examples of decidability in special cases:

1. Provenance Analysis
[Joint work with Roland Meyer & Zilong Wang]

2. Analyzing a single filter: Abstracting infinite-state

Markov processes

[Joint work with Sadegh Soudjani and Alessandro
Abate]

Open: Analysis of a Thingflow program
(combining asynchrony, filters, and probabilities)



Other Open Problems

. Parameterized reasoning

. Real-time control

. Fault tolerance and distribution
. Deployment

. Security, privacy, accountability



Conclusion

* ThingFlow = DSL for stream-processing
applications for loT systems

« Streams & stream transformations
* Filters & filter composition

* Uncertainty & infinite-state

* Asynchrony & explicit scheduling

* Many verification/analysis/tool aspects
are open!



Thank You

http://www.mpi-sws.org/~rupak
ThingFlow:
https://github.com/mpi-sws-rse/thingflow-python

ThingFlow Examples:
https://github.com/mpi-sws-rse/thingflow-examples




