
Automated Analysis of State�ow Models

LPAR 2017, Maun, Botswana

Hamza Bourbouh, Christophe Garion, Pierre-Loïc Garoche, Arie
Gur�nkel, Temesghen Kahsai & Xavier Thirioux

May, 9th 2017

1 / 29

Cocosim

2 / 29

Cocosim & State�ow

3 / 29

The Stopwatch State�ow model

from Hamon, �A denotational semantics for state�ow�.

4 / 29

Extreme semantics

Hierarchical state machines, but:
I emission of signals restarts the global transitions evaluation
I non termination � stack over�ow

I loops in sequences of atomic transitions
I unbounded number of atomic transitions steps for each step

I backtracking with side e�ects
I transition order depends on graphical layout

5 / 29

Motivation � Theoretical roots

1. Do we want to analyze this?

Yes.
⇒ People are using it and asking for veri�cation means

2. Any sound semantics bases ? Yes!

6 / 29

Motivation � Theoretical roots

1. Do we want to analyze this? Yes.
⇒ People are using it and asking for veri�cation means

2. Any sound semantics bases ? Yes!

6 / 29

Motivation � Theoretical roots

1. Do we want to analyze this? Yes.
⇒ People are using it and asking for veri�cation means

2. Any sound semantics bases ?

Yes!

6 / 29

Motivation � Theoretical roots

A Denotational Semantics for Stateflow ∗

Grégoire Hamon
Chalmers Institute of Technology

Göteborg, Sweden

hamon@cs.chalmers.se

ABSTRACT
We present a denotational semantics for Stateflow, the graph-
ical Statecharts-like language of the Matlab/Simulink tool-
suite. This semantics makes use of continuations to capture
even the most complex constructions of the language, such
as inter-level transitions, junctions, or backtracking. An im-
mediate application of this semantics is a formal compilation
scheme for the language.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; D.2.6 [Software Engineering]: Pro-
gramming Environments—Graphical Environments

General Terms
Design, Languages

Keywords
Stateflow,denotational semantics, continuations, compilation

1. INTRODUCTION
As embedded systems grow in complexity and criticality,

designers increasingly face problems of scalability and qual-
ity. One answer to these problems has been the widespread
adoption of model-based development environments. Model-
based environments allow a high-level, graphical, description
of the system, close to its specification. This high-level of ab-
straction, combined with extensive tool capabilities for sim-
ulation or validation, greatly helps to improve design quality
and scalability.

One of the most widespread model-based development en-
vironment is the Matlab/Simulink suite from The Math-
works, widely used in several industries, such as aerospace,
or automotive. Stateflow [11] is a component of the Matlab

∗This work has been partially financed by the Swedish Foun-
dation for Strategic Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

suite, dedicated to the design of discrete controllers. State-
flow allows hierarchical state-machines à la Statecharts and
flowchart diagrams to be combined. It is very well inte-
grated within Matlab. Typically, the controller under de-
sign is modeled in Stateflow, and its environment modeled
in Simulink, another component of the suite. The whole
system can be simulated using all the capabilities of Mat-
lab in that regard. This integration of the suite makes it
probably the most versatile design tool of its kind.

However, Stateflow lacks any formal definition. The se-
mantics of a program is given by the result of its simulation
within the Mathworks tools. This absence of formal defini-
tion is a big obstacle to static analysis, verification, or auto-
matic test-cases generation of Stateflow designs. These are
becoming crucial as designs increase in complexity and crit-
icality. To prevent possible runtime errors, or unexpected
behaviors, users have been using guidelines[5, 2] to define
“safe” subset of the language. These informal guidelines are
often both too restrictive to the user, and too permissive to
ensure safety.

In [8], we proposed an operational semantics for State-
flow, based on the premise that Stateflow, while allowing
allowing a parallel description of the system, has a purely
sequential behavior. We have used this semantics to define
static analysis, an interpretor, and a compiler to the SAL
language. SAL[4] is the input language of various model-
checkers and formal tools, we are using it to automatically
generate test-suites from Stateflow diagrams[7]. However,
doing these experiments on industrial-size models shows the
following limitations:

• the operational semantics is defined for a subset of
Stateflow, in which transitions, in particular, have been
restricted. These restriction were imposed to keep the
semantics simple. Some examples are not supported
by the semantics.

• while the operational semantics formalizes an inter-
preter for the language, it does not formalize a com-
pilation process. Extensions and maintenance of the
compiler is difficult and an easy source for errors.

The first limitation can eventually be solved by considering a
more complex semantics. However, for the formalization to
be usable, it should be kept reasonably simple. The second
limitation is somewhat deeper. The operational approach
taken, which has great advantages for understanding the
behavior of a program, does not formalize a compilation
process.

164

International Journal on Software Tools for Technology Transfer (STTT)
Volume 9, Numbers 5-6, October 2007; Special section FASE’04/05, Pages 447–456

An Operational Semantics for Stateflow?

Grégoire Hamon and John Rushby

1 The MathWorks, Natick, MA, USA
2 Computer Science Laboratory, SRI International, Menlo Park CA, USA

Abstract. We present a formal operational semantics
for Stateflow, the graphical Statecharts-like language of
the Matlab/Simulink tool suite that is widely used in
model-based development of embedded systems. State-
flow has many tricky features but our operational treat-
ment yields a surprisingly simple semantics for the sub-
set that is generally recommended for industrial appli-
cations. We have validated our semantics by developing
an interpreter that allows us to compare its behavior
against the Matlab simulator. We have used the seman-
tics as a foundation for developing prototype tools for
formal analysis of Stateflow designs.

1 Introduction

The design process for embedded systems has changed
dramatically over the last few years. Increasingly, design-
ers use model-based development environments; these al-
low the system, including its software, the plant that it
will control, and the environment in which it will oper-
ate, to be represented in graphical form at a high level
of abstraction. Model-based development environments
provide extensive tools for validation through simula-
tion, and code generators that can compile an executable
controller from its graphical representation. One of the
most widely used environments of this kind is the Mat-
lab suite from Mathworks which, with more than 500,000
licensees, is widespread throughout aerospace, automo-
tive, and several other industries, and ubiquitous in en-
gineering education.

? This material is based on work performed at SRI and sup-
ported by the National Science Foundation under Grant No. CCR-
0086096 through the University of Illinois and by NASA Langley
Research Center under Contract NAS1-00079. This version was
prepared while the first author was with Chalmers Institute of
Technology, Göteborg, Sweden.

Stateflow is a component of the Simulink graphi-
cal language used in Matlab. It combines hierarchical
state-machine diagrams of the kind introduced by Stat-
echarts [10] with traditional flowchart diagrams. State-
flow is generally used to specify the discrete controller
(i.e., the software) in the model of a hybrid system where
the continuous dynamics (i.e., the behavior of the plant
and environment) are specified using other capabilities
of Simulink. As part of the Matlab tool suite, Stateflow
inherits all its simulation and code generation capabili-
ties.

The evolution of industrial practice toward model-
based development has been driven by the growing num-
ber of embedded systems, and their increasing complex-
ity. Alongside these developments has been an increase in
the criticality of embedded systems, with regard to both
human safety (e.g., fly-by-wire control systems) and the
cost of faults (e.g., systems deployed in huge quantities
in automobiles and domestic appliances). This increas-
ing criticality creates a need for improved methods of
analysis and verification and provides an opportunity
for formal methods. Formal methods can provide tools
to check properties of a design and they can also apply
a computational procedure, such as generation of test
cases, systematically and automatically, to all parts of a
design. However, notations like Stateflow were not built
with formal methods in mind, and do not appear to be
well suited to formalization.

1.1 Understanding Stateflow

Stateflow is a complex language (its User’s Guide [12]
is 896 pages long) with numerous, complicated, and of-
ten overlapping features lacking any formal definition.
Its documentation [12, Chapter 4] describes the seman-
tics in informal operational terms supported by many
examples, but the actual definition of the language is
the “simulation semantics” given by its behavior when

1. Do we want to analyze this? Yes.
⇒ People are using it and asking for veri�cation means

2. Any sound semantics bases ? Yes!

6 / 29

The State�ow Language

Program P ::= (s, [src0, . . . , srcn])
SrcComp src ::= s : sd | j : T
StateDef sd ::= ((ae , ad , ax),To ,Ti ,C)
Comp C ::= Or (T , [s0, . . . , sn]) | And ([s0, . . . , sn])
Trans t ::= (e, c , (ac , at), d)
Dest T ::= ∅ | t.T
TransList d ::= p | j
Path p ::= ∅ | s.p

No dynamic execution of signals

7 / 29

The Stopwatch Encoding

main.run.running : ((∅a, disp = (cent, sec, min), ∅a) ,
[(START , true, ∅a, ∅a,P main.stop.reset) ;
(LAP, true, ∅a, ∅a,P main.run.lap)], [],Or ([],))

main.run.lap : ((∅a, ∅a, ∅a) ,
[(START , true, ∅a, ∅a,P main.stop.lap_stop) ;
(LAP, true, ∅a, ∅a,P main.run.running)], [],Or ([],))

main.run : ((∅a, ∅a, ∅a) , [],
[(TIC , true, cent+ = 1, ∅a, J j1)],Or ([], {running ; lap}))

j1 : [(noevent, cent == 100, cont = 0; sec+ = 1, ∅a, J j2) ;
(noevent, cent! = 100, ∅a, ∅a, J j3)]

j2 : [(noevent, sec == 60, min+ = 1, ∅a,P main.run) ;
(noevent, sec! = 60, ∅a, ∅a, J j3)]

j3 : []

8 / 29

An execution of the Stopwatch model

from Hamon, �A denotational semantics for state�ow�.

1
main -> false
main.run -> false
main.run.lap -> false
main.run.running -> false
main.stop -> false
main.stop.lap_stop -> false
main.stop.reset -> false

-- Event none --
-- no action performed --

9 / 29

An execution of the Stopwatch model

from Hamon, �A denotational semantics for state�ow�.

2
main -> true
main.run -> false
main.run.lap -> false
main.run.running -> false
main.stop -> true
main.stop.lap_stop -> false
main.stop.reset -> true

-- Event START --
-- no action performed --

9 / 29

An execution of the Stopwatch model

from Hamon, �A denotational semantics for state�ow�.

3
main -> true
main.run -> true
main.run.lap -> false
main.run.running -> true
main.stop -> false
main.stop.lap_stop -> false
main.stop.reset -> false

-- Event TIC --
-- action performed --

cent +=1
cent ==100
cont =0; sec +=1
sec ==60
sec=0; min+=1
disp=(cent ,sec ,min)

9 / 29

An execution of the Stopwatch model

from Hamon, �A denotational semantics for state�ow�.

4
main -> true
main.run -> true
main.run.lap -> false
main.run.running -> true
main.stop -> false
main.stop.lap_stop -> false
main.stop.reset -> false

-- Event START --
-- no action performed --

9 / 29

An execution of the Stopwatch model

from Hamon, �A denotational semantics for state�ow�.

5
main -> true
main.run -> false
main.run.lap -> false
main.run.running -> false
main.stop -> true
main.stop.lap_stop -> false
main.stop.reset -> true

-- Event TIC --
-- no action performed --

9 / 29

An execution of the Stopwatch model

from Hamon, �A denotational semantics for state�ow�.

6
main -> true
main.run -> false
main.run.lap -> false
main.run.running -> false
main.stop -> true
main.stop.lap_stop -> false
main.stop.reset -> true

9 / 29

Hamon's Interpreter: Environments

I Static environment of semantic functions:

θ : KEnv ::= { p0 : (SJp0 : sd0Ke θ,SJp0 : sd0Kd θ,SJp0 : sd0Kx θ)
. . .

pn : (SJpn : sdnKe θ,SJpn : sdnKd θ,SJpn : sdnKx θ)
j0 : T JT0K θ, . . . , jk : T JTkK θ}

I Dynamic environment of states/variables:

ρ : Env ::= {x0 : v0, . . . , xn : vn,
s0 : b0, . . . , sk : bk}

10 / 29

Hamon's Interpreter: Basics

I Continuations (as arguments) denote success/failure:

k+ : Env → path→ Env

k− : Env → Env

I Primitive operators:

AJ.K : action→ KEnv → Env → Env

BJ.K : condition→ KEnv → Bool

I Prede�ned actions:

open p, close p

11 / 29

Hamon's Interpreter: Transitions
I Transitions: if feasible transition, update the success

continuation and continue path evaluation. If not, fail
continuation
τJ(et , c, (ac , at), d)K θ ρ success fail e =

if (et = e) ∧ (BJcK ρ) then

let success′ =
λρs .λp.if p = [] then success ρs p

else success (AJatK θ ρs) p in

DJdK θ (AJacK θ ρ) success′ fail e
else

fail ρ

I Lists of Transitions: evaluate in order, building fail
continuations
T Jt.∅K θ ρ success fail e = τJtK θ ρ success fail e

T Jt.t′.TK θ ρ success fail e =

let fail′ = λρf .T Jt′.TK θ ρf success fail e in

τJtK θ ρ success fail′ e

I Destinations: �nal states p or intermediate junction j
DJpK θ ρ success fail e = success ρ p

DJjK θ ρ success fail e = θj(j) ρ success fail e

Disclaimer: talk focuses on transitions, state opening/closing is
also handled in the paper.

12 / 29

Hamon's Interpreter: Transitions
I Transitions: if feasible transition, update the success

continuation and continue path evaluation. If not, fail
continuation
τJ(et , c, (ac , at), d)K θ ρ success fail e =

if (et = e) ∧ (BJcK ρ) then

let success′ =
λρs .λp.if p = [] then success ρs p

else success (AJatK θ ρs) p in

DJdK θ (AJacK θ ρ) success′ fail e
else

fail ρ

I Lists of Transitions: evaluate in order, building fail
continuations
T Jt.∅K θ ρ success fail e = τJtK θ ρ success fail e

T Jt.t′.TK θ ρ success fail e =

let fail′ = λρf .T Jt′.TK θ ρf success fail e in

τJtK θ ρ success fail′ e

I Destinations: �nal states p or intermediate junction j
DJpK θ ρ success fail e = success ρ p

DJjK θ ρ success fail e = θj(j) ρ success fail e

Disclaimer: talk focuses on transitions, state opening/closing is
also handled in the paper.

12 / 29

Hamon's Interpreter: Transitions
I Transitions: if feasible transition, update the success

continuation and continue path evaluation. If not, fail
continuation
τJ(et , c, (ac , at), d)K θ ρ success fail e =

if (et = e) ∧ (BJcK ρ) then

let success′ =
λρs .λp.if p = [] then success ρs p

else success (AJatK θ ρs) p in

DJdK θ (AJacK θ ρ) success′ fail e
else

fail ρ

I Lists of Transitions: evaluate in order, building fail
continuations
T Jt.∅K θ ρ success fail e = τJtK θ ρ success fail e

T Jt.t′.TK θ ρ success fail e =

let fail′ = λρf .T Jt′.TK θ ρf success fail e in

τJtK θ ρ success fail′ e

I Destinations: �nal states p or intermediate junction j
DJpK θ ρ success fail e = success ρ p

DJjK θ ρ success fail e = θj(j) ρ success fail e

Disclaimer: talk focuses on transitions, state opening/closing is
also handled in the paper.

12 / 29

Hamon's Interpreter: Transitions
I Transitions: if feasible transition, update the success

continuation and continue path evaluation. If not, fail
continuation
τJ(et , c, (ac , at), d)K θ ρ success fail e =

if (et = e) ∧ (BJcK ρ) then

let success′ =
λρs .λp.if p = [] then success ρs p

else success (AJatK θ ρs) p in

DJdK θ (AJacK θ ρ) success′ fail e
else

fail ρ

I Lists of Transitions: evaluate in order, building fail
continuations
T Jt.∅K θ ρ success fail e = τJtK θ ρ success fail e

T Jt.t′.TK θ ρ success fail e =

let fail′ = λρf .T Jt′.TK θ ρf success fail e in

τJtK θ ρ success fail′ e

I Destinations: �nal states p or intermediate junction j
DJpK θ ρ success fail e = success ρ p

DJjK θ ρ success fail e = θj(j) ρ success fail e

Disclaimer: talk focuses on transitions, state opening/closing is
also handled in the paper. 12 / 29

Problems with Hamon's semantics

I transition actions executed in reverse order
(c1, t1)→ (c2, t2) should evaluate to (c1, c2, t1, t2)

τJ(et , c, (ac , at), d)K θ ρ success fail e =
if (et = e) ∧ (BJcK ρ) then

let success′ =
λρs .λp.if p = [] then success ρs p

else success (AJatK θ ρs) p in

DJdK θ (AJacK θ ρ) success′ fail e
else
fail ρ

I Invalid order of entering/closing actions when a transition
succeeds

I Outer/inner/entering transitions don't conform to standard

I More importantly: could be made more aesthetic
I contains a mix a continuations (denotations) and �rst order

evaluation

CJOr(T , S)Kx θ ρ e =
fold (λp.λρ. if ρ(p) then θx (p) p e else ρ) S ρ

13 / 29

Problems with Hamon's semantics

I transition actions executed in reverse order
(c1, t1)→ (c2, t2) should evaluate to (c1, c2, t1, t2)

τJ(et , c, (ac , at), d)K θ ρ success fail e =
if (et = e) ∧ (BJcK ρ) then

let success′ =
λρs .λp.if p = [] then success ρs p

else success (AJatK θ ρs) p in

DJdK θ (AJacK θ ρ) success′ fail e
else
fail ρ

I Invalid order of entering/closing actions when a transition
succeeds

I Outer/inner/entering transitions don't conform to standard

I More importantly: could be made more aesthetic
I contains a mix a continuations (denotations) and �rst order

evaluation

CJOr(T , S)Kx θ ρ e =
fold (λp.λρ. if ρ(p) then θx (p) p e else ρ) S ρ

13 / 29

Problems with Hamon's semantics

I transition actions executed in reverse order
(c1, t1)→ (c2, t2) should evaluate to (c1, c2, t1, t2)

τJ(et , c, (ac , at), d)K θ ρ success fail e =
if (et = e) ∧ (BJcK ρ) then

let success′ =
λρs .λp.if p = [] then success ρs p

else success (AJatK θ ρs) p in

DJdK θ (AJacK θ ρ) success′ fail e
else
fail ρ

I Invalid order of entering/closing actions when a transition
succeeds

I Outer/inner/entering transitions don't conform to standard

I More importantly: could be made more aesthetic
I contains a mix a continuations (denotations) and �rst order

evaluation

CJOr(T , S)Kx θ ρ e =
fold (λp.λρ. if ρ(p) then θx (p) p e else ρ) S ρ

13 / 29

Our Proposition: a pure Continuation Passing Style (CPS)
semantics

Restore State�ow semantics

I Introduce a wrapper continuation

I Introduce a global failure continuation

I Distinguish between outer, inner and entering transitions with
modes

Enlarge the Scope

I Factorize out and abstract away environment ρ:

+ enables interpreter, code generator, source-to-source
transformation, etc

- be careful with loops in junction sequences

I Introduce �ne-grained memoization and modularity

14 / 29

CPS � Continuation Passing Style denotational semantics

I proposed in the 70s by Plotkins1 for λ-calculus call-by-value
semantics

I developed for e�cient compilation: Lawall, Danvy2 or Appel3

�o�ering a good format for compilation and optimization�

Plotkin's call-by-value CPS rules:

JxK κ = κ x
Jλx .eK κ = κ (λx · λk · JeK k)
Je0e1K κ = Je0K (λv0.Je1K (λv1 · v0 v1 κ))

Associate to each function an explicit continuation κ : t → t,
endomorphic map over t on which control is explicitly modeled.

1Gordon D. Plotkin. �Call-by-Name, Call-by-Value and the lambda-Calculus�. In: Theor. Comput.
Sci. 1.2 (1975), pp. 125�159.

2Julia L. Lawall and Olivier Danvy. �Separating Stages in the Continuation-Passing Style
Transformation�. In: POPL'93.

3Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 2006. ISBN:
978-0-521-03311-4.

15 / 29

CPS semantics: Basics
I Continuations denote wrapping/success/failure:

w : path→ Den→ Den

k+ : Den

k− : Den

I Primitive operators:

AJ.K : action→ KEnv → Den

IteJ.K : condition→ KEnv → Den→ Den→ Den

�: Den→ Den→ Den

Id : Den

I Prede�ned actions/conditions:

open p, close p, active p

I Loose (L) or strict (S) mode
I Outer (o), inner (i) or entering (e) mode

16 / 29

CPS semantics: Transitions

I Transitions:
τJ(et , c, (ac , at), d)K (θ : KEnv) (wrapper : w) (success : k+) (fail : k−) (failglob : k−) : Den =

Ite(event(et) ∧ c,

(let success′ = success � (AJatK) in

(AJacK)� (DJdK θ wrapper success′ fail failglob)),
fail)

I Lists of Transitions:
T Jt.∅K θ wrapper success fail failglob = τJtK θ wrapper success fail failglob

T Jt.TK θ wrapper success fail failglob =

let fail′ = T JTK θ wrapper success fail failglob in

τJtK θ wrapper success fail′ failglob

I Destinations:
DJpK θ wrapper success fail failglob = wrapper p success

DJjK θ wrapper success fail failglob = θj(j) wrapper success fail failglob

17 / 29

CPS semantics: Transitions

I Transitions:
τJ(et , c, (ac , at), d)K (θ : KEnv) (wrapper : w) (success : k+) (fail : k−) (failglob : k−) : Den =

Ite(event(et) ∧ c,

(let success′ = success � (AJatK) in

(AJacK)� (DJdK θ wrapper success′ fail failglob)),
fail)

I Lists of Transitions:
T Jt.∅K θ wrapper success fail failglob = τJtK θ wrapper success fail failglob

T Jt.TK θ wrapper success fail failglob =

let fail′ = T JTK θ wrapper success fail failglob in

τJtK θ wrapper success fail′ failglob

I Destinations:
DJpK θ wrapper success fail failglob = wrapper p success

DJjK θ wrapper success fail failglob = θj(j) wrapper success fail failglob

17 / 29

CPS semantics: States

I Entering/exiting states (loosely or strictly):

SJp : ((ae , ad , ax),T0,Ti ,C)KeS (θ : KEnv) (∅ : Path) = (CJCKe p θ)

SJp : ((ae , ad , ax),T0,Ti ,C)KeS θ s.pd = (θeL(p.s) pd)

SJp : ((ae , ad , ax),T0,Ti ,C)KxS (θ : KEnv) : Den = (CJCKx p θ)

SJp : ((ae , ad , ax),T0,Ti ,C)KeL θ ∅ = (AJaeK θ)� (AJopen pK) � (CJCKe p θ)

SJp : ((ae , ad , ax),T0,Ti ,C)KeL θ s.pd = (AJaeK θ)� (AJopen pK) � (θeL(p.s) pd)

SJp : ((ae , ad , ax),T0,Ti ,C)KxL θ = (CJCKx p θ)� (AJax K θ)� (AJclose pK)

I Computing states reactions:

SJp : ((ae , ad , ax),To ,Ti ,C)Kd θ : Den =

let wrapperi =open_path i ∅ p in
let wrappero =open_patho ∅ p in
let failo =

let faili = CJCKd p θ in
(AJad K θ)� (T JTi K θ wrapperi Id faili faili) in

T JToK θ wrappero Id failo failo

open_pathv θ p ps pd : w =

if hd(ps) = hd(pd) ∧ hd(ps) 6= ∅ then

open_pathv θ p.hd(ps) tl(ps) tl(pd)

else match v with
o -> λden.θxL(p.hd(ps))� den � θeL(p.hd(pd)) tl(pd)

i -> λden.θxS (p.hd(ps))� den � θeS (p.hd(pd)) tl(pd)

e -> λden.den � θeL(p.hd(pd)) tl(pd)

18 / 29

Instanciating the CPS encoding

CPS framework fully parametric:

I Types for denotation/continuation: what do we want to
build/manipulate?

I De�ntition of primitive operators on the continuations:
I open p, close p
I Assignment: v = expr
I Ite construct: Ite(cond ,T ,E):
I Composition �

Instanciations:

I Interpreter

I Imperative Code generator

I Data�ow Code Generator (Lustre)

19 / 29

Instantiations: Interpreter

I Denotation type: Den = Env → Env

I Rules:

AJopen pK(ρ) = ρ [p 7→ true]
AJclose pK(ρ) = ρ [p 7→ false]
AJv = exprK(ρ) = ρ [v 7→ JexprKρ]

Ite(cond ,T ,E)(ρ) = if JcondKρ then T (ρ)
else E (ρ)

(D1 � D2)(ρ) = D2 ◦ D1(ρ)
Id(ρ) = ρ
⊥ = assert false

20 / 29

Instantiations: Code Generator

I Denotation type:

Den ::= Den;Den
| if cond then Den else Den
| v = expr | nop | assert false.

I Rules:

AJopen pK = p = true

AJclose pK = p = false

AJv = exprK = v = expr

Ite(cond ,T ,E) = if cond then T

else E

(D1 � D2) = D1 ; D2

Id = nop

⊥ = assert false

21 / 29

Code Generated from Stopwatch Example

principal =

if Active(main)

then

<CallD(main)>

else

<Open(main)>;

<Open(main.stop)>;

<Open(main.stop.reset)>

endif

22 / 29

Code Generated from Stopwatch Example

component CallD(main.run.lap) =

begin

if Event(START)

then if Active(main.run.running)

then <Close(main.run.running)>

else if Active(main.run.lap)

then <Close(main.run.lap)>

else <Nil>;

<Close(main.run)>; <Open(main.stop)>;

<Open(main.stop.lap_stop)>

else if Event(LAP)

then <Close(main.run.lap)>;

<Open(main.run.running)>

else <Nil>

end

23 / 29

Modularity through Memoization

I Each evaluation of denotation θe(p), θd(p) or θx(p) may be
substituted by a call to a procedure

I This is possible since all arguments are static (paths, modes)

I Denotation θj(j) (=T Jj : T K θ) could also be turned into a call

I We need �rst-order representations of continuation arguments,
through e.g. defunctionalization
wrapper ≡ mode × path, success ≡ action list, fail ≡??

I We could then factorize out junctions occurring in many
paths, avoiding combinatorial blow-ups

I And handle loops, provided no transition actions occur

24 / 29

Instantiation: Lustre Code Generator 1/2

I Lustre is a data�ow language with notions of automata

⇒ core language of our CocoSim toolchain

I Denotation type: Den = Name → Name → LustreAST

I Rules:

AJopen pK in out := õut = ĩn[in_p 7→ true]

AJclose pK in out := õut = ĩn[in_p 7→ false]

AJv = exprK in out = õut = ĩn[in_v 7→ JexprKin]
AJcall pK in out := õut = thetad_p(ĩn)
(L1 � L2) in out := (L1 in nameuid) ;

(L2 nameuid out)

Id in out := õut = ĩn

⊥ in out := assert false

Figure: Lustre instantiation

25 / 29

Instantiation: Lustre Code Generator 2/2

node thetad_p (ĩn : T̃in) returns (õut : T̃out)

let (SdJpK in out); tel

Ite(cond ,T ,E) in out :=
automaton nameuid
state Cond :
unless J¬condKin restart NotCond
let (T in out); tel

state NotCond :
unless JcondKin restart Cond
let (E in out); tel

Figure: Lustre instantiation

Encoding preserves the hierarchical structure of input model

26 / 29

Instantiation: Lustre Code Generator 2/2

node thetad_p (ĩn : T̃in) returns (õut : T̃out)

let (SdJpK in out); tel

Ite(cond ,T ,E) in out :=
automaton nameuid
state Cond :
unless J¬condKin restart NotCond
let (T in out); tel

state NotCond :
unless JcondKin restart Cond
let (E in out); tel

Figure: Lustre instantiation

Encoding preserves the hierarchical structure of input model
26 / 29

Experimentation / Implementation

I Generic CPS prototype in Ocaml
I Direct encoding of the modular compilation scheme for Lustre

in CocoSim in Matlab
I encode State�ow constructs into Lustre + automata (while

preserving structure)
I Good performances: enable compilation and veri�cation

property is valid or a counter-example is produced

models #
props

#
safe

#
un-
safe

#
time-
out

safe
(time)

unsafe
(time)

Microwave 15 15 0 0 65.51 0
NasaDockingApproach 4 3 0 1 360 0
GPCA_System_Monitor 1 1 0 0 0.64 0
GPCA_Logging 1 1 0 0 4.88 0
GPCA_Top_Level_Mode 3 3 0 0 36 0
GPCA_CONFIG 1 0 1 0 0 19.34
GPCA_INFUSION_MGR 7 5 0 2 596.51 0
GPCA_Alarm 8 0 6 2 0 281.12

27 / 29

Contribution I CPS encoding of State�ow semantics
I Instanciation as

I interpreter
I imperative code generator
I Lustre code generator

I Implemented
I in Ocaml in the general settings and
I in Matlab in the Lustre one

I Enable code generation and model veri�cation of
general Simulink/State�ow models

Perspectives: I Subtitute Matlab algorithm by our Ocaml
generic CPS code

I compile basic automata into more complex one
I avoid huge number of nested binary automata

I More �ne grain integration with CocoSim
I nodes in Simulink within State�ow nodes
I call to external C functions (S-functions)
I interpret counter example over State�ow nodes

28 / 29

Thank you
for your attention !

Any questions ?

29 / 29

