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What Is CFL-R?



A Datalog Fragment

» Formulated originally by Yannakakis [?]
» A subclass of Datalog:

» Binary relations (EDB & IDB)
» Chain rules:

H(vo, vik) = Bi(vo, v1), Bo(v1, v2), ..., Bi(vk—1, vk)-



A Datalog Fragment

» Formulated originally by Yannakakis [?]
» A subclass of Datalog:

» Binary relations (EDB & IDB)
» Chain rules:

H(vo, vik) = Bi(vo, v1), Bo(v1, v2), ..., Bi(vk—1, vk)-

» Rephrased as a graph problem:
» Binary predicates < labelled graph edges
» Chain rules < context-free grammar
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» A generalisation of two well-known computational problems
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» By coincidence, both are equivalent to matrix multiplication



CFL-R Applications

» Points-to analysis [?, 7, ?, 7, 7]
» Dataflow analysis [?, ?]

» Shape analysis [?]

» Constant propagation [?]

» Inter-procedural slicing [?]

» Some logic fragments [?]

» Set Constraints [?, 7]

» Security verification [?, 7]

» Control-flow analysis [?]



Application: Points-To
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» Which program variables refer to which (abstract) heap
locations at runtime
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Application: Points-To

pt — alloc

pt — assign pt
pt — load pt pt store pt
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Application: Points-To

a = new F1(Q);

d = c.f; pt — assign pt

b.f = a; pt — loads pt pt stores pt
c = b;

» Which program variables refer to which (abstract) heap
locations at runtime

» Field sensitivity, improve precision by treating object fields
distinctly



Improving CFL-R



Cauliflower
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» Solver generator
» Typical use-case: one grammar many graphs
» Problems encoded in a Domain-Specific language
» Specialised solvers for the given problem
» Static code generator (C++)
> Avoids dynamic execution planning
> Leverage c++ compiler optimisations
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» Solver generator
» Typical use-case: one grammar many graphs
» Problems encoded in a Domain-Specific language
» Specialised solvers for the given problem
» Static code generator (C++)
> Avoids dynamic execution planning
> Leverage c++ compiler optimisations
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» Optimiser?

» Soon™



Enhanced Semantics

> In the literature, CFL-R alone is not enough
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Enhanced Semantics

> In the literature, CFL-R alone is not enough
» Points-to: pt — loads pt pt stores pt

» Templates for rules, reverse paths, branches, disconnection
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» Capture more problems in CFL-R
» Develop a DSL for CFL-R specifications
» Rapid prototyping



CFL-R Domain-Specific Language

» Type declarations » Rule declarations
» Semantic correctness » BNF syntax
» Performance - partitioning » Enhanced semantics

Alloc <— v . h;
Assign <— v . v;
Castt] <— v . v;
Load[f] <— v . v;
Store[f] <— v . v;

Assign —> Cast[type];
VPT — Alloc;

VPT — —Assign, VPT;

VPT —> Bridge, VPT;
LVPT[f] —> —Load[f], VPT;

Bridge <= v . v; SVPT[f] —> Store[f], VPT;
VPT <— v . h; )
VPT[] < v . Bridge — LVPT[f],

o ~SVPT[f];

SVPT[f] <— v . h;



Experimental Validation



Comparison vs Gigascale
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Cauliflower is more efficient on small cases
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Gigascale, high performance field-sensitive points-to analysis

Cauliflower solves large instance, but not as efficiently



Comparison vs Datalog
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Datalog exhibits overheads/inefficiencies Cauliflower doesn't



Live Demo



Summary



Cauliflower

» CFL-R
» Generalisation of Recognition and Reachability
» Ubiquitous in program analysis
» Notably points-to analysis

» Cauliflower

» Solver generator
» Parallel
» Enhanced semantics

> Fields, Reversal, Branching, Disconnection

v

DSL for rapid prototyping
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