
Cauliflower: A Solver-Generator for
Context-Free Language Reachability

Nicholas Hollingum Bernhard Scholz

The University of Sydney

LPAR-21: 8th-12th May, 2017

What Is CFL-R?

A Datalog Fragment

I Formulated originally by Yannakakis [?]
I A subclass of Datalog:

I Binary relations (EDB & IDB)
I Chain rules:

H(v0, vk)→ B1(v0, v1),B2(v1, v2), . . . ,Bk(vk−1, vk).

I Rephrased as a graph problem:
I Binary predicates ⇔ labelled graph edges
I Chain rules ⇔ context-free grammar

H → B1B2 . . .Bk

A Datalog Fragment

I Formulated originally by Yannakakis [?]
I A subclass of Datalog:

I Binary relations (EDB & IDB)
I Chain rules:

H(v0, vk)→ B1(v0, v1),B2(v1, v2), . . . ,Bk(vk−1, vk).

I Rephrased as a graph problem:
I Binary predicates ⇔ labelled graph edges
I Chain rules ⇔ context-free grammar

H → B1B2 . . .Bk

Recognition

+

Reachability

I A generalisation of two well-known computational problems

I Given a context-free
language

I Determine if a string is a
member of the language

I CYK (cubic time)

I Valiant’s algorithm [?]

I Given a directed graph

I Determine if there exists a
path between two vertices

I Only care about one path

I Transitive closure [?]

I By coincidence, both are equivalent to matrix multiplication

Recognition +

Reachability

I A generalisation of two well-known computational problems

I Given a context-free
language

I Determine if a string is a
member of the language

I CYK (cubic time)

I Valiant’s algorithm [?]

I Given a directed graph

I Determine if there exists a
path between two vertices

I Only care about one path

I Transitive closure [?]

I By coincidence, both are equivalent to matrix multiplication

Recognition + Reachability

I A generalisation of two well-known computational problems

I Given a context-free
language

I Determine if a string is a
member of the language

I CYK (cubic time)

I Valiant’s algorithm [?]

I Given a directed graph

I Determine if there exists a
path between two vertices

I Only care about one path

I Transitive closure [?]

I By coincidence, both are equivalent to matrix multiplication

Recognition + Reachability

I A generalisation of two well-known computational problems

I Given a context-free
language

I Determine if a string is a
member of the language

I CYK (cubic time)

I Valiant’s algorithm [?]

I Given a directed graph

I Determine if there exists a
path between two vertices

I Only care about one path

I Transitive closure [?]

I By coincidence, both are equivalent to matrix multiplication

CFL-R Applications

I Points-to analysis [?, ?, ?, ?, ?]

I Dataflow analysis [?, ?]

I Shape analysis [?]

I Constant propagation [?]

I Inter-procedural slicing [?]

I Some logic fragments [?]

I Set Constraints [?, ?]

I Security verification [?, ?]

I Control-flow analysis [?]

Application: Points-To

a = new F1();

b = new F2();

d = c.f;

b.f = a;

c = b;

a

bc

d F1

F2

allo
c

al
lo

c

store

f

assign
load

fpt→ alloc

pt→ assign pt

pt→ load

f

pt pt store

f

pt

I Which program variables refer to which (abstract) heap
locations at runtime

I Field sensitivity, improve precision by treating object fields
distinctly

Application: Points-To

a = new F1();

b = new F2();

d = c.f;

b.f = a;

c = b;

a

bc

d F1

F2

allo
c

al
lo

c

store

f

assign
load

f

pt→ alloc

pt→ assign pt

pt→ load

f

pt pt store

f

pt

I Which program variables refer to which (abstract) heap
locations at runtime

I Field sensitivity, improve precision by treating object fields
distinctly

Application: Points-To

a = new F1();

b = new F2();

d = c.f;

b.f = a;

c = b;

a

bc

d F1

F2

allo
c

al
lo

c

store

f

assign
load

fpt→ alloc

pt→ assign pt

pt→ load

f

pt pt store

f

pt

I Which program variables refer to which (abstract) heap
locations at runtime

I Field sensitivity, improve precision by treating object fields
distinctly

Application: Points-To

a = new F1();

b = new F2();

d = c.f;

b.f = a;

c = b;

a

bc

d F1

F2

allo
c

al
lo

c

store
f

assign
load

f pt→ alloc

pt→ assign pt

pt→ loadf pt pt storef pt

I Which program variables refer to which (abstract) heap
locations at runtime

I Field sensitivity, improve precision by treating object fields
distinctly

Improving CFL-R

Cauliflower

DSL
parser

libcauli.a

validator
front-end
generator

intermediate
representation

solver
generator

Cauliflower

D
S

L
sp

ec
ifi

ca
ti

on

CSV front-
end (.cpp)

solver
code (.h)

custom front-
end (.cpp)

stand-alone
solver (.exe)

embedded
solver (.exe)C

+
+

co
m

p
ile

r

I Solver generator
I Typical use-case: one grammar many graphs
I Problems encoded in a Domain-Specific language
I Specialised solvers for the given problem
I Static code generator (C++)

I Avoids dynamic execution planning
I Leverage c++ compiler optimisations

I Optimiser?

I SoonTM

Cauliflower

DSL
parser

libcauli.a

validator
front-end
generator

intermediate
representation

solver
generator

Cauliflower

D
S

L
sp

ec
ifi

ca
ti

on

CSV front-
end (.cpp)

solver
code (.h)

custom front-
end (.cpp)

stand-alone
solver (.exe)

embedded
solver (.exe)C

+
+

co
m

p
ile

r

I Solver generator
I Typical use-case: one grammar many graphs
I Problems encoded in a Domain-Specific language
I Specialised solvers for the given problem
I Static code generator (C++)

I Avoids dynamic execution planning
I Leverage c++ compiler optimisations

I Optimiser?

I SoonTM

Cauliflower

DSL
parser

libcauli.a

validator
front-end
generator

intermediate
representation

solver
generator

Cauliflower

D
S

L
sp

ec
ifi

ca
ti

on

CSV front-
end (.cpp)

solver
code (.h)

custom front-
end (.cpp)

stand-alone
solver (.exe)

embedded
solver (.exe)C

+
+

co
m

p
ile

r

I Solver generator
I Typical use-case: one grammar many graphs
I Problems encoded in a Domain-Specific language
I Specialised solvers for the given problem
I Static code generator (C++)

I Avoids dynamic execution planning
I Leverage c++ compiler optimisations

I Optimiser?
I SoonTM

Enhanced Semantics

I In the literature, CFL-R alone is not enough
I Points-to: pt→ loadf pt pt storef pt

I Templates for rules, reverse paths, branches, disconnection

Xa
Yb

Y
a

X[f], Y[f]

X Y

-(X, Y)

X Y

Z

(x,y) & Z

X

!X

I Capture more problems in CFL-R
I Develop a DSL for CFL-R specifications

I Rapid prototyping

Enhanced Semantics

I In the literature, CFL-R alone is not enough
I Points-to: pt→ loadf pt pt storef pt

I Templates for rules, reverse paths, branches, disconnection

Xa
Yb

Y
a

X[f], Y[f]

X Y

-(X, Y)

X Y

Z

(x,y) & Z

X

!X

I Capture more problems in CFL-R
I Develop a DSL for CFL-R specifications

I Rapid prototyping

Enhanced Semantics

I In the literature, CFL-R alone is not enough
I Points-to: pt→ loadf pt pt storef pt

I Templates for rules, reverse paths, branches, disconnection

Xa
Yb

Y
a

X[f], Y[f]

X Y

-(X, Y)

X Y

Z

(x,y) & Z

X

!X

I Capture more problems in CFL-R
I Develop a DSL for CFL-R specifications

I Rapid prototyping

CFL-R Domain-Specific Language

I Type declarations
I Semantic correctness
I Performance - partitioning

I Rule declarations
I BNF syntax
I Enhanced semantics

A l l o c <− v . h ;
A s s i g n <− v . v ;
Cast [t] <− v . v ;
Load [f] <− v . v ;
S t o r e [f] <− v . v ;
B r i d g e <− v . v ;
VPT <− v . h ;
LVPT [f] <− v . h ;
SVPT [f] <− v . h ;

A s s i g n −> Cast [t y p e] ;
VPT −> A l l o c ;
VPT −> −Ass ign , VPT;
VPT −> Br idge , VPT;
LVPT [f] −> −Load [f] , VPT;
SVPT [f] −> S t o r e [f] , VPT;
B r i d g e −> LVPT [f] ,

−SVPT [f] ;

Experimental Validation

Comparison vs Gigascale

av
ro

ra
bat

ik

ec
lip

se fo
p h2

jy
th

on

lu
in

dex

lu
se

ar
ch

op
en

jd
k

pm
d

su
nflow

to
m

ca
t

tra
deb

ea
ns

tra
des

oa
p
xa

la
n

10−1

101

103

R
u

n
ti

m
e

(s
)

GS CL-S CL-1 CL-8

I Gigascale, high performance field-sensitive points-to analysis

I 1 hour timeout

I Cauliflower is more efficient on small cases

I Cauliflower solves large instance, but not as efficiently

Comparison vs Datalog

av
ro

ra
bat

ik

ec
lip

se fo
p h2

jy
th

on

lu
in

dex

lu
se

ar
ch

pm
d

su
nflow

to
m

ca
t

tra
deb

ea
ns

tra
des

oa
p

xa
la

n

100

102

R
u

n
ti

m
e

(s
)

BD Z3 LB SF CL

I Points to analysis - 1 hour timeout

I Datalog exhibits overheads/inefficiencies Cauliflower doesn’t

Live Demo

Summary

Cauliflower

I CFL-R
I Generalisation of Recognition and Reachability
I Ubiquitous in program analysis
I Notably points-to analysis

I Cauliflower
I Solver generator
I Parallel
I Enhanced semantics

I Fields, Reversal, Branching, Disconnection

I DSL for rapid prototyping

References I

Bastani, O., Anand, S., and Aiken, A. (2015).
Specification inference using context-free language
reachability.
In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
553–566. ACM.

Dolev, D., Even, S., and Karp, R. (1982).
On the security of ping-pong protocols.
Information and Control, 55(13):57 – 68.

Kodumal, J. and Aiken, A. (2004).
The set constraint/cfl reachability connection in practice.
In Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation, PLDI
’04, pages 207–218, New York, NY, USA. ACM.

References II

Lu, Y., Shang, L., Xie, X., and Xue, J. (2013).
An incremental points-to analysis with cfl-reachability.
In Jhala, R. and De Bosschere, K., editors, Compiler
Construction, volume 7791 of Lecture Notes in Computer
Science, pages 61–81. Springer Berlin Heidelberg.

Melski, D. and Reps, T. (2000).
Interconvertibility of a class of set constraints and
context-free-language reachability.
Theoretical Computer Science, 248(12):29 – 98.
PEPM’97.

Nuutila, E. (1995).
Efficient transitive closure computation in large digraphs.
PhD thesis, PhD thesis, Helsinki University of Technology,
1995. Acta Polytechnica Scandinavica, Mathematics and
Computing in Engineering Series.

References III

Reps, T. (1998).
Program analysis via graph reachability.
Information and Software Technology, 40(11-12):701–726.

Reps, T., Horwitz, S., and Sagiv, M. (1995).
Precise interprocedural dataflow analysis via graph reachability.

In Proceedings of the 22Nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL
’95, pages 49–61, New York, NY, USA. ACM.

Sagiv, M., Reps, T., and Horwitz, S. (1995).
Precise interprocedural dataflow analysis with applications to
constant propagation.
In Mosses, P., Nielsen, M., and Schwartzbach, M., editors,
TAPSOFT ’95: Theory and Practice of Software Development,

References IV
volume 915 of Lecture Notes in Computer Science, pages
651–665. Springer Berlin Heidelberg.

Sridharan, M., Gopan, D., Shan, L., and Bod́ık, R. (2005).
Demand-driven points-to analysis for java.
In Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA ’05, pages 59–76, New York, NY, USA.
ACM.

Valiant, L. G. (1975).
General context-free recognition in less than cubic time.
Journal of Computer and System Sciences, 10(2):308 – 315.

Vardoulakis, D. and Shivers, O. (2010).
Cfa2: A context-free approach to control-flow analysis.
In Gordon, A., editor, Programming Languages and Systems,
volume 6012 of Lecture Notes in Computer Science, pages
570–589. Springer Berlin Heidelberg.

References V

Yan, D., Xu, G., and Rountev, A. (2011).
Demand-driven context-sensitive alias analysis for java.
In Proceedings of the 2011 International Symposium on
Software Testing and Analysis, ISSTA ’11, pages 155–165,
New York, NY, USA. ACM.

Yannakakis, M. (1990).
Graph-theoretic methods in database theory.
In Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, PODS ’90,
pages 230–242, New York, NY, USA. ACM.

Zheng, X. and Rugina, R. (2008).
Demand-driven alias analysis for c.
SIGPLAN Not., 43(1):197–208.

	What Is CFL-R?
	Improving CFL-R
	Experimental Validation
	Live Demo
	Summary

