Cauliflower: A Solver-Generator for
Context-Free Language Reachability

Nicholas Hollingum Bernhard Scholz
The University of Sydney

LPAR-21: 8th-12th May, 2017

What Is CFL-R?

A Datalog Fragment

» Formulated originally by Yannakakis [?]
» A subclass of Datalog:

» Binary relations (EDB & IDB)
» Chain rules:

H(vo, vik) = Bi(vo, v1), Bo(v1, v2), ..., Bi(vk—1, vk)-

A Datalog Fragment

» Formulated originally by Yannakakis [?]
» A subclass of Datalog:

» Binary relations (EDB & IDB)
» Chain rules:

H(vo, vik) = Bi(vo, v1), Bo(v1, v2), ..., Bi(vk—1, vk)-

» Rephrased as a graph problem:
» Binary predicates < labelled graph edges
» Chain rules < context-free grammar

H—)Ble...Bk

» A generalisation of two well-known computational problems

Recognition +

» A generalisation of two well-known computational problems

Given a context-free
language

v

» Determine if a string is a
member of the language

CYK (cubic time)
Valiant's algorithm [?]

v

v

Recognition + Reachability

» A generalisation of two well-known computational problems

Given a context-free
language

v
v

Given a directed graph

Determine if there exists a
path between two vertices

v

» Determine if a string is a
member of the language

CYK (cubic time)
Valiant's algorithm [?]

v

Only care about one path

v
v

Transitive closure [?]

v

Recognition + Reachability

» A generalisation of two well-known computational problems

Given a context-free
language

v
v

Given a directed graph

Determine if there exists a
path between two vertices

v

» Determine if a string is a
member of the language

CYK (cubic time)
Valiant's algorithm [?]

v

Only care about one path

v
v

Transitive closure [?]

v

» By coincidence, both are equivalent to matrix multiplication

CFL-R Applications

» Points-to analysis [?, 7, ?, 7, 7]
» Dataflow analysis [?, ?]

» Shape analysis [?]

» Constant propagation [?]

» Inter-procedural slicing [?]

» Some logic fragments [?]

» Set Constraints [?, 7]

» Security verification [?, 7]

» Control-flow analysis [?]

Application: Points-To

o o QA T P

new F1();
new F2();

C

b.

£
a;

I

» Which program variables refer to which (abstract) heap
locations at runtime

Application: Points-To

o o QA T P
]

» Which program variables refer to which (abstract) heap
locations at runtime

Application: Points-To

pt — alloc

pt — assign pt
pt — load pt pt store pt

0O o QA T P
I

» Which program variables refer to which (abstract) heap
locations at runtime

Application: Points-To

a = new F1(Q);

d = c.f; pt — assign pt

b.f = a; pt — loads pt pt stores pt
c = b;

» Which program variables refer to which (abstract) heap
locations at runtime

» Field sensitivity, improve precision by treating object fields
distinctly

Improving CFL-R

Cauliflower

Cauliflower

DSL
I - ;
parser libcauli.a

l front-end |

CSV front-
end (.cpp)

stand-
solver (

C++ compiler

solver

c
S
®
o
S
©
a
&
-
@
a

!

| "

| validator generator code (.h) !

| Vi embedded
| ol solver (.exe
I intermediate solver ! .,

| representation generator | -

Cauliflower

Cauliflower
DSL -/\v
| i i CSV front-
T)/-\

)
|
! end (.cpp)
|

l front-end " |

!

" validator

| generator |
| !
| J / f
| intermediate solver 1 custom front-

I representation generator | end (.cpp) -

» Solver generator
» Typical use-case: one grammar many graphs
» Problems encoded in a Domain-Specific language
» Specialised solvers for the given problem
» Static code generator (C++)
> Avoids dynamic execution planning
> Leverage c++ compiler optimisations

stand-alone
solver (.exe)

solver
code (.h)

embedded
solver (.exe)

C++ compiler

¥

c
S
®
o
S
2
a
&
-
@
a

Cauliflower

Cauliflower
DSL -/\v
| i i CSV front-
T)/-\

)
|
! end (.cpp)
|

l front-end " |

!

" validator

| generator |
| !
| J / f
| intermediate solver 1 custom front-

I representation generator | end (.cpp) -

» Solver generator
» Typical use-case: one grammar many graphs
» Problems encoded in a Domain-Specific language
» Specialised solvers for the given problem
» Static code generator (C++)
> Avoids dynamic execution planning
> Leverage c++ compiler optimisations

stand-alone
solver (.exe)

solver
code (.h)

embedded
solver (.exe)

C++ compiler

¥

c
S
®
o
S
2
a
&
-
@
a

» Optimiser?

» Soon™

Enhanced Semantics

> In the literature, CFL-R alone is not enough
» Points-to: pt — loads pt pt stores pt

Enhanced Semantics

> In the literature, CFL-R alone is not enough
» Points-to: pt — loads pt pt stores pt

» Templates for rules, reverse paths, branches, disconnection

Nb), \/\
Xa * v t e
Qﬂ@ ffffff Ceoz=0 L

X[£], Y[£f] B Gy) & 2 X

Enhanced Semantics

> In the literature, CFL-R alone is not enough
» Points-to: pt — loads pt pt stores pt

» Templates for rules, reverse paths, branches, disconnection
: Xa \(b ‘l\)/ \i‘ ‘)/ _ \/:/ \\/
\\\\>z/.g, ****** “ ~ \\)C‘j/\
X[£1, Y[£]) (,y) & 2 1X

» Capture more problems in CFL-R
» Develop a DSL for CFL-R specifications
» Rapid prototyping

CFL-R Domain-Specific Language

» Type declarations » Rule declarations
» Semantic correctness » BNF syntax
» Performance - partitioning » Enhanced semantics

Alloc <— v . h;
Assign <— v . v;
Castt] <— v . v;
Load[f] <— v . v;
Store[f] <— v . v;

Assign —> Cast[type];
VPT — Alloc;

VPT — —Assign, VPT;

VPT —> Bridge, VPT;
LVPT[f] —> —Load[f], VPT;

Bridge <= v . v; SVPT[f] —> Store[f], VPT;
VPT <— v . h;)
VPT[] < v . Bridge — LVPT[f],

o ~SVPT[f];

SVPT[f] <— v . h;

Experimental Validation

Comparison vs Gigascale

GSmmm CL-Swm CL-1 mmm CL-8

103 |

Runtime (s)

[ay

10~

10t |
g

|Ir

QG)

L

W ‘0 ¢
® \\\ \\>\ \\)‘9 oQ

v

1 hour timeout

v

Cauliflower is more efficient on small cases

v

v

Il

é\\ Q@ QO

Gigascale, high performance field-sensitive points-to analysis

Cauliflower solves large instance, but not as efficiently

Comparison vs Datalog

mm BD Z3mmm LB SFmmm CL
| | | | | | | | | |

— 102,
(]
£
=" ‘ ‘ ‘ ‘ ‘ ‘ ‘
: | (N
|| || | | | l
o N & oQ " N @Q
& N « <° N X O
NG ’& \o 2 Q @ P S Nl
NN
? & §\ W& (90 S S @b
\gb 0
» Points to analysis - 1 hour timeout

v

Datalog exhibits overheads/inefficiencies Cauliflower doesn't

Live Demo

Summary

Cauliflower

» CFL-R
» Generalisation of Recognition and Reachability
» Ubiquitous in program analysis
» Notably points-to analysis

» Cauliflower

» Solver generator
» Parallel
» Enhanced semantics

> Fields, Reversal, Branching, Disconnection

v

DSL for rapid prototyping

References |

[Bastani, O., Anand, S., and Aiken, A. (2015).
Specification inference using context-free language
reachability.
In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
553-566. ACM.

[Dolev, D., Even, S., and Karp, R. (1982).

On the security of ping-pong protocols.
Information and Control, 55(13):57 — 68.

[8 Kodumal, J. and Aiken, A. (2004).
The set constraint/cfl reachability connection in practice.
In Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation, PLDI
'04, pages 207-218, New York, NY, USA. ACM.

References |l

[§ Lu, Y., Shang, L., Xie, X., and Xue, J. (2013).
An incremental points-to analysis with cfl-reachability.
In Jhala, R. and De Bosschere, K., editors, Compiler
Construction, volume 7791 of Lecture Notes in Computer
Science, pages 61-81. Springer Berlin Heidelberg.

[§ Melski, D. and Reps, T. (2000).
Interconvertibility of a class of set constraints and
context-free-language reachability.

Theoretical Computer Science, 248(12):29 — 98.
PEPM'97.

8 Nuutila, E. (1995).
Efficient transitive closure computation in large digraphs.
PhD thesis, PhD thesis, Helsinki University of Technology,
1995. Acta Polytechnica Scandinavica, Mathematics and
Computing in Engineering Series.

References 1l

[§ Reps, T. (1998).
Program analysis via graph reachability.
Information and Software Technology, 40(11-12):701-726.

@ Reps, T., Horwitz, S., and Sagiv, M. (1995).
Precise interprocedural dataflow analysis via graph reachability.

In Proceedings of the 22Nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL
'95, pages 49-61, New York, NY, USA. ACM.

@ Sagiv, M., Reps, T., and Horwitz, S. (1995).
Precise interprocedural dataflow analysis with applications to
constant propagation.
In Mosses, P., Nielsen, M., and Schwartzbach, M., editors,
TAPSOFT '95: Theory and Practice of Software Development,

References IV

volume 915 of Lecture Notes in Computer Science, pages
651-665. Springer Berlin Heidelberg.

Sridharan, M., Gopan, D., Shan, L., and Bodik, R. (2005).
Demand-driven points-to analysis for java.

In Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA '05, pages 59-76, New York, NY, USA.
ACM.

Valiant, L. G. (1975).
General context-free recognition in less than cubic time.
Journal of Computer and System Sciences, 10(2):308 — 315.

Vardoulakis, D. and Shivers, O. (2010).
Cfa2: A context-free approach to control-flow analysis.
In Gordon, A., editor, Programming Languages and Systems,

volume 6012 of Lecture Notes in Computer Science, pages
570-589. Springer Berlin Heidelberg.

[m] = = =

References V

[Yan, D., Xu, G., and Rountev, A. (2011).
Demand-driven context-sensitive alias analysis for java.
In Proceedings of the 2011 International Symposium on
Software Testing and Analysis, ISSTA '11, pages 155-165,
New York, NY, USA. ACM.

[@ Yannakakis, M. (1990).
Graph-theoretic methods in database theory.
In Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, PODS 90,
pages 230242, New York, NY, USA. ACM.

@ Zheng, X. and Rugina, R. (2008).
Demand-driven alias analysis for c.
SIGPLAN Not., 43(1):197-208.

	What Is CFL-R?
	Improving CFL-R
	Experimental Validation
	Live Demo
	Summary

