
Probabilistic	Symbolic	Execution
A	New	Hammer	

Willem	Visser
Stellenbosch	University

Joint	work	with	Matt	Dwyer,	Jaco	Geldenhuys,	
Corina	Pasareanu,	Antonio	Filieri,
…



Probabilistic Symbolic Execution

+
Symbolic Execution Model Counting





Saving the Whooping Crane



void test(int x, int y) {
if (y == x*10)
S0;

else
S1;

if (x > 3 && y > 10)
S2;

else
S3;

}

Symbolic Execution

[ Y=X*10 ] S0

[ X>3 & 10<Y=X*10] S2

[ true ] test (X,Y) 

[ Y!=X*10 & !(X>3 & Y>10) ] S3

[ Y!=X*10 ] S1

[ Y=X*10 & !(X>3 & Y>10) ] S3

[ X>3 & 10<Y!=X*10] S2

Test(1,10) reaches S0,S3
Test(0,1)   reaches S1,S3
Test(4,11) reaches S1,S2



void test(int x, int y: 0..99) {
if (y == x*10)
S0;

else
S1;

if (x > 3 && y > 10)
S2;

else
S3;

}

Probabilistic SE

[ Y=X*10 ] [ Y!=X*10 ]

[ X>3 & 10<Y=X*10] [ X>3 & 10<Y!=X*10] [ Y!=X*10 & !(X>3 & Y>10) ]

[ true ]

[ Y=X*10 & !(X>3 & Y>10) ]

y=10x

x>3	&	y>10x>3	&	y>10

104

9990

8538

10

6 4 1452



LattE Model Counter

http://www.math.ucdavis.edu/~latte/

Count solutions for 
conjunction

of Linear Inequalities  



Things	we	can	handle…

• Usage	profiles	(ICSE	2013)
• Domains

– Linear	Integer	Arithmetic	(ISSTA2012)
– Floating	point	and	non-linear	(PLDI2014)

• approximate

– Data	structures	(SPIN2015)
– Strings	(CAV2015	by	Tevfik	Bultan)



[ Y=X*10 ] 

[ Y!=X*10 ]

[ X>3 & 10<Y=X*10] [ X>3 & 10<Y!=X*10] [ Y!=X*10 & !(X>3 & Y>10) ]

[ true ]

[ Y=X*10 & !(X>3 & Y>10) ]

y=10x

x>3	&	y>10x>3	&	y>10

104

9990

8538

10

6 4 1452



How likely is a PC 
to be satisfied? 

A Path Condition defines 
the constraints on the inputs

to execute a path

# solutions to the PC 

Domain Size  

Assuming uniform distribution of values



PC

c

P
= 

Prob (c & PC)  
Prob (PC)  

Pc

!c
1-Pc

= 
Prob (c & PC)  

P  

Conditional and Path Probabilities

P’’ = (1-Pc) x P P’ = Pc x P

Pc = Prob (c | PC) 



[ X>3 & 10<Y=X*10] [ X>3 & 10<Y!=X*10] [ Y!=X*10 & !(X>3 & Y>10) ][ Y=X*10 & !(X>3 & Y>10) ]

y=10x

x>3	&	y>10x>3	&	y>10

1

0.999

0.855

0.001

0.6 0.4 0.145

0.0006 0.0004 0.8538 0.1452



[ X>3 & 10<Y=X*10] [ X>3 & 10<Y!=X*10] [ Y!=X*10 & !(X>3 & Y>10) ][ Y=X*10 & !(X>3 & Y>10) ]

y=10x

x>3	&	y>10x>3	&	y>10

1

0.999

0.855

0.001

0.6 0.4 0.145

0.0006 0.0004 0.8538 0.1452

0.9996 Reliable



Information	Leakage	via	Side	Channels
Pasareanu	and	Bultan

• Side channels produce a set of 
observables that partition a secret
• Classically: execution time

• Shannon Entropy
• Expected amount

of information gain
in terms of bits

• Probabilistic Symbolic Execution



Information	Leakage	Example
from	slides	by	Tevfik	Bultan

// binary 4-digit pin, D = 256
bool checkPIN(guess[]) {

for (int I = 0; I < 4; i++)
if (guess[i] != PIN[i])
return false;

return true;
}

PATHS: 
1. Return false; 128 values
2. Return false; 64 values
3. Return false; 32 values
4. Return false; 16 values
5. Return true; 16 values

bool checkPINBetter(guess[]) {
matched = true;
for (int I = 0; I < 4; i++)

if (guess[i] != PIN[i])
matched = false;

else
matched = matched;

return matched;
}

Assuming observable is time
H = 1.875

Assuming observable is output
H = 0.33729



(Java)	Probabilistic	Programming
• Combine	general	purpose	programming	with	
probability	distributions	to	answer	interesting	
questions.
– (Easily)	encode	Bayesian	Networks,	Hidden	
Markov	Models,	etc.	as	a	(Java)	program	with	a	
few	special	keywords	

– probability(loc),	observe(cond),	flip(ratio)
• Using	Probabilistic	Symbolic	Execution	for	
inference



Classic	Examples
public static void FOSE() {

boolean c1 = flip(0.5);
boolean c2 = flip(0.5);
observe(c1 || c2);
if (c1) probability(1);

}

public static void PRISMDiceExample() {
int s = 0;
int d = 0; // dice value
while (true) {

if (s==0) { s = flip(0.5) ? 1 : 2; } 
else if (s == 1) { s = flip(0.5) ? 3 : 4;} 
else if (s == 2) { s = flip(0.5) ? 5 : 6;} 
else if (s == 3) { if (flip(0.5)) { s = 1;} 

else { s = 7; d = 1; }} 
else if (s == 4) { s = 7; d = flip(0.5) ? 2 : 3;} 
else if (s == 5) { s = 7; d = flip(0.5) ? 4 : 5;} 
else if (s == 6) { if (flip(0.5)) { s = 2;} 

else { s = 7; d = 6;}} 
else { /* s = 7 */ break; }

}
probability(d); // probability of seeing each value for d

}

0.50.6667

0.16667 for all d



“Semantic” Difference	Between	Programs

On what percentage of the input space 
does P and P’ give different outputs?

public static void check(int a, int b, int c) {
assert P(a, b, c) == P’(a, b, c);

}

Record path conditions when assertion fails 
and count their sizes then divide by
total domain size to get % difference



Difference	Example

Boolean P(int i, int j : 0..99) {
return i <= j;

}

99% different

1% different

49.5% different

50.5% different

Boolean PP(int i, int j) {
return i >= j;

}

Boolean PP(int i, int j) {
return i < j;

}

Boolean PP(int i, int j) {
return i == j;

}

Boolean PP(int i, int j) {
return i != j;

}

Boolean PP(int i, int j) {
return i > j;

}
100% different



M
ut

at
io

ns

especially when used to seed faults 

Taking an analytical look



== Ref. Version

Mutations

Are mutations
killed

using ref’s tests
✓ ✗ ✓✓✓

V

!= >= <= > <

Apply 
Mutation Ops

V1 V2 V3 V4 V5

Mutation is Killed if there exist a test that fails on it

Mutation Score = # Killed 
# Mutations



Killing Mutations == Finding real errors?



Mutations have found another use

Assuming the answer is yes…

FAULT SEEDING

How good is my super-duper new bug finding tool 
at finding seeded faults?



How hard is it to kill a mutant?

Previous work: fixed the test suite

We consider ALL test inputs 
and show 

the influence of varying the oracle



Sp
oi

le
r A

le
rt

N
ot hard at all

How hard is it to kill a mutant?

Birthplace more important 
than chicken or bull



On what percentage of the input space 
does the oracle for the 

reference version and mutated version 
give different outputs?

How easy or hard is it to kill a mutant?

What

How

diff == 0% => Equivalent Mutant
diff < threshold% => Stubborn Mutant



Implementation
• Listener	for	Symbolic	PathFinder	(SPF)

– Traps	calls	to	every	bytecode	instruction	executed

• Collects	path	conditions	when	oracle	differs
• Count	the	solutions	to	these	with	Green	and	Barvinok
• Also	collects	path	conditions	at	the	point	of	mutation	
and	counts	the	sizes
– Special	NOP	bytecode	is	pushed	at	this	point

• Dumps	a	CSV	file	with	the	output
• Dockerfile	to	recreate	image	to	run	experiments



In the initial results

We saw something interesting



What	did	we	find?
public static int classify(int i, int j, int k) {

if ((i <= 0) || (j <= 0) || (k <= 0)) 
return 4;

int type = 0;
if (i == j) type = type + 1;
if (i == k) type = type + 2;
if (j == k) type = type + 3;
if (type == 0) {

if ((i + j <= k) || (j + k <= i) || (i + k <= j))  type = 4;
else type = 1;
return type;

}

if (type > 3) type = 3;
else if ((type == 1) && (i + j > k))  type = 2;
else if ((type == 2) && (i + k > j))  type = 2;
else if ((type == 3) && (j + k > i))  type = 2;
else type = 4;
return type;

}

Stubborn Barrier

Almost all Mutations
are Stubborn (<1%)



Why?
public static int classify(int i, int j, int k) {

if ((i <= 0) || (j <= 0) || (k <= 0)) 
return 4;

int type = 0;
if (i == j) type = type + 1;
if (i == k) type = type + 2;
if (j == k) type = type + 3;
if (type == 0) {

if ((i + j <= k) || (j + k <= i) || (i + k <= j))  type = 4;
else type = 1;
return type;

}

if (type > 3) type = 3;
else if ((type == 1) && (i + j > k))  type = 2;
else if ((type == 2) && (i + k > j))  type = 2;
else if ((type == 3) && (j + k > i))  type = 2;
else type = 4;
return type;

}

Only 3% of inputs
pass here



Results	with	Reachability
Arithmetic	+	Constant	Replacement

Programs Muts Stubborn
<	0.1%

Really
<	0.1%

Always
100%

Easy
>	33%

TRI-YHJ 5 0 0 4 5
TRI-V1 19 1 0 8 18
TRI-V2 8 1 0 5 7
TCAS 38 8 4 9 28

Reach it … kill it



Results	with	Reachability
Relational	Operators

Programs Muts Stubborn
<	0.1%

Really
<	0.1%

Always
100%

Easy
>	33%

TRI-YHJ 40 0 0 5 24
TRI-V1 85 6 3 4 61
TRI-V2 55 0 0 3 38
TCAS 185 32 24 12 46

Reach it …good chance of killing it



Luckily 
not all relational operators 

behave the same



Results	by	Relational	Operator
Operator Muts Equiv Stubborn Always Easy

!=,== 17 0.00% 5.88% 23.53% 64.71%
<,>= 5 80.00% 0.00% 20.00% 20.00%
<=,> 18 0.00% 0.00% 22.22% 88.69%
==,!= 24 0.00% 8.33% 20.83% 62.50%
==,> 24 0.00% 8.33% 20.83% 62.50%
>,	<= 6 0.00% 0.00% 50.00% 83.33%
>=,< 3 0.00% 0.00% 33.33% 100.00%
<.<= 5 80.00% 20.00% 0.00% 0.00%
<=,< 24 22.22% 27.78% 0.00% 5.58%
>,>= 6 16.67% 33.33% 0.00% 0.00%
>=,> 3 0.00% 100.00% 0.00% 0.00%

OFF	BY	ONE operators	are	good	
at	creating	hard	to	kill	mutants	

NEGATION operators	are	good	
at	creating	easy	to	kill	mutants



Unfortunately so far
we were looking at an ideal situation:
we used a “perfect” oracle that can 

reliably detect mutations

Lets see what happens if we vary 
the precision of the oracle



The	tale	of	2	Oracles	for	BinTree
public boolean repOK() { 

return checkTree(root,0,9);
}

private boolean checkTree(Node n, 
int min, 
int max) {

if (n == null) return true;
if (n.value < min || n.value > max) 

return false;
boolean resL = checkTree(n.left,

min,
n.value-1);

if(!resL) return false;
else 

return checkTree(n.right,
n.value+1,
max);

}

public String linearize() { 
if (!repOK()) return "NotABST”;
return linearize(root);

}

private String linearize(Node n) {
StringBuilder b = new StringBuilder();
b.append("(");
if (n != null) {

b.append(n.value).append(' ');
b.append(linearize(n.left));
b.append(' ’);
b.append(linearize(n.right));

}
b.append(")");
return b.toString();

}



Linearize	vs	repOK	for	BST

Operator Muts Equiv
Linearize

Equiv
repOK

Easy
Linearize

Easy
repOK

Always
Linearize

Always
repOK

All 67 30% 66% 57% 31% 21% 15%
AOR+Const 12 83% 83% 0% 0% 0% 0%

ROR 55 18% 62% 69% 38% 25% 18%
Negation 23 4% 47% 78% 52% 48% 34%

Precise Oracle, less Equivalent, but more easily killed

Imprecise Oracle, more Equivalent, but less easily killed

< > >



• They	found	for	the	Relational	Operators	you	get	
stubborn	and	equivalent	mutants	in	almost	equal	
amounts	(other	classes	had	no	such	connection)

• They	also	found	that	more	mutations	implied	more	
equivalent	mutations,	but	no	such	correlation	with	
stubborn	mutations

Beware of Empirical Software Engineering! 



WARNING!!!

Can we find an analytical link 
between coverage and fault detection?



If we assume we know nothing about the 
distribution of test inputs, then…

For a given program P, calculate
the probability of achieving X% coverage

with a test suite of size k

For a faulty program P, calculate
the probability of observing the bug

with a test suite of size k
✓



Step	1:	Probabilistic	Symbolic	Execution

public int simple(int x, int y) {
int a = 0;
if (x < 4) { // 25

a = 0;
} else {

a = x;
}
if (y < 4) { // 30

return a + y;
} else {
return x + y;

}
}

Collect all paths 
with coverage and 
probability (x,y:0..9):

[30T, 25T] 0.36
[30T, 25F] 0.24
[30F, 25T] 0.24
[30F, 25F] 0.16

For 100% coverage:
30T, 30F, 25T and 25F



Step	2:	Sample	and	Calculate

[30T, 25T] 0.36
[30T, 25F] 0.24
[30F, 25T] 0.24
[30F, 25F] 0.16

1. Sample k-paths M times based on
the probability (with replacement)

2. For these k-paths calculate coverage,
based on number of samples that gets
the coverage, lets say c

3. c/M gives the probability

Assume k=2 & 100% coverage

Pick 106  2-tests, see on how many 
do you cover all 4 options, if 230k 
times, then probability is 23%.

Probability of getting full coverage 
with 2-tests, is 23%



Step	3:	Calculate	Probability	of	Bug
1. Use previous stuff to calculate on what 

percentage of inputs can an oracle 
observe the bug, call this probability p

2. Prob(bug | for a given k) = 1 – (1 – p)k 

//spec simple(x,y) = x+y
Public int simple(int x,  int y) {

int a = 0;
if (x < 4) { // 25

a = 0;
} else {

a = x;
}
if (y < 4) { // 30

return a + y;
} else {

return x + y;
}

}

Prob(bug) = 12/100
PC for bug: y!=y+x /\ y<4 /\ x<4
then Prog(bug| k = 2) = 22.6%

Probability of seeing the bug and 
obtaining coverage is therefore 
about the same, and thus one can 
argue they will correlate



0.00% 

20.00% 

40.00% 

60.00% 

80.00% 

100.00% 

120.00% 

2 3 4 5 6 7 8 9

70.0% 
80.0% 
90.0% 
100.0% 

Broken	BinaryTree	Example
Pr

ob
ab

ilit
y 

of
 C

ov
er

ag
e

Size of the test suite (each test 4 add/remove)

Very	much	uncorrelated

High	coverage	doesn’t	mean
you	will	find	the	bug

3% Probability of a bug



TRI-YHJ,	i.e.	broken	TriangleClassify

0.00% 

20.00% 

40.00% 

60.00% 

80.00% 

100.00% 

120.00% 

2 3 4 5 6 7 8 9

70.0% 
80.0% 
90.0% 
100.0% 

Pr
ob

ab
ilit

y 
of

 C
ov

er
ag

e

Size of the test suite 

85% Probability of a bug

Uncorrelated	with
high	coverage

High	Coverage	means	very
good	chance	of	finding	the	bug



Still	working	on	this…
• Need	more	faults,	the	two	shown	were	real	errors	
not	mutations

• Can	create	mutations	and	repeat	all	of	this
• Need	to	see	if	we	can	find	real	examples	from	
literature	and	analyze	them

• Note	that	empirical	work	in	this	setting	can	easily	be	
skewed	to	show	whatever	you	want;	only	if	you	
analyze	truly	large	datasets	with	very	good	tests	can	
you	say	something	useful

• Even	though	this	will	probably	only	work	for	small	
programs	it	might	give	some	interesting	insights



Other	ongoing	work

• Probabilistic	Java	Programming
– Including	parametric	analysis
– Add	sampling	to	scale	to	larger	examples

Monte-Carlo	Tree	Search	for	WCET
– Works	much	better	than	Monte-Carlo	or	
Reinforcement	Learning

• Whitebox Fuzzing	revisited
– Infer	input	grammars	by	iterative	symbolic	
execution,	i.e.	derive	seed-file	structure	on-the-fly?	


