Automated Analysis of Stateflow Models LPAR 2017, Maun, Botswana

Hamza Bourbouh, Christophe Garion, <u>Pierre-Loïc Garoche</u>, Arie Gurfinkel, Temesghen Kahsai & Xavier Thirioux

Cocosim

Cocosim & Stateflow

The Stopwatch Stateflow model

Extreme semantics

Hierarchical state machines, but:

- emission of signals restarts the global transitions evaluation
- non termination stack overflow
 - loops in sequences of atomic transitions
 - unbounded number of atomic transitions steps for each step
- backtracking with side effects
- transition order depends on graphical layout

1. Do we want to analyze this?

1. Do we want to analyze this? Yes.

 \Rightarrow People are using it and asking for verification means

1. Do we want to analyze this? Yes.

- \Rightarrow People are using it and asking for verification means
- 2. Any sound semantics bases ?

1. Do we want to analyze this? Yes.

- \Rightarrow People are using it and asking for verification means
- 2. Any sound semantics bases ? Yes!

A Denotational Semantics for Stateflow *

Grégoire Hamon Chalmers Institute of Technology Göteborg, Sweden

hamon@cs.chalmers.se

International Journal on Software Tools for Technology Transfer (STTT) Volume 9, Numbers 5-6, October 2007; Special section FASE'04/05, Pages 447–456

ABSTRACT

We present a denotational semantics for ical Statecharts-like language of the M suite. This semantics makes use of con even the most complex constructions (as inter-level transitions, junctions, or mediate application of this semantics is scheme for the language.

Categories and Subject Descri

D.3.1 [Programming Languages]: F Theory—Semantics; D.2.6 [Software gramming Environments—Graphical I

General Terms

Design, Languages

Keywords

Stateflow, denotational semantics, cont

1. INTRODUCTION

As embedded systems grow in comp

An Operational Semantics for Stateflow^{*}

Grégoire Hamon and John Rushby

¹ The MathWorks, Natick, MA, USA

² Computer Science Laboratory, SRI International, Menlo Park CA, USA

hotno at We amount a formal examplicant comparison

and in a common out of the Cimulials see the

5/29

The Stateflow Language

Program	Ρ	::=	$(s, [src_0, \ldots, src_n])$
SrcComp	src	::=	s : sd j : T
StateDef	sd	::=	$((a_e, a_d, a_x), T_o, T_i, C)$
Comp	С	::=	$Or (T, [s_0,, s_n]) \mid And ([s_0,, s_n])$
Trans	t	::=	$(e, c, (a_c, a_t), d)$
Dest	Т	::=	$\hat{\emptyset} \mid t.T$
TransList	d	::=	p j
Path	р	::=	Ø s.p

No dynamic execution of signals

The Stopwatch Encoding

$\left(\left(\emptyset_{a}, \mathtt{disp} = (\mathtt{cent}, \mathtt{sec}, \mathtt{min}), \emptyset_{a} ight), ight.$
$[(START, true, \emptyset_a, \emptyset_a, P main.stop.reset);$
$(LAP, true, \emptyset_a, \emptyset_a, P main.run.lap)], [], Or ([],))$
$((\emptyset_a, \emptyset_a, \emptyset_a), \emptyset_a),$
$[(START, true, \emptyset_a, \emptyset_a, P main.stop.lap stop);$
$(LAP, true, \emptyset_a, \emptyset_a, P \text{ main.run.running})$, [], Or ([],))
$((\emptyset_a, \emptyset_a, \emptyset_a), [],$
$[(TIC, true, cent+=1, \emptyset_a, J j1)], Or([], \{running; lap\}))$
$[(noevent, cent == 100, cont = 0; sec + = 1, \emptyset_a, J j2);$
$(noevent, cent! = 100, \emptyset_a, \emptyset_a, J j3)$
$(noevent, sec == 60, min+=1, \hat{\emptyset}_a, P main.run);$
(noevent, sec! = $60, \emptyset_a, \emptyset_a, J j3$)]


```
#### 1
main -> false
main.run -> false
main.run.lap -> false -- Eve
main.run.running -> false -- no
main.stop -> false
main.stop.lap_stop -> false
main.stop.reset -> false
```

```
-- Event none --
-- no action performed --
```



```
#### 2
main -> true
main.run -> false
main.run.lap -> false
main.run.running -> false
main.stop -> true
main.stop.lap_stop -> false
main.stop.reset -> true
```



```
#### 3
main -> true
main.run -> true
main.run.lap -> false
main.run.running -> true
main.stop -> false
main.stop.lap_stop -> false
main.stop.reset -> false
```

```
-- Event TIC --
- action performed --
cent+=1
cent==100
cont=0;sec+=1
sec==60
sec=0; min+=1
disp=(cent,sec,min)
```



```
#### 4
main -> true
main.run -> true
main.run.lap -> false
main.run.running -> true
main.stop -> false
main.stop lap_stop -> false
main.stop.reset -> false
```

```
-- Event START --
-- no action performed --
```



```
#### 5
main -> true
main.run.lap -> false -- Event TIC --
main.run.lap -> false -- no action performed --
main.stop -> true
main.stop.lap_stop -> false
main.stop.reset -> true
```



```
#### 6
main -> true
main.run -> false
main.run.lap -> false
main.run.running -> false
main.stop -> true
main.stop.lap_stop -> false
main.stop.reset -> true
```

Hamon's Interpreter: Environments

Static environment of semantic functions:

$$\theta : \mathsf{KEnv} ::= \left\{ \begin{array}{l} p_0 : (\mathcal{S}\llbracket p_0 : sd_0 \rrbracket^e \ \theta, \mathcal{S}\llbracket p_0 : sd_0 \rrbracket^d \ \theta, \mathcal{S}\llbracket p_0 : sd_0 \rrbracket^x \ \theta) \\ \dots \\ p_n : (\mathcal{S}\llbracket p_n : sd_n \rrbracket^e \ \theta, \mathcal{S}\llbracket p_n : sd_n \rrbracket^d \ \theta, \mathcal{S}\llbracket p_n : sd_n \rrbracket^x \ \theta) \\ j_0 : \mathcal{T}\llbracket \mathcal{T}_0 \rrbracket \ \theta, \dots, j_k : \mathcal{T}\llbracket \mathcal{T}_k \rrbracket \ \theta \right\}$$

Dynamic environment of states/variables:

$$\rho : Env ::= \{ x_0 : v_0, \dots, x_n : v_n, \\ s_0 : b_0, \dots, s_k : b_k \}$$

Hamon's Interpreter: Basics

Continuations (as arguments) denote success/failure:

$$k+: Env \rightarrow path \rightarrow Env$$

 $k-: Env \rightarrow Env$

Primitive operators:

$$\begin{array}{ccc} \mathcal{A}[\![.]\!] & : & \textit{action} \to \textit{KEnv} \to \textit{Env} \to \textit{Env} \\ \mathcal{B}[\![.]\!] & : & \textit{condition} \to \textit{KEnv} \to \textit{Bool} \end{array}$$

Predefined actions:

 Transitions: if feasible transition, update the success continuation and continue path evaluation. If not, fail continuation

```
\begin{split} \tau \llbracket (\mathbf{e_t}, c, (\mathbf{a_c}, \mathbf{a_t}), d) \rrbracket \theta \ \rho \ \text{success fail } \mathbf{e} = \\ & \text{if } (\mathbf{e_t} = \mathbf{e}) \land (\mathcal{B}\llbracket c \rrbracket \ \rho) \ \text{then} \\ & \text{let } \text{success'} = \\ & \lambda \rho_{\boldsymbol{s}}.\lambda \rho.\text{if } p = \llbracket \text{ then } \text{success } \rho_{\boldsymbol{s}} \ p \\ & \text{else } \text{success } (\mathcal{A}\llbracket \mathbf{a_t} \rrbracket \ \theta \ \rho_{\boldsymbol{s}}) \ p \ \text{in} \\ \mathcal{D}\llbracket d \rrbracket \ \theta \ (\mathcal{A}\llbracket \mathbf{a_c} \rrbracket \ \theta \ \rho) \ \text{success' fail } \mathbf{e} \\ & \text{else} \\ & \text{fail } \rho \end{split}
```

 Transitions: if feasible transition, update the success continuation and continue path evaluation. If not, fail continuation

```
\begin{split} \tau \llbracket (\mathbf{e_t}, c, (\mathbf{a_c}, \mathbf{a_t}), d) \rrbracket \ \theta \ \rho \ success \ fail \ e = \\ & \text{if} \ (\mathbf{e_t} = \mathbf{e}) \land (\mathcal{B}\llbracket c \rrbracket \ \rho) \ \text{then} \\ & \text{let} \ success' = \\ & \lambda \rho_{\mathfrak{s}} . \lambda \rho . \text{if} \ p = \llbracket \ \text{then} \ success \ \rho_{\mathfrak{s}} \ p \\ & \text{else} \ success \ (\mathcal{A}\llbracket a_{\mathfrak{t}} \rrbracket \ \theta \ \rho_{\mathfrak{s}}) \ p \ \text{in} \\ \mathcal{D}\llbracket d \rrbracket \ \theta \ (\mathcal{A}\llbracket a_{\mathfrak{c}} \rrbracket \ \theta \ \rho) \ success' \ fail \ e \\ & \text{else} \\ & \text{fail} \ \rho \end{split}
```

 Lists of Transitions: evaluate in order, building fail continuations

```
 \begin{split} \mathcal{T} \llbracket \mathbf{t} . \emptyset \rrbracket \ \theta \ \rho \ \text{success fail } \mathbf{e} &= \tau \llbracket \mathbf{t} \rrbracket \ \theta \ \rho \ \text{success fail } \mathbf{e} \\ \mathcal{T} \llbracket \mathbf{t} . \mathbf{t}' . \mathbf{T} \rrbracket \ \theta \ \rho \ \text{success fail } \mathbf{e} &= \\ \texttt{let } \mathsf{fail}' &= \lambda \rho_{\mathbf{f}} . \mathcal{T} \llbracket \mathbf{t}' . \mathbf{T} \rrbracket \ \theta \ \rho_{\mathbf{f}} \ \text{success fail } \mathbf{e} \ \texttt{in} \\ \tau \llbracket \mathbf{t} \rrbracket \ \theta \ \rho \ \text{success fail}' &= \\ \end{split}
```

 Transitions: if feasible transition, update the success continuation and continue path evaluation. If not, fail continuation

```
\begin{split} \tau \llbracket (\mathbf{e_t}, c, (\mathbf{a_c}, \mathbf{a_t}), d) \rrbracket \ \theta \ \rho \ success \ fail \ e = \\ & \text{if} \ (\mathbf{e_t} = \mathbf{e}) \land (\mathcal{B}\llbracket c \rrbracket \ \rho) \ \text{then} \\ & \text{let} \ success' = \\ & \lambda \rho_s . \lambda \rho \ \text{if} \ p = \llbracket \ \text{then} \ success \ \rho_s \ p \\ & \text{else} \ success \ (\mathcal{A}\llbracket a_t \rrbracket \ \theta \ \rho_s) \ p \ \text{in} \\ \mathcal{D}\llbracket d \rrbracket \ \theta \ (\mathcal{A}\llbracket a_c \rrbracket \ \theta \ \rho) \ success' \ fail \ e \\ & \text{else} \\ & \text{fail} \ \rho \end{split}
```

 Lists of Transitions: evaluate in order, building fail continuations

```
 \begin{split} \mathcal{T}\llbracket \mathbf{t} . \emptyset \rrbracket \ \theta \ \rho \ \text{success fail } \mathbf{e} &= \tau \llbracket \mathbf{t} \rrbracket \ \theta \ \rho \ \text{success fail } \mathbf{e} \\ \mathcal{T}\llbracket \mathbf{t} . \mathbf{t}' . \mathbf{T} \rrbracket \ \theta \ \rho \ \text{success fail } \mathbf{e} &= \\ \texttt{let} \ \mathsf{fail}' &= \lambda \rho_{\mathbf{f}} . \mathcal{T} \llbracket \mathbf{t}' . \mathbf{T} \rrbracket \ \theta \ \rho_{\mathbf{f}} \ \text{success fail } \mathbf{e} \ \texttt{in} \\ \tau \llbracket \mathbf{t} \rrbracket \ \theta \ \rho \ \text{success fail}' = \\ \end{split}
```

Destinations: final states p or intermediate junction j

 $\mathcal{D}[\![p]\!] \theta \ \rho \ \text{success fail } e = \text{success } \rho \ p$ $\mathcal{D}[\![j]\!] \theta \ \rho \ \text{success fail } e = \theta^j(j) \ \rho \ \text{success fail } e$

 Transitions: if feasible transition, update the success continuation and continue path evaluation. If not, fail continuation

```
\begin{split} \tau \llbracket (\mathbf{e_t}, \mathbf{c}, (\mathbf{a_c}, \mathbf{a_t}), \mathbf{d}) \rrbracket \ \theta \ \rho \ \text{success fail } \mathbf{e} = \\ & \text{if } (\mathbf{e_t} = \mathbf{e}) \land (\mathcal{B}\llbracket c \rrbracket \ \rho) \ \text{then} \\ & \text{let success'} = \\ & \lambda \rho_s . \lambda \rho . \text{if } p = \llbracket \ \text{then success } \rho_s \ p \\ & \text{else success } (\mathcal{A}\llbracket a_t \rrbracket \ \theta \ \rho_s) \ p \ \text{in} \\ \mathcal{D}\llbracket d \rrbracket \ \theta \ (\mathcal{A}\llbracket a_c \rrbracket \ \theta \ \rho) \ \text{success' fail } \mathbf{e} \\ & \text{else} \\ & \text{fail } \rho \end{split}
```

 Lists of Transitions: evaluate in order, building fail continuations

```
 \begin{split} \mathcal{T}[\![t.\emptyset]\!] & \theta \ \rho \ \text{success fail } \mathbf{e} = \tau[\![t]\!] \ \theta \ \rho \ \text{success fail } \mathbf{e} \\ \mathcal{T}[\![t.t'.T]\!] \ \theta \ \rho \ \text{success fail } \mathbf{e} = \\ & \texttt{let fail}' = \lambda \rho_f . \mathcal{T}[\![t'.T]\!] \ \theta \ \rho_f \ \text{success fail } \mathbf{e} \ \texttt{in} \\ & \tau[\![t]\!] \ \theta \ \rho \ \text{success fail}' \ \mathbf{e} \end{split}
```

Destinations: final states p or intermediate junction j

```
\mathcal{D}[\![p]\!] \theta \ \rho \ \text{success fail } e = \text{success } \rho \ p
\mathcal{D}[\![j]\!] \theta \ \rho \ \text{success fail } e = \theta^j(j) \ \rho \ \text{success fail } e
```

Disclaimer: talk focuses on transitions, state opening/closing is also handled in the paper.

12/29

Problems with Hamon's semantics

```
► transition actions executed in reverse order

(c_1, t_1) \rightarrow (c_2, t_2) should evaluate to (c_1, c_2, t_1, t_2)

\tau [(e_t, c, (a_c, a_t), d)] \theta \rho success fail e =

if (e_t = e) \land (B[c]] \rho) then

let success' =

\lambda \rho_s . \lambda \rho. if p = [] then success \rho_s p

else success (A[a_t]] \theta \rho_s) p in

D[d] \theta (A[a_c]] \theta \rho) success' fail e

fail \rho
```

Problems with Hamon's semantics

- Invalid order of entering/closing actions when a transition succeeds
- Outer/inner/entering transitions don't conform to standard

Problems with Hamon's semantics

- Invalid order of entering/closing actions when a transition succeeds
- Outer/inner/entering transitions don't conform to standard
- More importantly: could be made more aesthetic
 - contains a mix a continuations (denotations) and first order evaluation

 $C[\![Or(T,S)]\!]^{x} \theta \rho e = fold (\lambda p.\lambda \rho. if \rho(p) then \theta^{x}(p) p e else \rho) S \rho$

Our Proposition: a pure Continuation Passing Style (CPS) semantics

Restore Stateflow semantics

- Introduce a wrapper continuation
- Introduce a global failure continuation
- Distinguish between outer, inner and entering transitions with modes

Enlarge the Scope

- Factorize out and abstract away environment ρ:
 - + enables interpreter, code generator, source-to-source transformation, etc
 - be careful with loops in junction sequences
- Introduce fine-grained memoization and modularity

CPS - Continuation Passing Style denotational semantics

- proposed in the 70s by Plotkins¹ for λ-calculus call-by-value semantics
- developed for efficient compilation: Lawall, Danvy² or Appel³
 "offering a good format for compilation and optimization"

Plotkin's call-by-value CPS rules:

$$\begin{bmatrix} x \end{bmatrix} \kappa = \kappa x$$

$$\begin{bmatrix} \lambda x . e \end{bmatrix} \kappa = \kappa (\lambda x \cdot \lambda k \cdot \llbracket e \rrbracket k)$$

$$\begin{bmatrix} e_0 e_1 \rrbracket \kappa = \llbracket e_0 \rrbracket (\lambda v_0 . \llbracket e_1 \rrbracket (\lambda v_1 \cdot v_0 v_1 \kappa))$$

Associate to each function an explicit continuation $\kappa : t \to t$, endomorphic map over t on which control is explicitly modeled.

¹Gordon D. Plotkin. "Call-by-Name, Call-by-Value and the lambda-Calculus". In: *Theor. Comput. Sci.* 1.2 (1975), pp. 125–159.

² Julia L. Lawall and Olivier Danvy. "Separating Stages in the Continuation-Passing Style Transformation". In: POPL'93.

³Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 2006. ISBN: 978-0-521-03311-4.

CPS semantics: Basics

Continuations denote wrapping/success/failure:

$$w: path \rightarrow Den \rightarrow Den$$

 $k+: Den$
 $k-: Den$

Primitive operators:

Predefined actions/conditions:

- Loose (L) or strict (S) mode
- Outer (o), inner (i) or entering (e) mode

CPS semantics: Transitions

```
Transitions:
```

```
\begin{split} \tau & [(\mathbf{e_t}, \mathbf{c}, (\mathbf{a_c}, \mathbf{a_t}), d)] \ (\theta : KEnv) \ (wrapper : w) \ (success : k^+) \ (fail : k^-) \ (failglob : k^-) : Den = \\ & \mathcal{I}te(event(\mathbf{e_t}) \land \mathbf{c}, \\ & (let success' = success \gg (\mathcal{A}[\![a_t]\!]) \ in \\ & (\mathcal{A}[\![a_c]\!]) \gg (\mathcal{D}[\![d]] \ \theta \ wrapper \ success' \ fail \ fails^{lob})), \\ & fail) \end{split}
```

CPS semantics: Transitions

Transitions:

```
\begin{split} \tau & [(\mathbf{e}_t, c, (\mathbf{a}_c, \mathbf{a}_t), d)] \ (\theta : K Env) \ (wrapper : w) \ (success : k^+) \ (fail : k^-) \ (failglob : k^-) : Den = \\ \mathcal{I}te(event(\mathbf{e}_t) \land c, \\ & (\texttt{let} \ success' = success \gg (\mathcal{A}[\![a_t]\!]) \ \texttt{in} \\ & (\mathcal{A}[\![a_c]\!]) \gg (\mathcal{D}[\![d]\!] \ \theta \ wrapper \ success' \ fail \ failglob)), \\ fail) \end{split}
```

Lists of Transitions:

Destinations:

 $D[\![p]\!] \theta$ wrapper success fail fail^{glob} = wrapper p success $D[\![j]\!] \theta$ wrapper success fail fail^{glob} = $\theta^{j}(j)$ wrapper success fail fail^{glob}

CPS semantics: States

Entering/exiting states (loosely or strictly):

$$\begin{split} & \mathcal{S}[\![p:((a_e,a_d,a_x), \mathsf{T}_0,\mathsf{T}_i,\mathsf{C})]\!]_{\mathsf{S}}^{\mathsf{E}}\left(\theta:\mathsf{KEnv}\right)\left(\emptyset:\mathsf{Path}\right) = (\mathcal{C}[\![\mathsf{C}]\!]_{\mathsf{e}}^{\mathsf{e}} \ \theta\right) \\ & \mathcal{S}[\![p:((a_e,a_d,a_x), \mathsf{T}_0,\mathsf{T}_i,\mathsf{C})]\!]_{\mathsf{S}}^{\mathsf{E}} \ \theta \ s.p_d = (\theta_L^{\mathsf{e}}(p,s) \ p_d) \\ & \mathcal{S}[\![p:((a_e,a_d,a_x), \mathsf{T}_0,\mathsf{T}_i,\mathsf{C})]\!]_{\mathsf{S}}^{\mathsf{S}}\left(\theta:\mathsf{KEnv}\right):\mathsf{Den} = (\mathcal{C}[\![\mathsf{C}]\!]^{\mathsf{x}} \ p \ \theta) \end{split}$$

$$\begin{split} & \mathcal{S}\llbracket p: ((a_{\varepsilon}, a_{d}, a_{x}), T_{0}, T_{j}, C) \rrbracket_{L}^{e} \ \theta \ \emptyset \ = (\mathcal{A}\llbracket a_{\varepsilon} \rrbracket \ \theta) \gg (\mathcal{A}\llbracket \text{open } p \rrbracket) \gg (\mathcal{C}\llbracket C \rrbracket^{e} \ p \ \theta) \\ & \mathcal{S}\llbracket p: ((a_{\varepsilon}, a_{d}, a_{x}), T_{0}, T_{j}, C) \rrbracket_{L}^{e} \ \theta \ s.p_{d} = (\mathcal{A}\llbracket a_{\varepsilon} \rrbracket \ \theta) \gg (\mathcal{A}\llbracket \text{open } p \rrbracket) \gg (\theta_{\varepsilon}^{e}(p.s) \ p_{d}) \\ & \mathcal{S}\llbracket p: ((a_{\varepsilon}, a_{d}, a_{x}), T_{0}, T_{j}, C) \rrbracket_{L}^{e} \ \theta \ c. [\mathbb{C}\llbracket^{x} \ p \ \theta) \gg (\mathcal{A}\llbracket \text{open } p \rrbracket) \gg (\theta_{\varepsilon}^{e}(p.s) \ p_{d}) \\ & \mathcal{S}\llbracket p: ((a_{\varepsilon}, a_{d}, a_{x}), T_{0}, T_{j}, C) \rrbracket_{L}^{x} \ \theta = (\mathbb{C}\llbracket C \rrbracket^{x} \ p \ \theta) \gg (\mathcal{A}\llbracket a_{\varepsilon} \rrbracket \ \theta) \gg (\mathcal{A}\llbracket \text{close } p \rrbracket) \end{split}$$

Computing states reactions:

```
\begin{split} & \mathcal{S}\llbracket p: ((a_e, a_d, a_x), T_o, T_i, C) \rrbracket^d \; \theta: Den = \\ & \texttt{let } wrapper_i = \texttt{open_path}^i \; \emptyset \; p \; \texttt{in} \\ & \texttt{let } wrapper_o = \texttt{open_path}^o \; \emptyset \; p \; \texttt{in} \\ & \texttt{let } fail_o = \\ & \texttt{let } fail_i = \mathcal{C}\llbracket C \rrbracket^d \; p \; \theta \; \texttt{in} \\ & \quad (\mathcal{A}\llbracket a_d \rrbracket \; \theta) \gg (\mathcal{T}\llbracket T_i \rrbracket \; \theta \; wrapper_i \; \mathcal{I}d \; fail_i \; fail_i) \; \texttt{in} \\ & \mathcal{T}\llbracket T_o \rrbracket \; \theta \; wrapper_o \; \mathcal{I}d \; fail_o \; \texttt{fail}_o \end{split}
```

$$\begin{array}{l} \int \left(\int \rho \left(f_{a} \right) \right) & \rho \left(f_{a} \right) \right) & \rho \left(f_{a} \right) \\ \int \left(\int \rho \left(f_{a} \right) \right) & \rho \left(f_{a} \right) \\ \rho \left(f_{a} \right) \\ \rho \left(f_{a} \right) & \rho \left(f_{a} \right) \\ \rho \left(f_{a} \right) & \rho \left(f_{a} \right) \\ \rho \left(f_{a} \right) \\ \rho \left(f_{a} \right) & \rho \left(f_{a} \right) \\ \rho \left(f_{a} \right) \\$$

Instanciating the CPS encoding

CPS framework fully parametric:

- Types for denotation/continuation: what do we want to build/manipulate?
- Definition of primitive operators on the continuations:
 - open p, close p
 - Assignment: v = expr
 - Ite construct: $\mathcal{I}te(cond, T, E)$:
 - ▶ Composition ≫

Instanciations:

- Interpreter
- Imperative Code generator
- Dataflow Code Generator (Lustre)

Instantiations: Interpreter

• Denotation type: $Den = Env \rightarrow Env$

Rules:

$$\begin{array}{rcl} \mathcal{A}\llbracket \text{open } \rho \rrbracket(\rho) = & \rho \ [p \mapsto \text{true}] \\ \mathcal{A}\llbracket \text{close } \rho \rrbracket(\rho) = & \rho \ [p \mapsto \text{false}] \\ \mathcal{A}\llbracket v = expr \rrbracket(\rho) = & \rho \ [v \mapsto \llbracket expr \rrbracket_{\rho}] \\ \mathcal{I}te(cond, T, E)(\rho) = & \text{if } \llbracket cond \rrbracket_{\rho} \text{ then } T(\rho) \\ & \text{else } E(\rho) \\ (D_1 \gg D_2)(\rho) = & D_2 \circ D_1(\rho) \\ & \mathcal{I}d(\rho) = & \rho \\ & \bot = & \text{assert false} \end{array}$$

Instantiations: Code Generator

Denotation type:

Den ::= Den;Den | if cond then Den else Den | v = expr | nop | assert false.

Rules:

$$\mathcal{A}[\![ext{open } \rho]\!] =
ho = ext{true} \ \mathcal{A}[\![ext{close } \rho]\!] =
ho = ext{false} \ \mathcal{A}[\![v = expr]\!] =
ho = expr \ \mathcal{I}te(cond, T, E) = ext{if } cond ext{ then } T \ else E \ (D_1 \gg D_2) = ext{D}_1; ext{D}_2 \ \mathcal{I}d = ext{nop} \ oldsymbol{\perp} = ext{assert false}$$

Code Generated from Stopwatch Example

```
principal =
if Active(main)
then
     <CallD(main)>
else
     <Open(main)>;
     <Open(main.stop)>;
     <Open(main.stop.reset)>
endif
```

Code Generated from Stopwatch Example

```
component CallD(main.run.lap) =
begin
  if Event(START)
 then if Active(main.run.running)
       then <Close(main.run.running)>
       else if Active(main.run.lap)
            then <Close(main.run.lap)>
            else <Nil>:
       <Close(main.run)>; <Open(main.stop)>;
       <Open(main.stop.lap_stop)>
  else if Event(LAP)
       then <Close(main.run.lap)>;
            <Open(main.run.running)>
       else <Nil>
```

Modularity through Memoization

- Each evaluation of denotation θ^e(p), θ^d(p) or θ^x(p) may be substituted by a call to a procedure
- This is possible since all arguments are static (paths, modes)
- ▶ Denotation $\theta^{j}(j)$ (= $\mathcal{T}\llbracket j : \mathcal{T}\rrbracket \theta$) could also be turned into a call
- We need first-order representations of continuation arguments, through e.g. defunctionalization wrapper ≡ mode × path, success ≡ action list, fail ≡??
- We could then factorize out junctions occurring in many paths, avoiding combinatorial blow-ups
- And handle loops, provided no transition actions occur

Instantiation: Lustre Code Generator 1/2

- ► Lustre is a dataflow language with notions of automata ⇒ core language of our CocoSim toolchain
- ▶ Denotation type: $Den = Name \rightarrow Name \rightarrow LustreAST$

Rules:

Instantiation: Lustre Code Generator 2/2

```
node thetad_p (in : T_{in}) returns (out : T_{out})
let (S^{\mathbf{d}}[\![p]\!] in out); tel
```

```
Ite(cond, T, E) in out :=
automaton nameuid
state Cond :
    unless [[¬cond]] in restart NotCond
    let (T in out); tel
state NotCond :
    unless [[cond]] in restart Cond
    let (E in out); tel
```

Figure: Lustre instantiation

Instantiation: Lustre Code Generator 2/2

```
node thetad_p (in : T_{in}) returns (out : T_{out})
let (S^{\mathbf{d}}[\![p]\!] in out); tel
```

```
Ite(cond, T, E) in out :=
automaton nameuid
state Cond :
    unless [[¬cond]] in restart NotCond
    let (T in out); tel
state NotCond :
    unless [[cond]] in restart Cond
    let (E in out); tel
```

Figure: Lustre instantiation

Encoding preserves the hierarchical structure of input model

Experimentation / Implementation

- Generic CPS prototype in Ocaml
- Direct encoding of the modular compilation scheme for Lustre in CocoSim in Matlab
 - encode Stateflow constructs into Lustre + automata (while preserving structure)
 - Good performances: enable compilation and verification property is valid or a counter-example is produced

models	#	#	#	#	safe	unsafe
	props	safe	un-	time-	(time)	(time)
			safe	out		
Microwave	15	15	0	0	65.51	0
NasaDockingApproach	4	3	0	1	360	0
GPCA_System_Monitor	1	1	0	0	0.64	0
GPCA_Logging	1	1	0	0	4.88	0
GPCA_Top_Level_Mode	3	3	0	0	36	0
GPCA_CONFIG	1	0	1	0	0	19.34
GPCA_INFUSION_MGR	7	5	0	2	596.51	0
GPCA_Alarm	8	0	6	2	0	281.12

Contribution

- CPS encoding of Stateflow semantics
- Instanciation as
 - interpreter
 - imperative code generator
 - Lustre code generator
- Implemented
 - in Ocaml in the general settings and
 - in Matlab in the Lustre one
- Enable code generation and model verification of general Simulink/Stateflow models
- Perspectives: Subtitute Matlab algorithm by our Ocaml generic CPS code
 - compile basic automata into more complex one
 - avoid huge number of nested binary automata
 - More fine grain integration with CocoSim
 - nodes in Simulink within Stateflow nodes
 - call to external C functions (S-functions)
 - interpret counter example over Stateflow nodes

Thank you for your attention !

Any questions ?