
Programming	
 IoT

Rupak	
 Majumdar

Max	
 Planck	
 Institute	
 for	
 Software	
 Systems	

Kaiserslautern,	
 Germany

(Joint	
 work	
 with	
 Jeff	
 Fischer)

Source:	
 Gartner,	
 IDC

Cost	
 of	
 bandwidth

40	
 X	

Cost	
 of	
 processing

60	
 X	

Cost	
 of	
 sensors

2	
 X	

Edge	
 sensors

Se
ns
e

Connect

Micro
controller

Gateway	
 device

Data	
 storage

Analytics

Examples:	
 Consumer	
 analytics,	
 real-­‐time	
 sensing	
 and	
 monitoring

Information and	
 Analytics

1. Consumer	
 analytics

Monitoring	
 and	
 profiling	
 user	

behavior	
 on	
 the	
 Internet
Learning user	
 models	
 for	

targeted	
 ads

Examples:
Clickthrough analysis
Location-­‐aware	

recommendations

2.	
 Sensor-­‐driven decision	

making

Analytics	
 for	
 business	

intelligence

Examples:	

Smart	
 factories
Production	
 trends
Computation	
 &	
 storage	
 trends

3.	
 Real-­‐time	
 monitoring

Monitoring	
 the	
 behaviors of	

persons,	
 things,	
 or	
 data	

through	
 space	
 and	
 time

Examples:	

Inventory	
 and	
 supply	
 chain	

management

Security	
 analytics

Edge	
 sensors

Se
ns
e

Connect

Micro
controller

Gateway	
 device

Data	
 storage

Analytics

Edge	
 sensors

Se
ns
e

Connect

Micro
controller

Gateway	
 device

Data	
 storage

Analytics

Edge	
 actuators

Ac
tu
at
e

Connect

Micro
controller

Examples:	
 Process	
 automation,	
 Closed	
 loop	
 decision	
 making,
Complex	
 autonomous	
 processes

Automation	
 and	
 control
1. Process	
 automation

Controlling	
 the	
 behaviors of	

persons,	
 things,	
 or	
 data	

through	
 space	
 and	
 time

Examples:	

Software-­‐based process	
 control
Smart	
 factories

2.	
 Closed-­‐loop	
 decision	
 making

Feedback	
 control	
 of	

consumption	
 for	
 resources

Examples:
Networked	
 smart	
 energy	

management
Smart	
 buildings
Health	
 monitoring

3.	
 Complex	
 autonomous	

systems

Automatic	
 control	
 in	
 open	

and	
 uncertain	
 environments

Examples:
Autonomous	
 cars	
 &	
 traffic	

networks
Robotic	
 swarms,	
 disaster	

management

Edge	
 sensors
&	
 actuators

Se
ns
e

Connect

Micro
controller

Gateway	
 device

Data	
 storage

Analytics

This	
 Talk:	

Programming	
 abstractions,	
 Models,	

and	
 Analyses	
 for	
 developing	

Large-­‐scale	
 IoT Systems

Part	
 I:	
 A	
 language	
 abstraction
Part	
 II:	
 Some	
 verification	
 problems

Cyber-­‐physical-­‐social	

Level

??? ???

Enterprise Level Software	
 services:
Provisioning,	
 scheduling,	

replication

Distributed	
 systems,	

Datacenters

System	
 Level
(Multiple agents)

Discrete systems
Co-­‐ordination,	
 Communication,	

Learning

Databases	
 &	
 Querying,
Machine	
 learning

Component	
 Level
(Single	
 control	
 loop)

Hybrid	
 systems
Ensure	
 temporal	
 behaviors

Control loops:	

sense/compute/actuate

Dynamics	
 Level Modeling the	
 world:	
 ODEs,
Uncertainty

“Classical”	
 control	
 and	

signal	
 processing:	
 AD	

converters,	
 PID controllers

Programming	
 Environment

1. Streams and	
 stateful transformations	
 of	

streams

2. Asynchronous concurrency,	
 real-­‐time
3. Uncertainty as	
 “first-­‐class”	
 object
4. Heterogeneous computing	
 platforms
5. Distributed infrastructure

Domain-­‐Specific	
 Languages

• Control:	
 Simulink/Stateflow
• Synchronous	
 hardware:	
 Esterel/Lustre
• Systems	
 &	
 Networking:	
 Click
• Data	
 processing:	
 Apache	
 Spark	
 Streaming

• This	
 Talk:	
 ThingFlow,	
 a	
 DSL	
 for	
 IoT

Example:	
 A	
 Temperature	
 Controller

Sensor Control Actuator
x u

Physical	
 System

Gaps

Noise

Sensor Moving
avg

Kalman
filter

Blocking?
New	
 thread!

Multiple	

sensors?	

Aggregate!

Model	
 missing?	

Learn	
 params! .	
 .	
 .

Le
ar
n

Co
nt
ro
l

Interface	
 w/
Cloud	

infrastructure

Simple	
 ThingFlow	
 Example
• Periodically	
 sample	
 a	
 light	
 sensor
• Write	
 the	
 sensed	
 value	
 to	
 a	
 file
• Every	
 5	
 steps,	
 send	
 the	
 moving	
 average	
 to	
 a	
 message	

queue

Lux
Sensor

Write
to
File

Scheduler

Write
to

Queue

Moving
Avg

sensor.connect(file_writer(’file’))
sensor.transduce(MovingAvg(5)).connect(mqtt_writer)

“Traditional”	
 Event-­‐driven	
 Style	
 (Callbacks)
def sample_and_process(sensor, mqtt, xducer, compcb, errcb):

try:
sample = sensor.sample()

except StopIteration:
final_event = xducer.complete()
if final_event:
mqtt.send(final_event,

lambda:
mqtt.disc(lambda: compcb(False), errcb),
errcb)

else:
mqtt.disconnect(lambda: compcb(False), errcb)
return

event = SensorEvent(sensor_id=sensor.sensor_id,
ts=time.time(), val=sample)

csv_writer(event)
median_event = xducer.step(event)
if median_event:
mqtt.send(median_event, lambda: compcb(True), errcb)

else:
compcb(True)

def loop(event_loop):
def compcb(more):

if more:
event_loop.call_later(0.5, loop)

else:
print("all done, no more callbacks to schedule")
event_loop.stop()

def errcb(e):
print("Got error: %s" % e)
event_loop.stop()

event_loop.call_soon(
lambda: sample_and_process(sensor, mqtt, transducer,

compcb, errcb))

Figure 2. An example written using an event-driven style

events from the upstream sensor. In ThingFlow, these are handled
by the (reusable) components via the on_next, on_error, and
on_completed methods.

Second, through the higher-level scheduler abstraction
ThingFlow provides on top of asyncio, the need to write code
like the loop function for each application is avoided.

Constrasting ThingFlow and a Coroutine Style The Python pro-
gramming language recently added syntactic support for coroutines
via the async and await keywords. When the async keyword is
prepended to a function or method definition, the associated function
is compiled to a coroutine. The await keyword is used within a
coroutine to indicated a call to another coroutine (which suspends
the caller). These coroutines are integrated with Python’s event loop.

Consider the coroutine-based code in Figure 3 which uses
Python’s async/await to implement our application. This version
largely follows a procedural style. The need to pass callbacks
into each function has been eliminated, but event processing is
still conflated with interconnection. Furthermore, the choice to
use asynchronous calls propagates: functions calling an async
(coroutine) method must also be async, thus making implementation
decisions about whether to use asynchronous or synchronous APIs
to have a non-local impact. In contrast, ThingFlow can support
asynchronous APIs as well as components running in separate
threads, without any application-level changes.

Finally, without a higher level scheduler abstraction, we still
need the code to implement periodic scheduling of the sample and
process function, including special cases for error situations. The
code for loop looks almost the same as in the event-driven version.

async
def sample_and_process(sensor, mqtt, xducer):

try:
sample = sensor.sample()

except StopIteration:
final_event = xducer.complete()
if final_event:

await mqtt.send(final_event)
await mqtt.disconnect()
return False

event = make_event(sensor.sensor_id, sample)
csv_writer(event)
median_event = xducer.step(event)
if median_event:
await mqtt.send(median_event)
return True

def loop(event_loop):
coro = sample_and_process(sensor, mqtt, transducer)
task = event_loop.create_task(coro)
def done_callback(f):

exc = f.exception()
if exc:

raise exc
elif f.result()==False:

print("all done, no more callbacks to schedule")
event_loop.stop()

else:
event_loop.call_later(0.5, loop)

task.add_done_callback(done_callback)

Figure 3. An example written using Python’s coroutines

3. Transition System Semantics
Thingflow programs define infinite-state transition systems.

Filters and Programs Fix an alphabet ⌃ (not necessarily finite)
of events. We write ⌃⇤ for the set of finite strings over ⌃. For strings
u, v 2 ⌃

⇤, we write u · v for their concatenation. A stream is a
(finite or infinite) sequence over ⌃.

A filter F = (I,O,Q, �,O, q0) consists of a finite set of input
ports I , a finite set of output ports O, a (not necessarily finite) set of
internal states Q, a transition function � : Q ⇥ (I ⇥ ⌃) ! Q, an
output function O : Q⇥ (I ⇥ ⌃)⇥ O ! ⌃

⇤, and an initial state
q0 2 Q. An input thing is a filter with I = ;. An output thing is a
filter with O = ;.

A run of F on a sequence (i0,�0)(i1,�1) . . . 2 (I ⇥ ⌃)

⇤ is
a sequence of states q0, q1, . . . such that q0 is the initial state of
F , and for each j � 0, we have �(q

j

, (i
j

,�
j

)) = q
j+1; more-

over, this run produces a sequence of outputs O(q0, (i0,�0), o) ·
O(q1, (i1,�1), o) . . . for each o 2 O.

We extend � to a sequence of inputs in the natural way: �(q, ") =
q and �(q, (i,�) · w) = �(�(q, (i,�)), w), for (i,�) 2 I ⇥ ⌃

and w 2 (I ⇥ ⌃)

⇤. Similarly, we extend O to a sequence of
inputs: O(q, ", o) = " and O(q, (i,�) · w, o) = O(q, (i,�), o) ·
O(�(q, (i,�)), w, o).

A program P = (V,E) is a directed graph where V is a set
of filters and E is a set of connections between filters in V . Each
connection in E is of the form (v, v0, o, i), where v, v0 2 V , o is an
output port of v and i is an input port of v0.

For a filter v 2 V , we write I
v

, O
v

, Q
v

, �
v

, O
v

, and q0v ,
respectively, to denote its components.

Operational Semantics Let P = (V,E) be a program. A con-
figuration of the program P is a tuple (q, e), where q maps each
filter v 2 V to an internal state in Q

v

and e maps each connec-
tion (v, v0, o, i) 2 E to a sequence in ⌃

⇤. Intuitively, q gives the

4 2017/5/8

1. Separate	
 connecting	
 streams	
 with	
 handling	
 of	
 runtime	

situations:	
 distinct	
 control	
 flows	
 for	
 normal,	
 error,	
 and	

end-­‐of-­‐stream	
 conditions	
 not	
 required

2. Inversion	
 of	
 control	
 avoided:	
 programmer’s	
 view	
 =	
 data	

flow	
 in	
 the	
 system

3. Scheduling	
 is	
 provided	
 by	
 the	
 infrastructure

With	
 Coroutines
def sample_and_process(sensor, mqtt, xducer, compcb, errcb):

try:
sample = sensor.sample()

except StopIteration:
final_event = xducer.complete()
if final_event:
mqtt.send(final_event,

lambda:
mqtt.disc(lambda: compcb(False), errcb),
errcb)

else:
mqtt.disconnect(lambda: compcb(False), errcb)
return

event = SensorEvent(sensor_id=sensor.sensor_id,
ts=time.time(), val=sample)

csv_writer(event)
median_event = xducer.step(event)
if median_event:
mqtt.send(median_event, lambda: compcb(True), errcb)

else:
compcb(True)

def loop(event_loop):
def compcb(more):

if more:
event_loop.call_later(0.5, loop)

else:
print("all done, no more callbacks to schedule")
event_loop.stop()

def errcb(e):
print("Got error: %s" % e)
event_loop.stop()

event_loop.call_soon(
lambda: sample_and_process(sensor, mqtt, transducer,

compcb, errcb))

Figure 2. An example written using an event-driven style

events from the upstream sensor. In ThingFlow, these are handled
by the (reusable) components via the on_next, on_error, and
on_completed methods.

Second, through the higher-level scheduler abstraction
ThingFlow provides on top of asyncio, the need to write code
like the loop function for each application is avoided.

Constrasting ThingFlow and a Coroutine Style The Python pro-
gramming language recently added syntactic support for coroutines
via the async and await keywords. When the async keyword is
prepended to a function or method definition, the associated function
is compiled to a coroutine. The await keyword is used within a
coroutine to indicated a call to another coroutine (which suspends
the caller). These coroutines are integrated with Python’s event loop.

Consider the coroutine-based code in Figure 3 which uses
Python’s async/await to implement our application. This version
largely follows a procedural style. The need to pass callbacks
into each function has been eliminated, but event processing is
still conflated with interconnection. Furthermore, the choice to
use asynchronous calls propagates: functions calling an async
(coroutine) method must also be async, thus making implementation
decisions about whether to use asynchronous or synchronous APIs
to have a non-local impact. In contrast, ThingFlow can support
asynchronous APIs as well as components running in separate
threads, without any application-level changes.

Finally, without a higher level scheduler abstraction, we still
need the code to implement periodic scheduling of the sample and
process function, including special cases for error situations. The
code for loop looks almost the same as in the event-driven version.

async
def sample_and_process(sensor, mqtt, xducer):

try:
sample = sensor.sample()

except StopIteration:
final_event = xducer.complete()
if final_event:

await mqtt.send(final_event)
await mqtt.disconnect()
return False

event = make_event(sensor.sensor_id, sample)
csv_writer(event)
median_event = xducer.step(event)
if median_event:
await mqtt.send(median_event)
return True

def loop(event_loop):
coro = sample_and_process(sensor, mqtt, transducer)
task = event_loop.create_task(coro)
def done_callback(f):

exc = f.exception()
if exc:

raise exc
elif f.result()==False:

print("all done, no more callbacks to schedule")
event_loop.stop()

else:
event_loop.call_later(0.5, loop)

task.add_done_callback(done_callback)

Figure 3. An example written using Python’s coroutines

3. Transition System Semantics
Thingflow programs define infinite-state transition systems.

Filters and Programs Fix an alphabet ⌃ (not necessarily finite)
of events. We write ⌃⇤ for the set of finite strings over ⌃. For strings
u, v 2 ⌃

⇤, we write u · v for their concatenation. A stream is a
(finite or infinite) sequence over ⌃.

A filter F = (I,O,Q, �,O, q0) consists of a finite set of input
ports I , a finite set of output ports O, a (not necessarily finite) set of
internal states Q, a transition function � : Q ⇥ (I ⇥ ⌃) ! Q, an
output function O : Q⇥ (I ⇥ ⌃)⇥ O ! ⌃

⇤, and an initial state
q0 2 Q. An input thing is a filter with I = ;. An output thing is a
filter with O = ;.

A run of F on a sequence (i0,�0)(i1,�1) . . . 2 (I ⇥ ⌃)

⇤ is
a sequence of states q0, q1, . . . such that q0 is the initial state of
F , and for each j � 0, we have �(q

j

, (i
j

,�
j

)) = q
j+1; more-

over, this run produces a sequence of outputs O(q0, (i0,�0), o) ·
O(q1, (i1,�1), o) . . . for each o 2 O.

We extend � to a sequence of inputs in the natural way: �(q, ") =
q and �(q, (i,�) · w) = �(�(q, (i,�)), w), for (i,�) 2 I ⇥ ⌃

and w 2 (I ⇥ ⌃)

⇤. Similarly, we extend O to a sequence of
inputs: O(q, ", o) = " and O(q, (i,�) · w, o) = O(q, (i,�), o) ·
O(�(q, (i,�)), w, o).

A program P = (V,E) is a directed graph where V is a set
of filters and E is a set of connections between filters in V . Each
connection in E is of the form (v, v0, o, i), where v, v0 2 V , o is an
output port of v and i is an input port of v0.

For a filter v 2 V , we write I
v

, O
v

, Q
v

, �
v

, O
v

, and q0v ,
respectively, to denote its components.

Operational Semantics Let P = (V,E) be a program. A con-
figuration of the program P is a tuple (q, e), where q maps each
filter v 2 V to an internal state in Q

v

and e maps each connec-
tion (v, v0, o, i) 2 E to a sequence in ⌃

⇤. Intuitively, q gives the

4 2017/5/8

1. No	
 more	
 callbacks,	
 but	
 interconnection	
 still	
 mixed	
 with	

control	
 situations

2. Choice	
 to	
 use	
 asynchronous	
 calls	
 propagates	
 through	

the	
 program:	
 implementation	
 decisions	
 have	
 global	

effects

ThingFlow Features

• Streams	
 of	
 “things”
– Input	
 things	
 introduce	
 streams	
 of	
 events	
 into	
 the	
 system	

(e.g.,	
 sensors)

– Output	
 things	
 consume	
 streams	
 of	
 events	
 (e.g.,	
 actuators)

• Filters	
 =	

Both	
 input	
 and	
 output	
 things	
 =	

Stream	
 transformers

FilterInput	

Thing

Output
Thing

ThingFlow Features

• ThingFlow Programs	
 =	
 Graphs	
 of	
 stream	
 transformers	

connecting	
 input/output	
 ports
– Basic	
 construct:	
 	
 A.connect(B,	
 inport=outport)

– Syntactic	
 sugar:	
 default	
 ports,	
 chaining	
 filters,	
 combinators
A.map(f)	
 – map	
 the	
 output	
 stream	
 on	
 A	
 using	
 function	
 f
A.transduce(M)	
 – transduction	
 by	
 machine	
 M

• Asynchronous,	
 push-­‐semantics
– explicit	
 scheduling

FilterInput	

Thing

Output
Thing

ThingFlow Controller

Kalman
Filter

Sensor
ActuatorControl

robustness in the face of tight deadlines or power consumption.
In Python’s standard asyncio scheduler, events are scheduled
independently, without regard to their interrelationships. In the
standard ThingFlow scheduler for Python, we already optimize
by invoking downstream things directly, rather than going back
to the lower level scheduler. Futher optimizations are possible by
reordering the recurring sensor sampling events. We do this in the
scheduler for MicroPython.

Since the ESP8266 can be run off a battery, we have chosen
to optimize for minimal power consumption by reducing wake-
ups and maximizing the time the WiFi radio and processor can be
kept in a low power mode. This can have a dramatic impact on
power consumption. For example, normal power comsumption of
the ESP8266 will be from 50 mA to 170 mA, depending on radio
usage. If one runs a workload where the system wakes for half a
second at a time once every 100 seconds and stays in deep sleep
mode otherwise, the average power consumption will be reduced to
only 0.5 mA [9].

Our ThingFlow-MicroPython scheduler minimizes wake-ups by
delaying the initial execution of certain tasks and grouping together
tasks with the same wakeup interval. When a new task is added to
the scheduler, we use the following logic. If a new task is added that
matches an older task’s interval, it will not be scheduled until the
existing one is run. If there are no tasks with the same interval, we
look for the smallest interval that is either a factor or multiple of the
new interval. We schedule the new interval to be coordinated with
this one. For example, if we have a new interval 60 seconds and old
intervals of 30 and 45 seconds, we will schedule the new 60 second
interval to first run on the next execution of the 30 second tasks.
Thus, they will run at the same time for each execution of the 60
second interval. Finally, if a task is run later than its scheduled time
(due to others tasks taking too long), the next scheduled execution is
kept as if the task had run at the correct time (by making the interval
shorter). This avoids tasks getting out-of-sync when one misses a
deadline.

Connecting to the Outside World: Adapters Finally, ThingFlow
provides a set of adapters to import and export streams into different
pipelines. It provides readers and writers from csv files, pandas
frames, TCP streams, MQTT streams (MQTT is a messaging proto-
col for IoT systems), Spark streams, databases (Postgres, influxDB),
visualization frameworks (Bokeh), etc. Using these adapters, one
can write ThingFlow programs which communicate with external
data sources or data analysis, learning, and visualization pipelines,
as well as write distributed ThingFlow programs.

5. Case Studies
5.1 A Control Pipeline with Bayesian Filtering
A basic control loop involving noisy sensors, estimators, control
computations, and actuation forms an event-processing pipeline:
measure a stream of sensor values, estimate state using a filter,
compute the control signal based on the estimate, and send the
signal to an actuator. In ThingFlow, the pipeline will be written as:

kalman = Kalman(A, B, C, Q, R) # Kalman filter
pid = PID(Kp, Ki, Kd) # PID controller
pid.connect(kalman, port_mapping=(’default’, ’input’))
_ = Sensor().transduce(kalman)\

.transduce(pid)\

.connect(Actuator())

This corresponds very closely to the control theorist’s view. Notice
that in addition to the Kalman filter, the controller usually also
maintains internal state to compute integrations or derivatives.

There are two advantages that ThingFlow provides in this
setting. First, it provides a single interface for sampling and stream

g = Gyro()
k1 = Kalman(...)
pf = ParticleFilter(I={’gyro’, ’camera’})
g.transduce(k1).delay()\

.connect(pf, port_mapping=(’default’,’gyro’))
c = Camera()
c.connect(pf, port_mapping=(’default’,’camera’))
pf.connect(Controller(...))

Figure 4. Cascaded filtering example [19] and its ThingFlow code

processing that is close to the model of controller design adopted
by control theorists. For example, consider a more involved control
system described in [19], where the problem of estimating the state
of an autonomous vehicle is solved using a cascaded filter model.
There are two sensors: a gyroscope and a video camera. A Kalman
filter is used to provide precise estimates from the gyro. The gyro
estimate and the raw camera feed is fed into a particle filter to finally
estimate the pose. Figure 4 shows the control theorist’s view of the
system and the closely corresponding ThingFlow code.

In [19], the authors discuss two designs: first, the particle filter
receives the mean and the variance of the distribution computed by
k1 and uses further statistical analyses, and second, the particle filter
receives the mean value computed by the Kalman filter k1 and uses
it as a “true estimate.” In ThingFlow, one can change from the first
design to the second simply by adding a map:

g.transduce(k1).delay().map(lambda mu, C: mu)\
.connect(pf, port_mapping=(’default’,’gyro’))

Second, ThingFlow provides adapters to import and export data
from external sources, potentially running on different machines.
For example, suppose the camera is running on a different machine
and is sending the video stream over MQTT (a messaging standard).
In ThingFlow, using adapters that talk to network streams, we write

c = Camera().connect(MQTTWriter(...))

for the source and modify the original source to read from the
message source

c = MQTTReader(...)

to get a distributed implementation.
Since ThingFlow does not provide real-time guarantees, it is not

an implementation platform for all control systems, especially when
the dynamics is fast. However, when the underlying dynamics is slow
compared to the computation requirements, such as in temperature
control or building control (where sampling intervals are in minutes
or more), we have implemented ThingFlow based control loops. We
give specific case studies below.

7 2017/5/8

Filter	
 chaining

ThingFlow Controller

Particle	

Filter

Gyro

ActuatorControl

robustness in the face of tight deadlines or power consumption.
In Python’s standard asyncio scheduler, events are scheduled
independently, without regard to their interrelationships. In the
standard ThingFlow scheduler for Python, we already optimize
by invoking downstream things directly, rather than going back
to the lower level scheduler. Futher optimizations are possible by
reordering the recurring sensor sampling events. We do this in the
scheduler for MicroPython.

Since the ESP8266 can be run off a battery, we have chosen
to optimize for minimal power consumption by reducing wake-
ups and maximizing the time the WiFi radio and processor can be
kept in a low power mode. This can have a dramatic impact on
power consumption. For example, normal power comsumption of
the ESP8266 will be from 50 mA to 170 mA, depending on radio
usage. If one runs a workload where the system wakes for half a
second at a time once every 100 seconds and stays in deep sleep
mode otherwise, the average power consumption will be reduced to
only 0.5 mA [9].

Our ThingFlow-MicroPython scheduler minimizes wake-ups by
delaying the initial execution of certain tasks and grouping together
tasks with the same wakeup interval. When a new task is added to
the scheduler, we use the following logic. If a new task is added that
matches an older task’s interval, it will not be scheduled until the
existing one is run. If there are no tasks with the same interval, we
look for the smallest interval that is either a factor or multiple of the
new interval. We schedule the new interval to be coordinated with
this one. For example, if we have a new interval 60 seconds and old
intervals of 30 and 45 seconds, we will schedule the new 60 second
interval to first run on the next execution of the 30 second tasks.
Thus, they will run at the same time for each execution of the 60
second interval. Finally, if a task is run later than its scheduled time
(due to others tasks taking too long), the next scheduled execution is
kept as if the task had run at the correct time (by making the interval
shorter). This avoids tasks getting out-of-sync when one misses a
deadline.

Connecting to the Outside World: Adapters Finally, ThingFlow
provides a set of adapters to import and export streams into different
pipelines. It provides readers and writers from csv files, pandas
frames, TCP streams, MQTT streams (MQTT is a messaging proto-
col for IoT systems), Spark streams, databases (Postgres, influxDB),
visualization frameworks (Bokeh), etc. Using these adapters, one
can write ThingFlow programs which communicate with external
data sources or data analysis, learning, and visualization pipelines,
as well as write distributed ThingFlow programs.

5. Case Studies
5.1 A Control Pipeline with Bayesian Filtering
A basic control loop involving noisy sensors, estimators, control
computations, and actuation forms an event-processing pipeline:
measure a stream of sensor values, estimate state using a filter,
compute the control signal based on the estimate, and send the
signal to an actuator. In ThingFlow, the pipeline will be written as:

kalman = Kalman(A, B, C, Q, R) # Kalman filter
pid = PID(Kp, Ki, Kd) # PID controller
pid.connect(kalman, port_mapping=(’default’, ’input’))
_ = Sensor().transduce(kalman)\

.transduce(pid)\

.connect(Actuator())

This corresponds very closely to the control theorist’s view. Notice
that in addition to the Kalman filter, the controller usually also
maintains internal state to compute integrations or derivatives.

There are two advantages that ThingFlow provides in this
setting. First, it provides a single interface for sampling and stream

First&Es(mator&
(Kalman&Filter)&

Second&Es(mator&
(Par(cle&Filter)&

Moving&body&
ω(k),&q(k)&

Gyro& Camera&

Delay&

x̂1(k)

P1(k)

x̂1(k � 1)

P1(k � 1)
x̂2(k)

P2(k)

z1(k) z2(k)

g = Gyro()
k1 = Kalman(...)
pf = ParticleFilter(I={’gyro’, ’camera’})
g.transduce(k1).delay()\

.connect(pf, port_mapping=(’default’,’gyro’))
c = Camera()
c.connect(pf, port_mapping=(’default’,’camera’))
pf.connect(Controller(...))

Figure 4. Cascaded filtering example [19] and its ThingFlow code

processing that is close to the model of controller design adopted
by control theorists. For example, consider a more involved control
system described in [19], where the problem of estimating the state
of an autonomous vehicle is solved using a cascaded filter model.
There are two sensors: a gyroscope and a video camera. A Kalman
filter is used to provide precise estimates from the gyro. The gyro
estimate and the raw camera feed is fed into a particle filter to finally
estimate the pose. Figure 4 shows the control theorist’s view of the
system and the closely corresponding ThingFlow code.

In [19], the authors discuss two designs: first, the particle filter
receives the mean and the variance of the distribution computed by
k1 and uses further statistical analyses, and second, the particle filter
receives the mean value computed by the Kalman filter k1 and uses
it as a “true estimate.” In ThingFlow, one can change from the first
design to the second simply by adding a map:

g.transduce(k1).delay().map(lambda mu, C: mu)\
.connect(pf, port_mapping=(’default’,’gyro’))

Second, ThingFlow provides adapters to import and export data
from external sources, potentially running on different machines.
For example, suppose the camera is running on a different machine
and is sending the video stream over MQTT (a messaging standard).
In ThingFlow, using adapters that talk to network streams, we write

c = Camera().connect(MQTTWriter(...))

for the source and modify the original source to read from the
message source

c = MQTTReader(...)

to get a distributed implementation.
Since ThingFlow does not provide real-time guarantees, it is not

an implementation platform for all control systems, especially when
the dynamics is fast. However, when the underlying dynamics is slow
compared to the computation requirements, such as in temperature
control or building control (where sampling intervals are in minutes
or more), we have implemented ThingFlow based control loops. We
give specific case studies below.

7 2017/5/8

Kalman
Filter

Camera

ThingFlow Controller

Particle	

Filter

Gyro

ActuatorControl

Kalman
Filter

Camera

c = Camera()

c.connect(mqtt writer)

robustness in the face of tight deadlines or power consumption.
In Python’s standard asyncio scheduler, events are scheduled
independently, without regard to their interrelationships. In the
standard ThingFlow scheduler for Python, we already optimize
by invoking downstream things directly, rather than going back
to the lower level scheduler. Futher optimizations are possible by
reordering the recurring sensor sampling events. We do this in the
scheduler for MicroPython.

Since the ESP8266 can be run off a battery, we have chosen
to optimize for minimal power consumption by reducing wake-
ups and maximizing the time the WiFi radio and processor can be
kept in a low power mode. This can have a dramatic impact on
power consumption. For example, normal power comsumption of
the ESP8266 will be from 50 mA to 170 mA, depending on radio
usage. If one runs a workload where the system wakes for half a
second at a time once every 100 seconds and stays in deep sleep
mode otherwise, the average power consumption will be reduced to
only 0.5 mA [9].

Our ThingFlow-MicroPython scheduler minimizes wake-ups by
delaying the initial execution of certain tasks and grouping together
tasks with the same wakeup interval. When a new task is added to
the scheduler, we use the following logic. If a new task is added that
matches an older task’s interval, it will not be scheduled until the
existing one is run. If there are no tasks with the same interval, we
look for the smallest interval that is either a factor or multiple of the
new interval. We schedule the new interval to be coordinated with
this one. For example, if we have a new interval 60 seconds and old
intervals of 30 and 45 seconds, we will schedule the new 60 second
interval to first run on the next execution of the 30 second tasks.
Thus, they will run at the same time for each execution of the 60
second interval. Finally, if a task is run later than its scheduled time
(due to others tasks taking too long), the next scheduled execution is
kept as if the task had run at the correct time (by making the interval
shorter). This avoids tasks getting out-of-sync when one misses a
deadline.

Connecting to the Outside World: Adapters Finally, ThingFlow
provides a set of adapters to import and export streams into different
pipelines. It provides readers and writers from csv files, pandas
frames, TCP streams, MQTT streams (MQTT is a messaging proto-
col for IoT systems), Spark streams, databases (Postgres, influxDB),
visualization frameworks (Bokeh), etc. Using these adapters, one
can write ThingFlow programs which communicate with external
data sources or data analysis, learning, and visualization pipelines,
as well as write distributed ThingFlow programs.

5. Case Studies
5.1 A Control Pipeline with Bayesian Filtering
A basic control loop involving noisy sensors, estimators, control
computations, and actuation forms an event-processing pipeline:
measure a stream of sensor values, estimate state using a filter,
compute the control signal based on the estimate, and send the
signal to an actuator. In ThingFlow, the pipeline will be written as:

kalman = Kalman(A, B, C, Q, R) # Kalman filter
pid = PID(Kp, Ki, Kd) # PID controller
pid.connect(kalman, port_mapping=(’default’, ’input’))
_ = Sensor().transduce(kalman)\

.transduce(pid)\

.connect(Actuator())

This corresponds very closely to the control theorist’s view. Notice
that in addition to the Kalman filter, the controller usually also
maintains internal state to compute integrations or derivatives.

There are two advantages that ThingFlow provides in this
setting. First, it provides a single interface for sampling and stream

First&Es(mator&
(Kalman&Filter)&

Second&Es(mator&
(Par(cle&Filter)&

Moving&body&
ω(k),&q(k)&

Gyro& Camera&

Delay&

x̂1(k)

P1(k)

x̂1(k � 1)

P1(k � 1)
x̂2(k)

P2(k)

z1(k) z2(k)

g = Gyro()
k1 = Kalman(...)
pf = ParticleFilter(I={’gyro’, ’camera’})
g.transduce(k1).delay()\

.connect(pf, port_mapping=(’default’,’gyro’))
c = Camera()
c.connect(pf, port_mapping=(’default’,’camera’))
pf.connect(Controller(...))

Figure 4. Cascaded filtering example [19] and its ThingFlow code

processing that is close to the model of controller design adopted
by control theorists. For example, consider a more involved control
system described in [19], where the problem of estimating the state
of an autonomous vehicle is solved using a cascaded filter model.
There are two sensors: a gyroscope and a video camera. A Kalman
filter is used to provide precise estimates from the gyro. The gyro
estimate and the raw camera feed is fed into a particle filter to finally
estimate the pose. Figure 4 shows the control theorist’s view of the
system and the closely corresponding ThingFlow code.

In [19], the authors discuss two designs: first, the particle filter
receives the mean and the variance of the distribution computed by
k1 and uses further statistical analyses, and second, the particle filter
receives the mean value computed by the Kalman filter k1 and uses
it as a “true estimate.” In ThingFlow, one can change from the first
design to the second simply by adding a map:

g.transduce(k1).delay().map(lambda mu, C: mu)\
.connect(pf, port_mapping=(’default’,’gyro’))

Second, ThingFlow provides adapters to import and export data
from external sources, potentially running on different machines.
For example, suppose the camera is running on a different machine
and is sending the video stream over MQTT (a messaging standard).
In ThingFlow, using adapters that talk to network streams, we write

c = Camera().connect(MQTTWriter(...))

for the source and modify the original source to read from the
message source

c = MQTTReader(...)

to get a distributed implementation.
Since ThingFlow does not provide real-time guarantees, it is not

an implementation platform for all control systems, especially when
the dynamics is fast. However, when the underlying dynamics is slow
compared to the computation requirements, such as in temperature
control or building control (where sampling intervals are in minutes
or more), we have implemented ThingFlow based control loops. We
give specific case studies below.

7 2017/5/8

mqtt reader(...)

ThingFlow Implementation

• Python3	
 library
– CPython:	
 standard	
 Python	
 implementation
–MicroPython:	
 “bare	
 metal”	
 implementation	
 for	

embedded	
 systems

https://github.com/mpi-­‐sws-­‐rse/thingflow-­‐python

Semantics	
 =	
 Comm.	
 State	
 Machines

Filter

Input	

Thing

Output
Thing

Filter

Filter

Event	
 streams

In	
 Each	
 Step…

Filter

Input	

Thing

Output
Thing

Filter

Filter

Event	
 streams

In	
 Each	
 Step…

Filter

Input	

Thing

Output
Thing

Filter

Filter

Event	
 streams

In	
 Each	
 Step…

Filter

Input	

Thing

Output
Thing

Filter

Filter

Event	
 streams
Infinite-­‐state	
 system:

1. Events	
 are	
 infinite-­‐state:	

events	
 can	
 be	
 chosen	
 from	
 an
infinite	
 set	
 (e.g.,	
 real-­‐valued	

signals)

2. Filters	
 are	
 infinite-­‐state:	
 the	

internal	
 state	
 of	
 filters	
 can	
 be	

infinite	
 (e.g.,	
 a	
 Kalman filter)

3. Queues can	
 be	
 unbounded

4. Probabilistic:	
 The	
 filter	

transition	
 function	
 can	
 be	

probabilistic

Semantics:	
 Infinite-­‐state	
 Markov	

decision	
 process:

-­‐ Scheduler	
 picks	
 policy

-­‐ State	
 evolves	
 probabilistically	

based	
 on	
 chosen	
 filter

(under	
 measureability
assumptions)

Core	
 language:	
 Prob streams

Reading	
 from	
 prob streams	
 =	
 sampling	

from	
 the	
 distribution

The	
 ThingFlow	
 Scheduler
• Responsible	
 for	
 scheduling	
 “things”

– Periodic	
 observations	
 (sensor	
 sampling)
– Non-­‐periodic	
 events	
 (e.g.	
 socket	
 readiness)
– Inter-­‐thing	
 events

• Abstraction	
 over	
 low	
 level	
 details
– Threading,	
 Order	
 of	
 scheduling

• Different	
 implementations
– On	
 top	
 of	
 Python’s	
 asyncio scheduler	
 for	
 Cpython
– Custom,	
 power-­‐saving	
 implementation	
 for	
 ESP8266

• ThingFlow programs	
 must	
 be	
 explicitly	
 scheduled	
 to	

perform	
 their	
 tasks!

Simple	
 ThingFlow	
 Example
• Periodically	
 sample	
 a	
 light	
 sensor
• Write	
 the	
 sensed	
 value	
 to	
 a	
 file
• Every	
 5	
 steps,	
 send	
 the	
 moving	
 average	
 to	
 a	
 message	
 queue

Lux
Sensor

Write
to
File

Scheduler

Write
to

Queue

Moving
Avg

sensor	
 =	
 LuxSensor()
sensor.connect(file_writer(’file’))
sensor.transduce(MovingAvg(5)).connect(mqtt_writer)

scheduler	
 =	
 Scheduler(asyncio.get_event_loop())
scheduler.schedule_periodic(sensor,	
 2)
scheduler.run_forever()

Default	
 scheduler:	
 Push	
 an	
 event	
 entirely	

through	
 the	
 graph	
 before	
 handling	
 the	

next	
 input
-­‐-­‐ Can	
 replace	
 async calls	
 by	
 sync	
 calls

Solar	
 Heater	
 Example

30

Cooler
water

Hot
water

Bypass
valve

Solar	
 water	
 heater

Water
temp
sensor

House

Pool
Control
State	

Machine

Actuator

Dispatc
h

Low	

Pass
Filter

Default

Between

Thigh

Tlow

Solar	
 Heater	
 Example:
Controller	
 State	
 Machine

31

NormalInitial Too
Hot

Between	
 /	
 OFF

TLOW /	
 OFF

THIGH /	
 ON

TLOW /	
 Ø

THIGH /	
 Ø

THIGH /	
 ON

TLOW /	
 OFF

Solar	
 Heater	
 Example:	
 Code

32

Thigh = 110 # Upper threshold (degrees fahrenheit)
Tlow = 90 # Lower threshold
sensor = TempSensor(gpio_port=1)

The dispatcher converts a sensor reading into
threshold events
dispatcher = sensor.transduce(RunningAvg(5)) \

.dispatch([(lambda v: v[2]>=Thigh, ’t_high'),
(lambda v: v[2]<=Tlow, ’t_low')])

controller = Controller()
dispatcher.connect(controller, port_mapping=(’t_high’,’t_high'))
dispatcher.connect(controller, port_mapping=(’t_low', ’t_low'))
dispatcher.connect(controller, port_mapping=('default’, 'between'))

actuator = Actuator()
controller.connect(actuator)

Lighting	
 Project:	
 Motivation

• If	
 out	
 of	
 town	
 for	
 the	
 weekend,	
 don’t	
 want	
 to	

leave	
 the	
 house	
 dark

• Replay	
 lights	
 “similar”	
 to	
 normal	
 lighting	

pattern

Lighting	
 Replay	
 Application

Smart	
 Lights

Data	

Capture

Analysis	
 and	

Machine
Learning

Player
Application

Lux	
 Sensors

Lighting	
 Replay	
 Application

Smart	
 Lights

Data	

Capture

Analysis	
 and	

Machine
Learning

Player
Application

Lux	
 Sensors

ESP8266	
 remote	

nodes	
 +	

Raspberry	
 Pi

Offline	
 analysis	

and	
 model	

learning	
 using	

Jupyter,	
 Pandas,	

HMMlearn

Use	
 an	
 HMM	

model	
 and	
 Phue
to	
 control	
 Philips	

Hue	
 lights

Captured	
 sensor
data HMM	
 state	
 machines

ESP8266

TSL2591
lux	
 sensor
breakout
board

Lithium	
 Ion
Polymer
Battery
3.7v	
 350mAh

MicroUSB	
 to
USB	
 cable

Adafruit	
 Feather	
 HUZZAH
ESP8266	
 breakout	
 board

ESP8266:	
 Wiring	
 Diagram

SDA

SCL

GND

3V

Raspberry	
 Pi

Raspberry	
 Pi	
 2

Resistor

LED
TSL2591
lux	
 sensor
breakout
board

Raspberry	
 Pi:	
 Wiring	
 Diagram

Resistor
LED

Anode
(long	
 lead)

Cathode
(short	
 lead)

10k

GND

3.3V

SDA
SCL

GPIO	
 0

Lighting	
 Replay	
 Application:	
 Capture

Lux
Sensor ESP8266

Front	
 Bedroom	
 Sensor	
 Node

Lux
Sensor ESP8266

Back	
 Bedroom	
 Sensor	
 Node

Raspberry	
 Pi
(Dining	
 Room)

MQTT
Data	

Capture	

App

Lux
Sensor

Influx
DB

ESP8266	
 Code	
 (ThingFlow)

from	
 thingflow import	
 Scheduler,	
 SensorAsOutputThing
from	
 tsl2591	
 import	
 Tsl2591
from	
 mqtt_writer import	
 MQTTWriter
from	
 wifi import	
 wifi_connect
import	
 os

#	
 Params to	
 set
WIFI_SID=	
 …
WIFI_PW=	
 …
SENSOR_ID="front-­‐room"
BROKER='192.168.11.153'

wifi_connect(WIFI_SID,	
 WIFI_PW)
sensor	
 =	
 SensorAsOutputThing(Tsl2591())
writer	
 =	
 MQTTWriter(SENSOR_ID,	
 BROKER,	
 1883,

'remote-­‐sensors')
sensor.connect(writer)

sched =	
 Scheduler()
sched.schedule_periodic(sensor,	
 SENSOR_ID,	
 60)
sched.run_forever()

Sample	
 at	
 60	
 second	
 intervals

The	
 MQTT	
 writer	
 is	
 connected	
 to
the	
 lux	
 sensor.

See	
 https://github.com/mpi-­‐sws-­‐rse/thingflow-­‐examples/blob/master/lighting_replay_app/capture/esp8266_main.py	

Raspberry	
 Pi	
 Code	
 (ThingFlow)

Lux
Sensor

MQTT
Adapter

Map
to

UTF8

Parse
JSON

Map
to

events
Dispatch

InfluxDB
(front	

room)

InfluxDB
(back	

room)

InfluxDB
(dining	

room)

https://github.com/mpi-­‐sws-­‐rse/thingflow-­‐examples/blob/master/lighting_replay_app/capture/sensor_capture.py

Lighting	
 Replay	
 Application:	
 Analysis

Raspberry	
 Pi
(Dining	
 Room)

Flat
Files

HMM
definitions

Laptop

Jupyter	
 Notebook

file
copy

Preprocessing	
 the	
 Data
(ThingFlow	
 running	
 in	
 a	
 Jupyter	
 Notebook)

CSV	
 File
Reader

Fill in
missing
times

Sliding
Mean

Round
values

Output
Event
Count

Capture
NaN

Indexes

Pandas	

Writer

(raw	
 series)

Pandas	

Writer

(smoothed	

series)

reader.fill_in_missing_times()
.passthrough(raw_series_writer)
.transduce(SensorSlidingMeanPassNaNs(5))
.select(round_event_val)
.passthrough(smoothed_series_writer)
.passthrough(capture_nan_indexes)
.output_count()

Data	
 Processing:	
 Raw	
 Data
Front	
 room,	
 last	
 day

Data
gaps

Data	
 Processing:	
 Smoothed	
 Data	

Front	
 room,	
 last	
 day

Data	
 Processing:	
 K-­‐Means	
 Clustering
Front	
 room,	
 last	
 day

Data	
 Processing:	
 Mapping	
 to	
 on-­‐off	
 values
Front	
 room,	
 last	
 day

Hidden	
 Markov	
 Models	
 (HMMs)
• Markov	
 process

– State	
 machine	
 with	
 probability	
 associated	

with	
 each	
 outgoing	
 transition

– Probabilities	
 determined	
 only	
 by	
 the	
 current	

state,	
 not	
 on	
 history

• Hidden	
 Markov	
 Model
– The	
 states	
 are	
 not	
 visible	
 to	
 the	

observer,	
 only	
 the	
 outputs	
 (“emissions”).

• In	
 a	
 machine	
 learning	
 context:
– (Sequence	
 of	
 emissions,	
 #	
 states)	
 =>	
 inferred	

HMM

• The	
 hmmlearn library	
 will	
 do	
 this	
 for	

us.
– https://github.com/hmmlearn/hmmlearn

Example	
 Markov	
 process
(from	
 Wikipedia)

Slicing	
 Data	
 into	
 Time-­‐based	
 “Zones”

Sunrise

30	
 Minutes
before
sunset

Max(sunset+60m,	
 9:30	
 pm)

0 1 2 3 0

HMM	
 Training	
 and	
 Prediction	
 Process

Training
1. Build	
 a	
 list	
 of	
 sample	
 subsequences	
 for	
 each	
 zone
2. Guess	
 a	
 number	
 of	
 states	
 (e.g.	
 5)
3. For	
 each	
 zone,	
 create	
 an	
 HMM	
 and	
 call	
 fit() with	
 the	

subsequences
Prediction
For	
 each	
 zone	
 of	
 a	
 given	
 day:

• Run	
 the	
 associated	
 HMM	
 to	
 generate	
 N	
 samples	
 for	
 an	
 N	
 minute	

zone	
 duration

• Associated	
 a	
 computed	
 timestamp	
 with	
 each	
 sample

HMM	
 Predicted	
 Data

Front	
 room,	
 one	
 week	
 predicted	
 data

Front	
 room,	
 one	
 day	
 predicted	
 data

Lighting	
 Replay	
 Application:	
 Replay

Front	
 Room
Smart	
 Light

Raspberry	
 Pi
(Dining	
 Room)

HMM
definitions

Player
Script

Back	
 Room
Smart	
 Light

Philips
Hue
Bridge

WiFi
Router
and
Switch

ZigBee
HTTP

Logic	
 of	
 the	
 Replay	
 Script

• Use	
 phue library	
 to	
 control	
 lights
• Reuse	
 time	
 zone	
 logic	
 and	
 HMMs	
 from	
 analysis
• Pseudo-­‐code:

Initial	
 testing	
 of	
 lights
while	
 True:

compute	
 predicted	
 values	
 for	
 rest	
 of	
 day
organize	
 predictions	
 into	
 a	
 time-­‐sorted	
 list	
 of	
 on/off	
 events
for	
 each	
 event:

sleep	
 until	
 event	
 time
send	
 control	
 message	
 for	
 event

wait	
 until	
 next	
 day

https://github.com/mpi-­‐sws-­‐rse/thingflow-­‐examples/blob/master/lighting_replay_app/player/lux_player.py

ThingFlow:	
 Analysis
• Bad	
 news:	
 Communicating	
 finite-­‐state	
 machines	
 +	
 FIFO	

queues	
 =	
 everything	
 is	
 undecidable!

• Decidable	
 verification	
 in	
 special	
 cases:	
 finite-­‐state	

events	
 &	
 filters,	
 ordering	
 of	
 messages	
 ignored

• Analyzing	
 a	
 filter:	
 Abstraction	
 &	
 approximation	
 of	

infinite-­‐state	
 probabilistic	
 processes
– algorithms	
 with	
 guaranteed	
 error	
 bounds

• Open:	
 Tools	
 and	
 analyses	
 for	
 Thingflow programs
– Asynchrony,	
 Hybrid	
 systems,	
 Uncertainty,	
 Distribution

Analysis	
 of	
 ThingFlow

Two	
 example	
 analyses	
 for	
 subcases:

1. Analyzing	
 event	
 flows:	
 Provenance	
 Analysis
[Joint	
 work	
 with	
 Roland	
 Meyer	
 &	
 Zilong Wang]

2. Analyzing	
 a	
 filter:	
 Abstracting	
 infinite-­‐state	

Markov	
 processes	

[Joint	
 work	
 with	
 Sadegh Soudjani and	
 Alessandro	

Abate]

Provenance

Information	
 about	
 the	
 source	
 and	
 access	
 history	

of	
 an	
 object
“All	
 inputs	
 to	
 controller	
 are	
 sanitized”

BA C
req

req

Provenance	
 for	
 ThingFlow

• Associate	
 principals	
 with	
 filters

• Provenance	
 of	
 a	
 message	
 =	

Principals	
 who	
 have	
 sent	
 the	
 message	

chronologically

• Provenance	
 domain	
 =	

Strings	
 over	
 principal	
 names

Provenance	
 Verification	
 Problem

Given a Thingflow program P, a stream x, and a regular
set R of provenances,
are the provenances of all events in x always in the set R
along all executions of P?

Assumptions: Finitely many events, finite-­‐state filters, and
ordering of events in queues ignored

Note: The system is still infinite-­‐state!

Example: All inputs to controller have passed through a
sanitizer and then a state estimator

Provenance	
 Verification	
 Problem

Given a Thingflow program P, a stream x, and a regular
set R of provenances,
are the provenances of all events in x always in the set R
along all executions of P?

Assumptions: Finitely many events, finite-­‐state filters, and
ordering of events in queues ignored

Note: The system is still infinite-­‐state!

Basic abstraction: For each stream, each kind of event,
count how many events are currently in the stream

In	
 Each	
 Step…

Filter

Input	

Thing

Output
Thing

Filter

Filter

Event	
 streams

Finite	
 state

Finitely	
 many	
 possibilities1 orange,
4	
 purple

Counting	
 abstraction

Unbounded	
 Events:	
 Petri	
 Net

• Finite	
 set	
 of	
 places
• Finite	
 set	
 of	
 transitions
• Places	
 marked	
 with	
 tokens

• State:	
 Marking	

• Step:	
 consume	
 tokens	
 from	

sources,	
 put	
 tokens	
 into	

targets	
 of	
 a	
 transition

• Defines	
 an	
 infinite	
 state	

system

The	
 Benefits	
 of	
 Petrification

Petri	
 nets	
 have	
 nice	
 decidable	
 properties:
Coverability problem	
 (is	
 some	
 place	

markable?)	
 is	
 decidable

Theorem	
 [Rackoff,Lipton]	
 The	
 coverability
problem	
 for	
 Petri	
 nets	
 is	
 EXPSPACE-­‐complete.

From	
 ThingFlow to	
 Nets

• A	
 place	
 for	
 each	
 filter	
 state

• A	
 place	
 for	
 each	
 queue	
 and	
 each	
 event	
 type
– Count	
 how	
 many	
 events	
 of	
 each	
 type	
 in	
 a	
 queue

With	
 provenances,	
 we	
 do	
 not	
 get	
 a	
 Petri	
 net:
Unboundedly	
 many	
 provenances	
 ➔

unboundedly	
 many	
 places

Unbounded	
 Provenances:	
 Automata

• Define	
 equivalence	
 classes	
 w.r.t.	
 the	
 states	
 of	

DFA	
 for	
 the	
 regular	
 set	
 of	
 provenances.

• Define	
 a	
 counter	
 for	
 each	
 queue,	
 event,	
 and	

state	
 of	
 the	
 spec

The	
 validity	
 of	
 the	
 provenance	
 property	

depends	
 on	
 states	
 of	
 the	
 spec	
 automaton,	
 not	

concrete	
 provenances.

Program	
 +	
 Provenance	
 DFA➔poly Petri	
 net	

– Control	
 flow	
 can	
 be	
 modeled	
 by	
 Petri	
 net
– Each	
 counter	
 is	
 a	
 place	
 in	
 the	
 Petri	
 net

Provenance	
 verification	
 problem	
 =	

Coverability problem	
 of	
 Petri	
 nets

Reduction

Provenance	
 verification	
 problem	
 for	

finite-­‐state	
 ThingFlow programs	
 (when	

ordering	
 is	
 ignored)	
 is	
 EXPSPACE-­‐
complete.

Main	
 Theorem

Linear	
 Temporal	
 Logic

• Provenance	
 verification	
 =	
 Invariants
• Provenance	
 linear	
 temporal	
 logic:

“Whenever	
 event	
 in	
 x	
 has	
 provenance	
 R,	
 eventually	

an	
 event	
 in	
 y	
 has	
 provenance	
 S”

Theorem:	
 ProvLTL decidable	
 for	
 finite-­‐state	

Thingflow programs	
 (when	
 ordering	
 is	

ignored)

Analysis	
 of	
 ThingFlow

Two	
 examples	
 of	
 decidability	
 in	
 special	
 cases:

1. Provenance	
 Analysis
[Joint	
 work	
 with	
 Roland	
 Meyer	
 &	
 Zilong Wang]

2. Analyzing	
 a	
 single	
 filter:	
 Abstracting	
 infinite-­‐
state	
 Markov	
 processes	

[Joint	
 work	
 with	
 Sadegh Soudjani and	
 Alessandro	

Abate]

• State	
 space	
 S
• Transition	
 kernel	
 T(ds’	
 |	
 s)	
 =	
 	
 t(s’	
 |	
 s)	
 ds’

• N-­‐step	
 safety	
 problem:	
 Given	
 s0,	
 T,	
 and	
 a	
 set	

A,	
 find	
 the	
 probability	
 that	
 the	
 system	
 stays	
 in	

A up	
 to	
 N steps
– Can	
 formulate	
 as	
 a	
 Bellman	
 iteration	
 (but	
 without	

any	
 closed	
 form)

Discrete-­‐Time	
 Markov	
 Process

T (C | s) = Pr [s0 2 C | s]

Markov	
 Chain	
 Abstraction

• Finite-­‐state	
 Markov	
 chain	
 =	
 Representatives	

from	
 a	
 partition	
 of	
 the	
 infinite-­‐state	
 space

• Transitions:	

Markov chain abstractions
1 finite state space Z := {v1,v2, . . . ,vm,φ}
2 marginals P (vi,vj) = T(Aj |vi) =

∫

Aj
ts(s̄|vi)ds̄ and φ absorbing

3 compute safety probability over Aδ := {v1,v2, . . . ,vm}

S

A

S. Soudjani, Oxford DBNs as Formal Abstractions of Structured Stochastic Processes slide 11 /24

Markov chain abstractions
1 finite state space Z := {v1,v2, . . . ,vm,φ}
2 marginals P (vi,vj) = T(Aj |vi) =

∫

Aj
ts(s̄|vi)ds̄ and φ absorbing

3 compute safety probability over Aδ := {v1,v2, . . . ,vm}

S

A
A9

A7

A2

A1 A8

A3

A6

A5

A4

v8

v5

φ

v7

S. Soudjani, Oxford DBNs as Formal Abstractions of Structured Stochastic Processes slide 11 /24

P (vi, vj) =

Z

Aj

t(s0 | vi)ds0

Main	
 Result

If	
 t(.	
 |	
 s)	
 is	
 Lipschitz	
 continuous	
 with	
 constant	
 h,	

one	
 can	
 bound	
 the	
 probability	
 of	
 error	
 between	

the	
 original	
 model	
 and	
 the	
 finite-­‐state	

abstraction:

|ps0(A)� pv0(A�)|  NLh�

Prob of	
 staying	

in	
 A for	
 N steps

Prob of	
 staying	

in	
 abstraction	

of	
 A for	
 N steps
in	
 abstraction

N =	
 Number	
 of	
 steps
L	
 =	
 Volume	
 of	
 A
h =	
 Lipschitz	
 const
δ =	
 Diameter	
 of	

abstraction

Infinite	
 to	
 Finite	
 MDPs

• Bounds	
 are	
 very weak!
– Compared	
 to	
 Monte	
 Carlo	
 simulation

• Open:	
 Better	
 bounds?	

• Open:	
 Verification	
 for	
 MDP	
 +	
 asynchronous	

concurrency?

Analysis	
 of	
 ThingFlow

Two	
 examples	
 of	
 decidability	
 in	
 special	
 cases:

1. Provenance	
 Analysis
[Joint	
 work	
 with	
 Roland	
 Meyer	
 &	
 Zilong Wang]

2. Analyzing	
 a	
 single	
 filter:	
 Abstracting	
 infinite-­‐state	

Markov	
 processes	

[Joint	
 work	
 with	
 Sadegh Soudjani and	
 Alessandro	

Abate]

Open:	
 Analysis	
 of	
 a	
 Thingflow program	

(combining	
 asynchrony,	
 filters,	
 and	
 probabilities)

Other	
 Open	
 Problems

1. Parameterized	
 reasoning

2. Real-­‐time	
 control

3. Fault	
 tolerance	
 and	
 distribution

4. Deployment

5. Security,	
 privacy,	
 accountability

Conclusion
• ThingFlow = DSL for stream-­processing
applications for IoT systems
• Streams & stream transformations
• Filters & filter composition
• Uncertainty & infinite-­state
• Asynchrony & explicit scheduling

• Many verification/analysis/tool aspects
are open!

Thank	
 You
http://www.mpi-­‐sws.org/~rupak

ThingFlow:
https://github.com/mpi-­‐sws-­‐rse/thingflow-­‐python

ThingFlow Examples:
https://github.com/mpi-­‐sws-­‐rse/thingflow-­‐examples

