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What Is CFL-R?



A Datalog Fragment

I Formulated originally by Yannakakis [?]
I A subclass of Datalog:

I Binary relations (EDB & IDB)
I Chain rules:

H(v0, vk)→ B1(v0, v1),B2(v1, v2), . . . ,Bk(vk−1, vk).

I Rephrased as a graph problem:
I Binary predicates ⇔ labelled graph edges
I Chain rules ⇔ context-free grammar

H → B1B2 . . .Bk
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Recognition

+

Reachability

I A generalisation of two well-known computational problems

I Given a context-free
language

I Determine if a string is a
member of the language

I CYK (cubic time)

I Valiant’s algorithm [?]

I Given a directed graph

I Determine if there exists a
path between two vertices

I Only care about one path

I Transitive closure [?]

I By coincidence, both are equivalent to matrix multiplication
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CFL-R Applications

I Points-to analysis [?, ?, ?, ?, ?]

I Dataflow analysis [?, ?]

I Shape analysis [?]

I Constant propagation [?]

I Inter-procedural slicing [?]

I Some logic fragments [?]

I Set Constraints [?, ?]

I Security verification [?, ?]

I Control-flow analysis [?]



Application: Points-To

a = new F1();

b = new F2();

d = c.f;

b.f = a;

c = b;
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I Which program variables refer to which (abstract) heap
locations at runtime

I Field sensitivity, improve precision by treating object fields
distinctly
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Improving CFL-R
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I Solver generator
I Typical use-case: one grammar many graphs
I Problems encoded in a Domain-Specific language
I Specialised solvers for the given problem
I Static code generator (C++)

I Avoids dynamic execution planning
I Leverage c++ compiler optimisations

I Optimiser?

I SoonTM
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Enhanced Semantics

I In the literature, CFL-R alone is not enough
I Points-to: pt→ loadf pt pt storef pt

I Templates for rules, reverse paths, branches, disconnection
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I Capture more problems in CFL-R
I Develop a DSL for CFL-R specifications

I Rapid prototyping
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CFL-R Domain-Specific Language

I Type declarations
I Semantic correctness
I Performance - partitioning

I Rule declarations
I BNF syntax
I Enhanced semantics

A l l o c <− v . h ;
A s s i g n <− v . v ;
Cast [ t ] <− v . v ;
Load [ f ] <− v . v ;
S t o r e [ f ] <− v . v ;
B r i d g e <− v . v ;
VPT <− v . h ;
LVPT [ f ] <− v . h ;
SVPT [ f ] <− v . h ;

A s s i g n −> Cast [ t y p e ] ;
VPT −> A l l o c ;
VPT −> −Ass ign , VPT;
VPT −> Br idge , VPT;
LVPT [ f ] −> −Load [ f ] , VPT;
SVPT [ f ] −> S t o r e [ f ] , VPT;
B r i d g e −> LVPT [ f ] ,

−SVPT [ f ] ;



Experimental Validation



Comparison vs Gigascale
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I Gigascale, high performance field-sensitive points-to analysis

I 1 hour timeout

I Cauliflower is more efficient on small cases

I Cauliflower solves large instance, but not as efficiently
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I Points to analysis - 1 hour timeout

I Datalog exhibits overheads/inefficiencies Cauliflower doesn’t



Live Demo



Summary



Cauliflower

I CFL-R
I Generalisation of Recognition and Reachability
I Ubiquitous in program analysis
I Notably points-to analysis

I Cauliflower
I Solver generator
I Parallel
I Enhanced semantics

I Fields, Reversal, Branching, Disconnection

I DSL for rapid prototyping
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