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Information and	
  Analytics

1. Consumer	
  analytics

Monitoring	
  and	
  profiling	
  user	
  
behavior	
  on	
  the	
  Internet
Learning user	
  models	
  for	
  
targeted	
  ads

Examples:
Clickthrough analysis
Location-­‐aware	
  
recommendations

2.	
  Sensor-­‐driven decision	
  
making

Analytics	
  for	
  business	
  
intelligence

Examples:	
  
Smart	
  factories
Production	
  trends
Computation	
  &	
  storage	
  trends

3.	
  Real-­‐time	
  monitoring

Monitoring	
  the	
  behaviors of	
  
persons,	
  things,	
  or	
  data	
  
through	
  space	
  and	
  time

Examples:	
  
Inventory	
  and	
  supply	
  chain	
  
management

Security	
  analytics
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Examples:	
  Process	
  automation,	
  Closed	
  loop	
  decision	
  making,
Complex	
  autonomous	
  processes



Automation	
  and	
  control
1. Process	
  automation

Controlling	
  the	
  behaviors of	
  
persons,	
  things,	
  or	
  data	
  
through	
  space	
  and	
  time

Examples:	
  
Software-­‐based process	
  control
Smart	
  factories

2.	
  Closed-­‐loop	
  decision	
  making

Feedback	
  control	
  of	
  
consumption	
  for	
  resources

Examples:
Networked	
  smart	
  energy	
  
management
Smart	
  buildings
Health	
  monitoring

3.	
  Complex	
  autonomous	
  
systems

Automatic	
  control	
  in	
  open	
  
and	
  uncertain	
  environments

Examples:
Autonomous	
  cars	
  &	
  traffic	
  
networks
Robotic	
  swarms,	
  disaster	
  
management
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This	
  Talk:	
  
Programming	
  abstractions,	
  Models,	
  

and	
  Analyses	
  for	
  developing	
  
Large-­‐scale	
  IoT Systems

Part	
  I:	
  A	
  language	
  abstraction
Part	
  II:	
  Some	
  verification	
  problems



Cyber-­‐physical-­‐social	
  
Level

??? ???

Enterprise Level Software	
  services:
Provisioning,	
  scheduling,	
  
replication

Distributed	
  systems,	
  
Datacenters

System	
  Level
(Multiple agents)

Discrete systems
Co-­‐ordination,	
  Communication,	
  
Learning

Databases	
  &	
  Querying,
Machine	
  learning

Component	
  Level
(Single	
  control	
  loop)

Hybrid	
  systems
Ensure	
  temporal	
  behaviors

Control loops:	
  
sense/compute/actuate

Dynamics	
  Level Modeling the	
  world:	
  ODEs,
Uncertainty

“Classical”	
  control	
  and	
  
signal	
  processing:	
  AD	
  
converters,	
  PID controllers



Programming	
  Environment

1. Streams and	
  stateful transformations	
  of	
  
streams

2. Asynchronous concurrency,	
  real-­‐time
3. Uncertainty as	
  “first-­‐class”	
  object
4. Heterogeneous computing	
  platforms
5. Distributed infrastructure



Domain-­‐Specific	
  Languages

• Control:	
  Simulink/Stateflow
• Synchronous	
  hardware:	
  Esterel/Lustre
• Systems	
  &	
  Networking:	
  Click
• Data	
  processing:	
  Apache	
  Spark	
  Streaming

• This	
  Talk:	
  ThingFlow,	
  a	
  DSL	
  for	
  IoT
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Simple	
  ThingFlow	
  Example
• Periodically	
  sample	
  a	
  light	
  sensor
• Write	
  the	
  sensed	
  value	
  to	
  a	
  file
• Every	
  5	
  steps,	
  send	
  the	
  moving	
  average	
  to	
  a	
  message	
  

queue

Lux
Sensor

Write
to
File

Scheduler

Write
to

Queue

Moving
Avg

sensor.connect(file_writer(’file’))
sensor.transduce(MovingAvg(5)).connect(mqtt_writer)



“Traditional”	
  Event-­‐driven	
  Style	
  (Callbacks)
def sample_and_process(sensor, mqtt, xducer, compcb, errcb):

try:
sample = sensor.sample()

except StopIteration:
final_event = xducer.complete()
if final_event:
mqtt.send(final_event,

lambda:
mqtt.disc(lambda: compcb(False), errcb),
errcb)

else:
mqtt.disconnect(lambda: compcb(False), errcb)
return

event = SensorEvent(sensor_id=sensor.sensor_id,
ts=time.time(), val=sample)

csv_writer(event)
median_event = xducer.step(event)
if median_event:
mqtt.send(median_event, lambda: compcb(True), errcb)

else:
compcb(True)

def loop(event_loop):
def compcb(more):

if more:
event_loop.call_later(0.5, loop)

else:
print("all done, no more callbacks to schedule")
event_loop.stop()

def errcb(e):
print("Got error: %s" % e)
event_loop.stop()

event_loop.call_soon(
lambda: sample_and_process(sensor, mqtt, transducer,

compcb, errcb))

Figure 2. An example written using an event-driven style

events from the upstream sensor. In ThingFlow, these are handled
by the (reusable) components via the on_next, on_error, and
on_completed methods.

Second, through the higher-level scheduler abstraction
ThingFlow provides on top of asyncio, the need to write code
like the loop function for each application is avoided.

Constrasting ThingFlow and a Coroutine Style The Python pro-
gramming language recently added syntactic support for coroutines
via the async and await keywords. When the async keyword is
prepended to a function or method definition, the associated function
is compiled to a coroutine. The await keyword is used within a
coroutine to indicated a call to another coroutine (which suspends
the caller). These coroutines are integrated with Python’s event loop.

Consider the coroutine-based code in Figure 3 which uses
Python’s async/await to implement our application. This version
largely follows a procedural style. The need to pass callbacks
into each function has been eliminated, but event processing is
still conflated with interconnection. Furthermore, the choice to
use asynchronous calls propagates: functions calling an async
(coroutine) method must also be async, thus making implementation
decisions about whether to use asynchronous or synchronous APIs
to have a non-local impact. In contrast, ThingFlow can support
asynchronous APIs as well as components running in separate
threads, without any application-level changes.

Finally, without a higher level scheduler abstraction, we still
need the code to implement periodic scheduling of the sample and
process function, including special cases for error situations. The
code for loop looks almost the same as in the event-driven version.

async
def sample_and_process(sensor, mqtt, xducer):

try:
sample = sensor.sample()

except StopIteration:
final_event = xducer.complete()
if final_event:

await mqtt.send(final_event)
await mqtt.disconnect()
return False

event = make_event(sensor.sensor_id, sample)
csv_writer(event)
median_event = xducer.step(event)
if median_event:
await mqtt.send(median_event)
return True

def loop(event_loop):
coro = sample_and_process(sensor, mqtt, transducer)
task = event_loop.create_task(coro)
def done_callback(f):

exc = f.exception()
if exc:

raise exc
elif f.result()==False:

print("all done, no more callbacks to schedule")
event_loop.stop()

else:
event_loop.call_later(0.5, loop)

task.add_done_callback(done_callback)

Figure 3. An example written using Python’s coroutines

3. Transition System Semantics
Thingflow programs define infinite-state transition systems.

Filters and Programs Fix an alphabet ⌃ (not necessarily finite)
of events. We write ⌃⇤ for the set of finite strings over ⌃. For strings
u, v 2 ⌃

⇤, we write u · v for their concatenation. A stream is a
(finite or infinite) sequence over ⌃.

A filter F = (I,O,Q, �,O, q0) consists of a finite set of input
ports I , a finite set of output ports O, a (not necessarily finite) set of
internal states Q, a transition function � : Q ⇥ (I ⇥ ⌃) ! Q, an
output function O : Q⇥ (I ⇥ ⌃)⇥ O ! ⌃

⇤, and an initial state
q0 2 Q. An input thing is a filter with I = ;. An output thing is a
filter with O = ;.

A run of F on a sequence (i0,�0)(i1,�1) . . . 2 (I ⇥ ⌃)

⇤ is
a sequence of states q0, q1, . . . such that q0 is the initial state of
F , and for each j � 0, we have �(q

j

, (i
j

,�
j

)) = q
j+1; more-

over, this run produces a sequence of outputs O(q0, (i0,�0), o) ·
O(q1, (i1,�1), o) . . . for each o 2 O.

We extend � to a sequence of inputs in the natural way: �(q, ") =
q and �(q, (i,�) · w) = �(�(q, (i,�)), w), for (i,�) 2 I ⇥ ⌃

and w 2 (I ⇥ ⌃)

⇤. Similarly, we extend O to a sequence of
inputs: O(q, ", o) = " and O(q, (i,�) · w, o) = O(q, (i,�), o) ·
O(�(q, (i,�)), w, o).

A program P = (V,E) is a directed graph where V is a set
of filters and E is a set of connections between filters in V . Each
connection in E is of the form (v, v0, o, i), where v, v0 2 V , o is an
output port of v and i is an input port of v0.

For a filter v 2 V , we write I
v

, O
v

, Q
v

, �
v

, O
v

, and q0v ,
respectively, to denote its components.

Operational Semantics Let P = (V,E) be a program. A con-
figuration of the program P is a tuple (q, e), where q maps each
filter v 2 V to an internal state in Q

v

and e maps each connec-
tion (v, v0, o, i) 2 E to a sequence in ⌃

⇤. Intuitively, q gives the
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1. Separate	
  connecting	
  streams	
  with	
  handling	
  of	
  runtime	
  
situations:	
  distinct	
  control	
  flows	
  for	
  normal,	
  error,	
  and	
  
end-­‐of-­‐stream	
  conditions	
  not	
  required

2. Inversion	
  of	
  control	
  avoided:	
  programmer’s	
  view	
  =	
  data	
  
flow	
  in	
  the	
  system

3. Scheduling	
  is	
  provided	
  by	
  the	
  infrastructure



With	
  Coroutines
def sample_and_process(sensor, mqtt, xducer, compcb, errcb):

try:
sample = sensor.sample()

except StopIteration:
final_event = xducer.complete()
if final_event:
mqtt.send(final_event,

lambda:
mqtt.disc(lambda: compcb(False), errcb),
errcb)

else:
mqtt.disconnect(lambda: compcb(False), errcb)
return

event = SensorEvent(sensor_id=sensor.sensor_id,
ts=time.time(), val=sample)

csv_writer(event)
median_event = xducer.step(event)
if median_event:
mqtt.send(median_event, lambda: compcb(True), errcb)

else:
compcb(True)

def loop(event_loop):
def compcb(more):

if more:
event_loop.call_later(0.5, loop)

else:
print("all done, no more callbacks to schedule")
event_loop.stop()

def errcb(e):
print("Got error: %s" % e)
event_loop.stop()

event_loop.call_soon(
lambda: sample_and_process(sensor, mqtt, transducer,

compcb, errcb))

Figure 2. An example written using an event-driven style

events from the upstream sensor. In ThingFlow, these are handled
by the (reusable) components via the on_next, on_error, and
on_completed methods.

Second, through the higher-level scheduler abstraction
ThingFlow provides on top of asyncio, the need to write code
like the loop function for each application is avoided.

Constrasting ThingFlow and a Coroutine Style The Python pro-
gramming language recently added syntactic support for coroutines
via the async and await keywords. When the async keyword is
prepended to a function or method definition, the associated function
is compiled to a coroutine. The await keyword is used within a
coroutine to indicated a call to another coroutine (which suspends
the caller). These coroutines are integrated with Python’s event loop.

Consider the coroutine-based code in Figure 3 which uses
Python’s async/await to implement our application. This version
largely follows a procedural style. The need to pass callbacks
into each function has been eliminated, but event processing is
still conflated with interconnection. Furthermore, the choice to
use asynchronous calls propagates: functions calling an async
(coroutine) method must also be async, thus making implementation
decisions about whether to use asynchronous or synchronous APIs
to have a non-local impact. In contrast, ThingFlow can support
asynchronous APIs as well as components running in separate
threads, without any application-level changes.

Finally, without a higher level scheduler abstraction, we still
need the code to implement periodic scheduling of the sample and
process function, including special cases for error situations. The
code for loop looks almost the same as in the event-driven version.

async
def sample_and_process(sensor, mqtt, xducer):

try:
sample = sensor.sample()

except StopIteration:
final_event = xducer.complete()
if final_event:

await mqtt.send(final_event)
await mqtt.disconnect()
return False

event = make_event(sensor.sensor_id, sample)
csv_writer(event)
median_event = xducer.step(event)
if median_event:
await mqtt.send(median_event)
return True

def loop(event_loop):
coro = sample_and_process(sensor, mqtt, transducer)
task = event_loop.create_task(coro)
def done_callback(f):

exc = f.exception()
if exc:

raise exc
elif f.result()==False:

print("all done, no more callbacks to schedule")
event_loop.stop()

else:
event_loop.call_later(0.5, loop)

task.add_done_callback(done_callback)

Figure 3. An example written using Python’s coroutines

3. Transition System Semantics
Thingflow programs define infinite-state transition systems.

Filters and Programs Fix an alphabet ⌃ (not necessarily finite)
of events. We write ⌃⇤ for the set of finite strings over ⌃. For strings
u, v 2 ⌃

⇤, we write u · v for their concatenation. A stream is a
(finite or infinite) sequence over ⌃.

A filter F = (I,O,Q, �,O, q0) consists of a finite set of input
ports I , a finite set of output ports O, a (not necessarily finite) set of
internal states Q, a transition function � : Q ⇥ (I ⇥ ⌃) ! Q, an
output function O : Q⇥ (I ⇥ ⌃)⇥ O ! ⌃

⇤, and an initial state
q0 2 Q. An input thing is a filter with I = ;. An output thing is a
filter with O = ;.

A run of F on a sequence (i0,�0)(i1,�1) . . . 2 (I ⇥ ⌃)

⇤ is
a sequence of states q0, q1, . . . such that q0 is the initial state of
F , and for each j � 0, we have �(q

j

, (i
j

,�
j

)) = q
j+1; more-

over, this run produces a sequence of outputs O(q0, (i0,�0), o) ·
O(q1, (i1,�1), o) . . . for each o 2 O.

We extend � to a sequence of inputs in the natural way: �(q, ") =
q and �(q, (i,�) · w) = �(�(q, (i,�)), w), for (i,�) 2 I ⇥ ⌃

and w 2 (I ⇥ ⌃)

⇤. Similarly, we extend O to a sequence of
inputs: O(q, ", o) = " and O(q, (i,�) · w, o) = O(q, (i,�), o) ·
O(�(q, (i,�)), w, o).

A program P = (V,E) is a directed graph where V is a set
of filters and E is a set of connections between filters in V . Each
connection in E is of the form (v, v0, o, i), where v, v0 2 V , o is an
output port of v and i is an input port of v0.

For a filter v 2 V , we write I
v

, O
v

, Q
v

, �
v

, O
v

, and q0v ,
respectively, to denote its components.

Operational Semantics Let P = (V,E) be a program. A con-
figuration of the program P is a tuple (q, e), where q maps each
filter v 2 V to an internal state in Q

v

and e maps each connec-
tion (v, v0, o, i) 2 E to a sequence in ⌃

⇤. Intuitively, q gives the

4 2017/5/8

1. No	
  more	
  callbacks,	
  but	
  interconnection	
  still	
  mixed	
  with	
  
control	
  situations

2. Choice	
  to	
  use	
  asynchronous	
  calls	
  propagates	
  through	
  
the	
  program:	
  implementation	
  decisions	
  have	
  global	
  
effects



ThingFlow Features

• Streams	
  of	
  “things”
– Input	
  things	
  introduce	
  streams	
  of	
  events	
  into	
  the	
  system	
  
(e.g.,	
  sensors)

– Output	
  things	
  consume	
  streams	
  of	
  events	
  (e.g.,	
  actuators)

• Filters	
  =	
  
Both	
  input	
  and	
  output	
  things	
  =	
  
Stream	
  transformers

FilterInput	
  
Thing

Output
Thing



ThingFlow Features

• ThingFlow Programs	
  =	
  Graphs	
  of	
  stream	
  transformers	
  
connecting	
  input/output	
  ports
– Basic	
  construct:	
  	
  A.connect(B,	
  inport=outport)

– Syntactic	
  sugar:	
  default	
  ports,	
  chaining	
  filters,	
  combinators
A.map(f)	
  – map	
  the	
  output	
  stream	
  on	
  A	
  using	
  function	
  f
A.transduce(M)	
  – transduction	
  by	
  machine	
  M

• Asynchronous,	
  push-­‐semantics
– explicit	
  scheduling

FilterInput	
  
Thing

Output
Thing



ThingFlow Controller

Kalman
Filter

Sensor
ActuatorControl

robustness in the face of tight deadlines or power consumption.
In Python’s standard asyncio scheduler, events are scheduled
independently, without regard to their interrelationships. In the
standard ThingFlow scheduler for Python, we already optimize
by invoking downstream things directly, rather than going back
to the lower level scheduler. Futher optimizations are possible by
reordering the recurring sensor sampling events. We do this in the
scheduler for MicroPython.

Since the ESP8266 can be run off a battery, we have chosen
to optimize for minimal power consumption by reducing wake-
ups and maximizing the time the WiFi radio and processor can be
kept in a low power mode. This can have a dramatic impact on
power consumption. For example, normal power comsumption of
the ESP8266 will be from 50 mA to 170 mA, depending on radio
usage. If one runs a workload where the system wakes for half a
second at a time once every 100 seconds and stays in deep sleep
mode otherwise, the average power consumption will be reduced to
only 0.5 mA [9].

Our ThingFlow-MicroPython scheduler minimizes wake-ups by
delaying the initial execution of certain tasks and grouping together
tasks with the same wakeup interval. When a new task is added to
the scheduler, we use the following logic. If a new task is added that
matches an older task’s interval, it will not be scheduled until the
existing one is run. If there are no tasks with the same interval, we
look for the smallest interval that is either a factor or multiple of the
new interval. We schedule the new interval to be coordinated with
this one. For example, if we have a new interval 60 seconds and old
intervals of 30 and 45 seconds, we will schedule the new 60 second
interval to first run on the next execution of the 30 second tasks.
Thus, they will run at the same time for each execution of the 60
second interval. Finally, if a task is run later than its scheduled time
(due to others tasks taking too long), the next scheduled execution is
kept as if the task had run at the correct time (by making the interval
shorter). This avoids tasks getting out-of-sync when one misses a
deadline.

Connecting to the Outside World: Adapters Finally, ThingFlow
provides a set of adapters to import and export streams into different
pipelines. It provides readers and writers from csv files, pandas
frames, TCP streams, MQTT streams (MQTT is a messaging proto-
col for IoT systems), Spark streams, databases (Postgres, influxDB),
visualization frameworks (Bokeh), etc. Using these adapters, one
can write ThingFlow programs which communicate with external
data sources or data analysis, learning, and visualization pipelines,
as well as write distributed ThingFlow programs.

5. Case Studies
5.1 A Control Pipeline with Bayesian Filtering
A basic control loop involving noisy sensors, estimators, control
computations, and actuation forms an event-processing pipeline:
measure a stream of sensor values, estimate state using a filter,
compute the control signal based on the estimate, and send the
signal to an actuator. In ThingFlow, the pipeline will be written as:

kalman = Kalman(A, B, C, Q, R) # Kalman filter
pid = PID(Kp, Ki, Kd) # PID controller
pid.connect(kalman, port_mapping=(’default’, ’input’))
_ = Sensor().transduce(kalman)\

.transduce(pid)\

.connect(Actuator())

This corresponds very closely to the control theorist’s view. Notice
that in addition to the Kalman filter, the controller usually also
maintains internal state to compute integrations or derivatives.

There are two advantages that ThingFlow provides in this
setting. First, it provides a single interface for sampling and stream

g = Gyro()
k1 = Kalman(...)
pf = ParticleFilter(I={’gyro’, ’camera’})
g.transduce(k1).delay()\

.connect(pf, port_mapping=(’default’,’gyro’))
c = Camera()
c.connect(pf, port_mapping=(’default’,’camera’))
pf.connect(Controller(...))

Figure 4. Cascaded filtering example [19] and its ThingFlow code

processing that is close to the model of controller design adopted
by control theorists. For example, consider a more involved control
system described in [19], where the problem of estimating the state
of an autonomous vehicle is solved using a cascaded filter model.
There are two sensors: a gyroscope and a video camera. A Kalman
filter is used to provide precise estimates from the gyro. The gyro
estimate and the raw camera feed is fed into a particle filter to finally
estimate the pose. Figure 4 shows the control theorist’s view of the
system and the closely corresponding ThingFlow code.

In [19], the authors discuss two designs: first, the particle filter
receives the mean and the variance of the distribution computed by
k1 and uses further statistical analyses, and second, the particle filter
receives the mean value computed by the Kalman filter k1 and uses
it as a “true estimate.” In ThingFlow, one can change from the first
design to the second simply by adding a map:

g.transduce(k1).delay().map(lambda mu, C: mu)\
.connect(pf, port_mapping=(’default’,’gyro’))

Second, ThingFlow provides adapters to import and export data
from external sources, potentially running on different machines.
For example, suppose the camera is running on a different machine
and is sending the video stream over MQTT (a messaging standard).
In ThingFlow, using adapters that talk to network streams, we write

c = Camera().connect(MQTTWriter(...))

for the source and modify the original source to read from the
message source

c = MQTTReader(...)

to get a distributed implementation.
Since ThingFlow does not provide real-time guarantees, it is not

an implementation platform for all control systems, especially when
the dynamics is fast. However, when the underlying dynamics is slow
compared to the computation requirements, such as in temperature
control or building control (where sampling intervals are in minutes
or more), we have implemented ThingFlow based control loops. We
give specific case studies below.

7 2017/5/8
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robustness in the face of tight deadlines or power consumption.
In Python’s standard asyncio scheduler, events are scheduled
independently, without regard to their interrelationships. In the
standard ThingFlow scheduler for Python, we already optimize
by invoking downstream things directly, rather than going back
to the lower level scheduler. Futher optimizations are possible by
reordering the recurring sensor sampling events. We do this in the
scheduler for MicroPython.

Since the ESP8266 can be run off a battery, we have chosen
to optimize for minimal power consumption by reducing wake-
ups and maximizing the time the WiFi radio and processor can be
kept in a low power mode. This can have a dramatic impact on
power consumption. For example, normal power comsumption of
the ESP8266 will be from 50 mA to 170 mA, depending on radio
usage. If one runs a workload where the system wakes for half a
second at a time once every 100 seconds and stays in deep sleep
mode otherwise, the average power consumption will be reduced to
only 0.5 mA [9].

Our ThingFlow-MicroPython scheduler minimizes wake-ups by
delaying the initial execution of certain tasks and grouping together
tasks with the same wakeup interval. When a new task is added to
the scheduler, we use the following logic. If a new task is added that
matches an older task’s interval, it will not be scheduled until the
existing one is run. If there are no tasks with the same interval, we
look for the smallest interval that is either a factor or multiple of the
new interval. We schedule the new interval to be coordinated with
this one. For example, if we have a new interval 60 seconds and old
intervals of 30 and 45 seconds, we will schedule the new 60 second
interval to first run on the next execution of the 30 second tasks.
Thus, they will run at the same time for each execution of the 60
second interval. Finally, if a task is run later than its scheduled time
(due to others tasks taking too long), the next scheduled execution is
kept as if the task had run at the correct time (by making the interval
shorter). This avoids tasks getting out-of-sync when one misses a
deadline.

Connecting to the Outside World: Adapters Finally, ThingFlow
provides a set of adapters to import and export streams into different
pipelines. It provides readers and writers from csv files, pandas
frames, TCP streams, MQTT streams (MQTT is a messaging proto-
col for IoT systems), Spark streams, databases (Postgres, influxDB),
visualization frameworks (Bokeh), etc. Using these adapters, one
can write ThingFlow programs which communicate with external
data sources or data analysis, learning, and visualization pipelines,
as well as write distributed ThingFlow programs.

5. Case Studies
5.1 A Control Pipeline with Bayesian Filtering
A basic control loop involving noisy sensors, estimators, control
computations, and actuation forms an event-processing pipeline:
measure a stream of sensor values, estimate state using a filter,
compute the control signal based on the estimate, and send the
signal to an actuator. In ThingFlow, the pipeline will be written as:

kalman = Kalman(A, B, C, Q, R) # Kalman filter
pid = PID(Kp, Ki, Kd) # PID controller
pid.connect(kalman, port_mapping=(’default’, ’input’))
_ = Sensor().transduce(kalman)\

.transduce(pid)\

.connect(Actuator())

This corresponds very closely to the control theorist’s view. Notice
that in addition to the Kalman filter, the controller usually also
maintains internal state to compute integrations or derivatives.

There are two advantages that ThingFlow provides in this
setting. First, it provides a single interface for sampling and stream
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g = Gyro()
k1 = Kalman(...)
pf = ParticleFilter(I={’gyro’, ’camera’})
g.transduce(k1).delay()\

.connect(pf, port_mapping=(’default’,’gyro’))
c = Camera()
c.connect(pf, port_mapping=(’default’,’camera’))
pf.connect(Controller(...))

Figure 4. Cascaded filtering example [19] and its ThingFlow code

processing that is close to the model of controller design adopted
by control theorists. For example, consider a more involved control
system described in [19], where the problem of estimating the state
of an autonomous vehicle is solved using a cascaded filter model.
There are two sensors: a gyroscope and a video camera. A Kalman
filter is used to provide precise estimates from the gyro. The gyro
estimate and the raw camera feed is fed into a particle filter to finally
estimate the pose. Figure 4 shows the control theorist’s view of the
system and the closely corresponding ThingFlow code.

In [19], the authors discuss two designs: first, the particle filter
receives the mean and the variance of the distribution computed by
k1 and uses further statistical analyses, and second, the particle filter
receives the mean value computed by the Kalman filter k1 and uses
it as a “true estimate.” In ThingFlow, one can change from the first
design to the second simply by adding a map:

g.transduce(k1).delay().map(lambda mu, C: mu)\
.connect(pf, port_mapping=(’default’,’gyro’))

Second, ThingFlow provides adapters to import and export data
from external sources, potentially running on different machines.
For example, suppose the camera is running on a different machine
and is sending the video stream over MQTT (a messaging standard).
In ThingFlow, using adapters that talk to network streams, we write

c = Camera().connect(MQTTWriter(...))

for the source and modify the original source to read from the
message source

c = MQTTReader(...)

to get a distributed implementation.
Since ThingFlow does not provide real-time guarantees, it is not

an implementation platform for all control systems, especially when
the dynamics is fast. However, when the underlying dynamics is slow
compared to the computation requirements, such as in temperature
control or building control (where sampling intervals are in minutes
or more), we have implemented ThingFlow based control loops. We
give specific case studies below.
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robustness in the face of tight deadlines or power consumption.
In Python’s standard asyncio scheduler, events are scheduled
independently, without regard to their interrelationships. In the
standard ThingFlow scheduler for Python, we already optimize
by invoking downstream things directly, rather than going back
to the lower level scheduler. Futher optimizations are possible by
reordering the recurring sensor sampling events. We do this in the
scheduler for MicroPython.

Since the ESP8266 can be run off a battery, we have chosen
to optimize for minimal power consumption by reducing wake-
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power consumption. For example, normal power comsumption of
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the scheduler, we use the following logic. If a new task is added that
matches an older task’s interval, it will not be scheduled until the
existing one is run. If there are no tasks with the same interval, we
look for the smallest interval that is either a factor or multiple of the
new interval. We schedule the new interval to be coordinated with
this one. For example, if we have a new interval 60 seconds and old
intervals of 30 and 45 seconds, we will schedule the new 60 second
interval to first run on the next execution of the 30 second tasks.
Thus, they will run at the same time for each execution of the 60
second interval. Finally, if a task is run later than its scheduled time
(due to others tasks taking too long), the next scheduled execution is
kept as if the task had run at the correct time (by making the interval
shorter). This avoids tasks getting out-of-sync when one misses a
deadline.

Connecting to the Outside World: Adapters Finally, ThingFlow
provides a set of adapters to import and export streams into different
pipelines. It provides readers and writers from csv files, pandas
frames, TCP streams, MQTT streams (MQTT is a messaging proto-
col for IoT systems), Spark streams, databases (Postgres, influxDB),
visualization frameworks (Bokeh), etc. Using these adapters, one
can write ThingFlow programs which communicate with external
data sources or data analysis, learning, and visualization pipelines,
as well as write distributed ThingFlow programs.

5. Case Studies
5.1 A Control Pipeline with Bayesian Filtering
A basic control loop involving noisy sensors, estimators, control
computations, and actuation forms an event-processing pipeline:
measure a stream of sensor values, estimate state using a filter,
compute the control signal based on the estimate, and send the
signal to an actuator. In ThingFlow, the pipeline will be written as:

kalman = Kalman(A, B, C, Q, R) # Kalman filter
pid = PID(Kp, Ki, Kd) # PID controller
pid.connect(kalman, port_mapping=(’default’, ’input’))
_ = Sensor().transduce(kalman)\

.transduce(pid)\

.connect(Actuator())

This corresponds very closely to the control theorist’s view. Notice
that in addition to the Kalman filter, the controller usually also
maintains internal state to compute integrations or derivatives.

There are two advantages that ThingFlow provides in this
setting. First, it provides a single interface for sampling and stream
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Figure 4. Cascaded filtering example [19] and its ThingFlow code

processing that is close to the model of controller design adopted
by control theorists. For example, consider a more involved control
system described in [19], where the problem of estimating the state
of an autonomous vehicle is solved using a cascaded filter model.
There are two sensors: a gyroscope and a video camera. A Kalman
filter is used to provide precise estimates from the gyro. The gyro
estimate and the raw camera feed is fed into a particle filter to finally
estimate the pose. Figure 4 shows the control theorist’s view of the
system and the closely corresponding ThingFlow code.

In [19], the authors discuss two designs: first, the particle filter
receives the mean and the variance of the distribution computed by
k1 and uses further statistical analyses, and second, the particle filter
receives the mean value computed by the Kalman filter k1 and uses
it as a “true estimate.” In ThingFlow, one can change from the first
design to the second simply by adding a map:

g.transduce(k1).delay().map(lambda mu, C: mu)\
.connect(pf, port_mapping=(’default’,’gyro’))

Second, ThingFlow provides adapters to import and export data
from external sources, potentially running on different machines.
For example, suppose the camera is running on a different machine
and is sending the video stream over MQTT (a messaging standard).
In ThingFlow, using adapters that talk to network streams, we write

c = Camera().connect(MQTTWriter(...))

for the source and modify the original source to read from the
message source

c = MQTTReader(...)

to get a distributed implementation.
Since ThingFlow does not provide real-time guarantees, it is not

an implementation platform for all control systems, especially when
the dynamics is fast. However, when the underlying dynamics is slow
compared to the computation requirements, such as in temperature
control or building control (where sampling intervals are in minutes
or more), we have implemented ThingFlow based control loops. We
give specific case studies below.
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ThingFlow Implementation

• Python3	
  library
– CPython:	
  standard	
  Python	
  implementation
–MicroPython:	
  “bare	
  metal”	
  implementation	
  for	
  
embedded	
  systems

https://github.com/mpi-­‐sws-­‐rse/thingflow-­‐python
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In	
  Each	
  Step…

Filter

Input	
  
Thing

Output
Thing

Filter

Filter

Event	
  streams
Infinite-­‐state	
  system:

1. Events	
  are	
  infinite-­‐state:	
  
events	
  can	
  be	
  chosen	
  from	
  an
infinite	
  set	
  (e.g.,	
  real-­‐valued	
  
signals)

2. Filters	
  are	
  infinite-­‐state:	
  the	
  
internal	
  state	
  of	
  filters	
  can	
  be	
  
infinite	
  (e.g.,	
  a	
  Kalman filter)

3. Queues can	
  be	
  unbounded

4. Probabilistic:	
  The	
  filter	
  
transition	
  function	
  can	
  be	
  
probabilistic

Semantics:	
  Infinite-­‐state	
  Markov	
  
decision	
  process:

-­‐ Scheduler	
  picks	
  policy

-­‐ State	
  evolves	
  probabilistically	
  
based	
  on	
  chosen	
  filter

(under	
  measureability
assumptions)

Core	
  language:	
  Prob streams

Reading	
  from	
  prob streams	
  =	
  sampling	
  
from	
  the	
  distribution



The	
  ThingFlow	
  Scheduler
• Responsible	
  for	
  scheduling	
  “things”

– Periodic	
  observations	
  (sensor	
  sampling)
– Non-­‐periodic	
  events	
  (e.g.	
  socket	
  readiness)
– Inter-­‐thing	
  events

• Abstraction	
  over	
  low	
  level	
  details
– Threading,	
  Order	
  of	
  scheduling

• Different	
  implementations
– On	
  top	
  of	
  Python’s	
  asyncio scheduler	
  for	
  Cpython
– Custom,	
  power-­‐saving	
  implementation	
  for	
  ESP8266

• ThingFlow programs	
  must	
  be	
  explicitly	
  scheduled	
  to	
  
perform	
  their	
  tasks!



Simple	
  ThingFlow	
  Example
• Periodically	
  sample	
  a	
  light	
  sensor
• Write	
  the	
  sensed	
  value	
  to	
  a	
  file
• Every	
  5	
  steps,	
  send	
  the	
  moving	
  average	
  to	
  a	
  message	
  queue

Lux
Sensor

Write
to
File

Scheduler

Write
to

Queue

Moving
Avg

sensor	
  =	
  LuxSensor()
sensor.connect(file_writer(’file’))
sensor.transduce(MovingAvg(5)).connect(mqtt_writer)

scheduler	
  =	
  Scheduler(asyncio.get_event_loop())
scheduler.schedule_periodic(sensor,	
  2)
scheduler.run_forever()

Default	
  scheduler:	
  Push	
  an	
  event	
  entirely	
  
through	
  the	
  graph	
  before	
  handling	
  the	
  
next	
  input
-­‐-­‐ Can	
  replace	
  async calls	
  by	
  sync	
  calls



Solar	
  Heater	
  Example
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Solar	
  Heater	
  Example:
Controller	
  State	
  Machine

31

NormalInitial Too
Hot

Between	
  /	
  OFF

TLOW /	
  OFF

THIGH /	
  ON

TLOW /	
  Ø

THIGH /	
  Ø

THIGH /	
  ON

TLOW /	
  OFF



Solar	
  Heater	
  Example:	
  Code

32

Thigh = 110 # Upper threshold (degrees fahrenheit)
Tlow = 90 # Lower threshold
sensor = TempSensor(gpio_port=1)

# The dispatcher converts a sensor reading into
# threshold events
dispatcher = sensor.transduce(RunningAvg(5)) \

.dispatch([(lambda v: v[2]>=Thigh, ’t_high'),
(lambda v: v[2]<=Tlow, ’t_low')])

controller = Controller()
dispatcher.connect(controller, port_mapping=(’t_high’,’t_high'))
dispatcher.connect(controller, port_mapping=(’t_low', ’t_low'))
dispatcher.connect(controller, port_mapping=('default’, 'between'))

actuator = Actuator()
controller.connect(actuator)



Lighting	
  Project:	
  Motivation

• If	
  out	
  of	
  town	
  for	
  the	
  weekend,	
  don’t	
  want	
  to	
  
leave	
  the	
  house	
  dark

• Replay	
  lights	
  “similar”	
  to	
  normal	
  lighting	
  
pattern
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Lighting	
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  Lights
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Machine
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Player
Application

Lux	
  Sensors

ESP8266	
  remote	
  
nodes	
  +	
  
Raspberry	
  Pi

Offline	
  analysis	
  
and	
  model	
  
learning	
  using	
  
Jupyter,	
  Pandas,	
  
HMMlearn

Use	
  an	
  HMM	
  
model	
  and	
  Phue
to	
  control	
  Philips	
  
Hue	
  lights

Captured	
  sensor
data HMM	
  state	
  machines



ESP8266

TSL2591
lux	
  sensor
breakout
board

Lithium	
  Ion
Polymer
Battery
3.7v	
  350mAh

MicroUSB	
  to
USB	
  cable

Adafruit	
  Feather	
  HUZZAH
ESP8266	
  breakout	
  board



ESP8266:	
  Wiring	
  Diagram
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Raspberry	
  Pi:	
  Wiring	
  Diagram

Resistor
LED

Anode
(long	
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Lighting	
  Replay	
  Application:	
  Capture

Lux
Sensor ESP8266

Front	
  Bedroom	
  Sensor	
  Node

Lux
Sensor ESP8266

Back	
  Bedroom	
  Sensor	
  Node

Raspberry	
  Pi
(Dining	
  Room)

MQTT
Data	
  

Capture	
  
App

Lux
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ESP8266	
  Code	
  (ThingFlow)

from	
  thingflow import	
  Scheduler,	
  SensorAsOutputThing
from	
  tsl2591	
  import	
  Tsl2591
from	
  mqtt_writer import	
  MQTTWriter
from	
  wifi import	
  wifi_connect
import	
  os

#	
  Params to	
  set
WIFI_SID=	
  …
WIFI_PW=	
  …
SENSOR_ID="front-­‐room"
BROKER='192.168.11.153'

wifi_connect(WIFI_SID,	
  WIFI_PW)
sensor	
  =	
  SensorAsOutputThing(Tsl2591())
writer	
  =	
  MQTTWriter(SENSOR_ID,	
  BROKER,	
  1883,

'remote-­‐sensors')
sensor.connect(writer)

sched =	
  Scheduler()
sched.schedule_periodic(sensor,	
  SENSOR_ID,	
  60)
sched.run_forever()

Sample	
  at	
  60	
  second	
  intervals

The	
  MQTT	
  writer	
  is	
  connected	
  to
the	
  lux	
  sensor.

See	
  https://github.com/mpi-­‐sws-­‐rse/thingflow-­‐examples/blob/master/lighting_replay_app/capture/esp8266_main.py	
  



Raspberry	
  Pi	
  Code	
  (ThingFlow)

Lux
Sensor

MQTT
Adapter

Map
to

UTF8

Parse
JSON

Map
to

events
Dispatch

InfluxDB
(front	
  
room)

InfluxDB
(back	
  
room)

InfluxDB
(dining	
  
room)

https://github.com/mpi-­‐sws-­‐rse/thingflow-­‐examples/blob/master/lighting_replay_app/capture/sensor_capture.py



Lighting	
  Replay	
  Application:	
  Analysis

Raspberry	
  Pi
(Dining	
  Room)

Flat
Files

HMM
definitions

Laptop

Jupyter	
  Notebook

file
copy



Preprocessing	
  the	
  Data
(ThingFlow	
  running	
  in	
  a	
  Jupyter	
  Notebook)

CSV	
  File
Reader

Fill in
missing
times

Sliding
Mean

Round
values

Output
Event
Count

Capture
NaN

Indexes

Pandas	
  
Writer

(raw	
  series)

Pandas	
  
Writer

(smoothed	
  
series)

reader.fill_in_missing_times()
.passthrough(raw_series_writer)
.transduce(SensorSlidingMeanPassNaNs(5))
.select(round_event_val)
.passthrough(smoothed_series_writer)
.passthrough(capture_nan_indexes)
.output_count()



Data	
  Processing:	
  Raw	
  Data
Front	
  room,	
  last	
  day

Data
gaps



Data	
  Processing:	
  Smoothed	
  Data	
  
Front	
  room,	
  last	
  day



Data	
  Processing:	
  K-­‐Means	
  Clustering
Front	
  room,	
  last	
  day



Data	
  Processing:	
  Mapping	
  to	
  on-­‐off	
  values
Front	
  room,	
  last	
  day



Hidden	
  Markov	
  Models	
  (HMMs)
• Markov	
  process

– State	
  machine	
  with	
  probability	
  associated	
  
with	
  each	
  outgoing	
  transition

– Probabilities	
  determined	
  only	
  by	
  the	
  current	
  
state,	
  not	
  on	
  history

• Hidden	
  Markov	
  Model
– The	
  states	
  are	
  not	
  visible	
  to	
  the	
  

observer,	
  only	
  the	
  outputs	
  (“emissions”).

• In	
  a	
  machine	
  learning	
  context:
– (Sequence	
  of	
  emissions,	
  #	
  states)	
  =>	
  inferred	
  

HMM

• The	
  hmmlearn library	
  will	
  do	
  this	
  for	
  
us.
– https://github.com/hmmlearn/hmmlearn

Example	
  Markov	
  process
(from	
  Wikipedia)



Slicing	
  Data	
  into	
  Time-­‐based	
  “Zones”

Sunrise

30	
  Minutes
before
sunset

Max(sunset+60m,	
  9:30	
  pm)

0 1 2 3 0



HMM	
  Training	
  and	
  Prediction	
  Process

Training
1. Build	
  a	
  list	
  of	
  sample	
  subsequences	
  for	
  each	
  zone
2. Guess	
  a	
  number	
  of	
  states	
  (e.g.	
  5)
3. For	
  each	
  zone,	
  create	
  an	
  HMM	
  and	
  call	
  fit() with	
  the	
  

subsequences
Prediction
For	
  each	
  zone	
  of	
  a	
  given	
  day:

• Run	
  the	
  associated	
  HMM	
  to	
  generate	
  N	
  samples	
  for	
  an	
  N	
  minute	
  
zone	
  duration

• Associated	
  a	
  computed	
  timestamp	
  with	
  each	
  sample



HMM	
  Predicted	
  Data

Front	
  room,	
  one	
  week	
  predicted	
  data

Front	
  room,	
  one	
  day	
  predicted	
  data



Lighting	
  Replay	
  Application:	
  Replay

Front	
  Room
Smart	
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definitions
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Logic	
  of	
  the	
  Replay	
  Script

• Use	
  phue library	
  to	
  control	
  lights
• Reuse	
  time	
  zone	
  logic	
  and	
  HMMs	
  from	
  analysis
• Pseudo-­‐code:

Initial	
  testing	
  of	
  lights
while	
  True:

compute	
  predicted	
  values	
  for	
  rest	
  of	
  day
organize	
  predictions	
  into	
  a	
  time-­‐sorted	
  list	
  of	
  on/off	
  events
for	
  each	
  event:

sleep	
  until	
  event	
  time
send	
  control	
  message	
  for	
  event

wait	
  until	
  next	
  day

https://github.com/mpi-­‐sws-­‐rse/thingflow-­‐examples/blob/master/lighting_replay_app/player/lux_player.py



ThingFlow:	
  Analysis
• Bad	
  news:	
  Communicating	
  finite-­‐state	
  machines	
  +	
  FIFO	
  
queues	
  =	
  everything	
  is	
  undecidable!

• Decidable	
  verification	
  in	
  special	
  cases:	
  finite-­‐state	
  
events	
  &	
  filters,	
  ordering	
  of	
  messages	
  ignored

• Analyzing	
  a	
  filter:	
  Abstraction	
  &	
  approximation	
  of	
  
infinite-­‐state	
  probabilistic	
  processes
– algorithms	
  with	
  guaranteed	
  error	
  bounds

• Open:	
  Tools	
  and	
  analyses	
  for	
  Thingflow programs
– Asynchrony,	
  Hybrid	
  systems,	
  Uncertainty,	
  Distribution



Analysis	
  of	
  ThingFlow

Two	
  example	
  analyses	
  for	
  subcases:

1. Analyzing	
  event	
  flows:	
  Provenance	
  Analysis
[Joint	
  work	
  with	
  Roland	
  Meyer	
  &	
  Zilong Wang]

2. Analyzing	
  a	
  filter:	
  Abstracting	
  infinite-­‐state	
  
Markov	
  processes	
  

[Joint	
  work	
  with	
  Sadegh Soudjani and	
  Alessandro	
  
Abate]



Provenance

Information	
  about	
  the	
  source	
  and	
  access	
  history	
  
of	
  an	
  object
“All	
  inputs	
  to	
  controller	
  are	
  sanitized”

BA C
req

req



Provenance	
  for	
  ThingFlow

• Associate	
  principals	
  with	
  filters

• Provenance	
  of	
  a	
  message	
  =	
  
Principals	
  who	
  have	
  sent	
  the	
  message	
  
chronologically

• Provenance	
  domain	
  =	
  
Strings	
  over	
  principal	
  names



Provenance	
  Verification	
  Problem

Given a Thingflow program P, a stream x, and a regular
set R of provenances,
are the provenances of all events in x always in the set R
along all executions of P?

Assumptions: Finitely many events, finite-­‐state filters, and
ordering of events in queues ignored

Note: The system is still infinite-­‐state!

Example: All inputs to controller have passed through a
sanitizer and then a state estimator



Provenance	
  Verification	
  Problem

Given a Thingflow program P, a stream x, and a regular
set R of provenances,
are the provenances of all events in x always in the set R
along all executions of P?

Assumptions: Finitely many events, finite-­‐state filters, and
ordering of events in queues ignored

Note: The system is still infinite-­‐state!

Basic abstraction: For each stream, each kind of event,
count how many events are currently in the stream



In	
  Each	
  Step…

Filter

Input	
  
Thing

Output
Thing

Filter

Filter

Event	
  streams

Finite	
  state

Finitely	
  many	
  possibilities1 orange,
4	
  purple

Counting	
  abstraction



Unbounded	
  Events:	
  Petri	
  Net

• Finite	
  set	
  of	
  places
• Finite	
  set	
  of	
  transitions
• Places	
  marked	
  with	
  tokens

• State:	
  Marking	
  

• Step:	
  consume	
  tokens	
  from	
  
sources,	
  put	
  tokens	
  into	
  
targets	
  of	
  a	
  transition

• Defines	
  an	
  infinite	
  state	
  
system



The	
  Benefits	
  of	
  Petrification

Petri	
  nets	
  have	
  nice	
  decidable	
  properties:
Coverability problem	
  (is	
  some	
  place	
  
markable?)	
  is	
  decidable

Theorem	
  [Rackoff,Lipton]	
  The	
  coverability
problem	
  for	
  Petri	
  nets	
  is	
  EXPSPACE-­‐complete.



From	
  ThingFlow to	
  Nets

• A	
  place	
  for	
  each	
  filter	
  state

• A	
  place	
  for	
  each	
  queue	
  and	
  each	
  event	
  type
– Count	
  how	
  many	
  events	
  of	
  each	
  type	
  in	
  a	
  queue

With	
  provenances,	
  we	
  do	
  not	
  get	
  a	
  Petri	
  net:
Unboundedly	
  many	
  provenances	
  ➔

unboundedly	
  many	
  places



Unbounded	
  Provenances:	
  Automata

• Define	
  equivalence	
  classes	
  w.r.t.	
  the	
  states	
  of	
  
DFA	
  for	
  the	
  regular	
  set	
  of	
  provenances.

• Define	
  a	
  counter	
  for	
  each	
  queue,	
  event,	
  and	
  
state	
  of	
  the	
  spec

The	
  validity	
  of	
  the	
  provenance	
  property	
  
depends	
  on	
  states	
  of	
  the	
  spec	
  automaton,	
  not	
  
concrete	
  provenances.



Program	
  +	
  Provenance	
  DFA➔poly Petri	
  net	
  

– Control	
  flow	
  can	
  be	
  modeled	
  by	
  Petri	
  net
– Each	
  counter	
  is	
  a	
  place	
  in	
  the	
  Petri	
  net

Provenance	
  verification	
  problem	
  =	
  
Coverability problem	
  of	
  Petri	
  nets

Reduction



Provenance	
  verification	
  problem	
  for	
  
finite-­‐state	
  ThingFlow programs	
  (when	
  
ordering	
  is	
  ignored)	
  is	
  EXPSPACE-­‐
complete.

Main	
  Theorem



Linear	
  Temporal	
  Logic

• Provenance	
  verification	
  =	
  Invariants
• Provenance	
  linear	
  temporal	
  logic:

“Whenever	
  event	
  in	
  x	
  has	
  provenance	
  R,	
  eventually	
  
an	
  event	
  in	
  y	
  has	
  provenance	
  S”

Theorem:	
  ProvLTL decidable	
  for	
  finite-­‐state	
  
Thingflow programs	
  (when	
  ordering	
  is	
  
ignored)



Analysis	
  of	
  ThingFlow

Two	
  examples	
  of	
  decidability	
  in	
  special	
  cases:

1. Provenance	
  Analysis
[Joint	
  work	
  with	
  Roland	
  Meyer	
  &	
  Zilong Wang]

2. Analyzing	
  a	
  single	
  filter:	
  Abstracting	
  infinite-­‐
state	
  Markov	
  processes	
  

[Joint	
  work	
  with	
  Sadegh Soudjani and	
  Alessandro	
  
Abate]



• State	
  space	
  S
• Transition	
  kernel	
  T(ds’	
  |	
  s)	
  =	
  	
  t(s’	
  |	
  s)	
  ds’

• N-­‐step	
  safety	
  problem:	
  Given	
  s0,	
  T,	
  and	
  a	
  set	
  
A,	
  find	
  the	
  probability	
  that	
  the	
  system	
  stays	
  in	
  
A up	
  to	
  N steps
– Can	
  formulate	
  as	
  a	
  Bellman	
  iteration	
  (but	
  without	
  
any	
  closed	
  form)

Discrete-­‐Time	
  Markov	
  Process

T (C | s) = Pr [s0 2 C | s]



Markov	
  Chain	
  Abstraction

• Finite-­‐state	
  Markov	
  chain	
  =	
  Representatives	
  
from	
  a	
  partition	
  of	
  the	
  infinite-­‐state	
  space

• Transitions:	
  

Markov chain abstractions
1 finite state space Z := {v1,v2, . . . ,vm,φ}
2 marginals P (vi,vj) = T(Aj |vi) =

∫

Aj
ts(s̄|vi)ds̄ and φ absorbing

3 compute safety probability over Aδ := {v1,v2, . . . ,vm}

S

A
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∫

Aj
ts(s̄|vi)ds̄ and φ absorbing

3 compute safety probability over Aδ := {v1,v2, . . . ,vm}
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P (vi, vj) =

Z

Aj

t(s0 | vi)ds0



Main	
  Result

If	
  t(.	
  |	
  s)	
  is	
  Lipschitz	
  continuous	
  with	
  constant	
  h,	
  
one	
  can	
  bound	
  the	
  probability	
  of	
  error	
  between	
  
the	
  original	
  model	
  and	
  the	
  finite-­‐state	
  
abstraction:

|ps0(A)� pv0(A�)|  NLh�

Prob of	
  staying	
  
in	
  A for	
  N steps

Prob of	
  staying	
  
in	
  abstraction	
  
of	
  A for	
  N steps
in	
  abstraction

N =	
  Number	
  of	
  steps
L	
  =	
  Volume	
  of	
  A
h =	
  Lipschitz	
  const
δ =	
  Diameter	
  of	
  
abstraction



Infinite	
  to	
  Finite	
  MDPs

• Bounds	
  are	
  very weak!
– Compared	
  to	
  Monte	
  Carlo	
  simulation

• Open:	
  Better	
  bounds?	
  

• Open:	
  Verification	
  for	
  MDP	
  +	
  asynchronous	
  
concurrency?



Analysis	
  of	
  ThingFlow

Two	
  examples	
  of	
  decidability	
  in	
  special	
  cases:

1. Provenance	
  Analysis
[Joint	
  work	
  with	
  Roland	
  Meyer	
  &	
  Zilong Wang]

2. Analyzing	
  a	
  single	
  filter:	
  Abstracting	
  infinite-­‐state	
  
Markov	
  processes	
  

[Joint	
  work	
  with	
  Sadegh Soudjani and	
  Alessandro	
  
Abate]

Open:	
  Analysis	
  of	
  a	
  Thingflow program	
  
(combining	
  asynchrony,	
  filters,	
  and	
  probabilities)



Other	
  Open	
  Problems

1. Parameterized	
  reasoning

2. Real-­‐time	
  control

3. Fault	
  tolerance	
  and	
  distribution

4. Deployment

5. Security,	
  privacy,	
  accountability



Conclusion
• ThingFlow =  DSL  for  stream-­processing  
applications  for  IoT systems
• Streams  &  stream  transformations
• Filters  &  filter  composition
• Uncertainty  &  infinite-­state
• Asynchrony  &  explicit  scheduling

• Many  verification/analysis/tool  aspects  
are  open!



Thank	
  You
http://www.mpi-­‐sws.org/~rupak

ThingFlow:
https://github.com/mpi-­‐sws-­‐rse/thingflow-­‐python

ThingFlow Examples:
https://github.com/mpi-­‐sws-­‐rse/thingflow-­‐examples


