19TH INTERNATIONAL CONFERENCE ON LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE AND REASONING

# PROGRAM FOR MONDAY, DECEMBER 16TH, 2013

09:00-10:00 Session 9: Invited talk by Volker Diekert (LPAR)
 09:00 The Local Divisor Approach to First-Order LanguagesSPEAKER: Volker DiekertABSTRACT. Algebraic techniques play an important role in relating logical formalisms with automata theory. Famous decidability results for various logics have been derived by the following scheme. Start with a logical sentence, translate the sentence to some NFA (or Büchi-automaton), compute the transformation monoid, and verify some algebraic properties. The most classical example for the success of this method is the possibility to check whether a given sentence in monadic second order logic can be expressed in linear temporal logic LTL.Frequently, the actual transformations are complex and proofs are difficult to understand.  Local divisors were introduced in semigroup theory as a tool for proving results of this type by a refined induction method. This led to simpler proofs as well as new results.In my lecture I will present the local divisor technique and I will give some applications and examples.  One example is a simplified proof for classic result that aperiodic languages are LTL definable. Another example is the recent result showing that "bounded synchronization delay" and first-order definability (resp. LTL-definability) are equivalent for omega-languages. For the extension to omega-languages the local divisor approach is the only known technique to date.
10:00-10:30Coffee Break
10:30-12:00 Session 10: Interpolation and SMT (LPAR)
 10:30 Tree Interpolation in VampireSPEAKER: Bernhard KraglABSTRACT. We describe new extensions of the Vampire theorem prover for computing tree interpolants. These extensions generalize Craig interpolation in Vampire, and can also be used to derive sequence interpolants. We evaluated our implementation on a large number of examples over the theory of linear integer arithmetic and integer-indexed arrays, with and without quantifiers. When compared to other methods, our experiments show that some examples could only be solved by our implementation. 10:50 Instantiations, Zippers and EPR InterpolationSPEAKER: Konstantin KorovinABSTRACT. This paper describes interpolation procedures for EPR. In principle, interpolation for EPR is simple: It is a special case of first-order interpolation. In practice, we would like procedures that take advantage of properties of EPR: EPR admits finite models and those models are sometimes possible to describe very compactly. Inspired by procedures for propositional logic that use models and cores, but not proofs, we develop a procedure for EPR that uses just models and cores. 11:00 Revisiting the Equivalence of Shininess and PolitenessSPEAKER: Filipe CasalABSTRACT. The Nelson-Oppen method [1] allows the modular combination of quantifier free satisfiability procedures of first-order theories into a quantifier-free satisfiability procedure for the union of the theories. However, this method requires the theories to have disjoint signatures and to be stably infinite. Due to the importance of the result, several attempts to extend the method to different and wider classes of theories were made. Recently, two different extensions of the Nelson-Oppen method were proposed, where the stably infinite requirement was replaced by another condition: in [2] it was required that all but one of the theories are shiny, and in [3] it was required that, when combining two theories, one of them is polite. The relationship between shiny and polite theories was analysed in [3]. Later, a stronger notion of polite theory was proposed, see [4], in order to overcome a subtle issue with the proof of the Nelson-Oppen method in [3]. In this paper, we analyse the relationship between shiny and strongly polite theories in the one-sorted case. We show that a shiny theory with a decidable quantifier-free satisfiability problem is strongly polite and we provide two different sufficient conditions for a strongly polite theory to be shiny. Based on these results, we derive a combination method for the union of a polite theory with an arbitrary theory. [1] G. Nelson and D. C. Oppen. Simpliﬁcation by cooperating decision procedures. ACM Transactions on Programming Languages and Systems, 1(2):245–257, 1979. [2] C. Tinelli and C. G. Zarba. Combining nonstably inﬁnite theories. Journal of Automated Reasoning, 34(3):209–238, 2005. [3] S. Ranise, C. Ringeissen, and C. G. Zarba. Combining data structures with nonstably infinite theories using many-sorted logic. In Proceedings of the Fifth International Workshop on Frontiers of Combining Systems (FroCoS’2005), volume 3717 of LNAI, pages 48–64, 2005. [4] D. Jovanovic and C. Barrett. Polite theories revisited. In Proceedings of the Seventeenth International Conference on Logic for Programming, Artiﬁcial Intelligence, and Reasoning (LPAR’2010), volume 6397 of LNCS, pages 402–416, 2010. 11:20 Resourceful Reachability as HORN-LRASPEAKER: Jael KrienerABSTRACT. The program verification tool SLAyer uses abstractions during analysis and relies on a solver for reachability to refine spurious counterexamples. In this context, we extract a reachability benchmark suite and evaluate methods for encoding reachability properties with heaps using Horn clauses over linear arithmetic. Our experimental evaluation establishes arithmetical encodings as a viable technique compared to bounded model checking over array based systems, but only given significant pre-processing and controls over how arrays are eliminated. 11:40 Proving Infinite SatisfiabilitySPEAKER: Peter BaumgartnerABSTRACT. We consider the problem of automatically disproving invalid conjectures over data structures such as lists and arrays over integers, in presence of additional hypothesis over these data structures. Such invalid conjectures come up frequently in applications of automated reasoning to software verification and the analysis of data-rich state-based systems, for example. More formally, the disproving problem is to show that LIST u ARRAY u HYP does not entail a sentence CON, where LIST are the list axioms, ARRAY are array axioms, HYP are the mentioned additional hypothesis, and CON is the conjecture in question. The obvious approach to disproving is to show satisfiability of LIST u ARRAY u HYP u { not CON }, where not is the negation operator, by means of a (complete) theorem prover. Unfortunately, current theorem proving technology is of limited usefulness for that: finite model finders cannot be used because the list axioms do not admit finite models, SMT-solvers are typically incomplete on quantified formulas and face the same problem, and theorem provers based on saturation often do not terminate on satisfiable input (let alone completeness issues in presence of arithmetic background theories). We propose a different, conceptually simple approach based on refutational theorem proving. It consists in assuming that LIST u ARRAY is satisfiable and providing templates for HYP that are guaranteed to preserve satisfiability of LIST u ARRAY u HYP. Then, disproving is done by proving that LIST u ARRAY u HYP entails not CON, i.e., that LIST u ARRAY u HYP u { CON } is unsatisfiable. The main point of the paper is to demonstrate the practical feasibility of our approach. By means of examples, we demonstrate that our template language covers many widely used cases. We also report on our rather positive experiences on disproving sample conjectures by current theorem provers, and we compare their performance (Z3, SPASS+T and Beagle).
12:00-14:00Lunch
14:00-15:30 Session 11 (LPAR)
 16:00 Relaxing Synchronization Constraints in Behavioral ProgramsSPEAKER: Guy KatzABSTRACT. In behavioral programming, a program consists of separate modules called behavior threads, each representing a part of the system’s allowed, necessary or forbidden behavior. An execution of the program is a series of synchronizations between these threads, where at each synchronization point an event is selected to be carried out. As a result, the execution speed is dictated by the slowest thread. We propose an eager execution mechanism for such programs, which builds upon the realization that it is often possible to predict the outcome of a synchronization point even without waiting for slower threads to synchronize. This allows faster threads to continue running uninterrupted, whereas slower ones catch up at a later time. Consequently, eager execution brings about increased system performance, better support for the modular design of programs, and the ability to distribute programs across several machines. It also allows to apply behavioral programming to a variety of problems that were previously outside its scope. We illustrate the method by concrete examples, implemented in a behavioral programming framework in C++ 16:20 Putting Newton into Practice: A Solver for Polynomial Equations over SemiringsSPEAKER: Maximilian SchlundABSTRACT. We present the first implementation of Newton's method for solving systems of equations over $\omega$-continuous semirings (based on \cite{DBLP:journals/jacm/EsparzaKL10,DBLP:conflataLuttenbergerS13}). For instance, such equation systems arise naturally in the analysis of interprocedural programs or the provenance computation for Datalog. Our implementation provides an attractive alternative for computing their exact least solution in some cases where the ascending chain condition is not met and hence, standard fixed-point iteration needs to be combined with some over-approximation (e.g., widening techniques) to terminate. We present a generic C++ library along with the main algorithms and analyze their complexity. Furthermore, we describe our implementation of the counting semiring based on semilinear sets. Finally, we discuss motivating examples as well as performance benchmarks. 16:40 Solving Geometry Problems using a Combination of Symbolic and Numerical ReasoningSPEAKER: Shachar ItzhakyABSTRACT. We describe a framework that combines deductive, numeric, and inductive reasoning to solve geometric problems. Applications include the generation of geometric models and animations, as well as problem solving in the context of intelligent tutoring systems. Our novel methodology uses (i) deductive reasoning to generate a partial program from logical constraints, (ii) numerical methods to evaluate the partial program, thus creating geometric models which are solutions to the original problem, and (iii) inductive synthesis to read off new constraints that are then applied to one more round of deductive reasoning leading to the desired deterministic program. By the combination of methods we were able to solve problems that each of the methods was not able to solve by itself. The number of nondeterministic choices in a partial program provides a measure of how close a problem is to being solved and can thus be used in the educational context for grading and providing hints. We have successfully evaluated our methodology on 18 Scholastic Aptitude Test geometry problems, and 11 ruler/compass-based geometry construction problems. Our tool solved these problems using an average of a few seconds per problem. 17:00 May-Happen-in-Parallel Analysis for Priority-based SchedulingSPEAKER: Enrique Martin-MartinABSTRACT. A may-happen-in-parallel (MHP) analysis infers the sets of pairs of program points that may execute in parallel along a program's execution. This is an essential piece of information to infer more complex properties of concurrent programs, e.g., deadlock freeness, termination, resource consumption or data race detection can greatly benefit from the MHP relations to increase their accuracy. Previous MHP analyses have assumed a worst case scenario by adopting a simplistic (non-deterministic) task scheduler which can select any available task. While the results of the analysis for a non-deterministic scheduler are obviously sound, they can lead to an overly pessimistic result. We present a MHP analysis for an asynchronous language with prioritized tasks buffers. Priority-based scheduling is arguably the most common scheduling strategy used in the implementation of concurrent languages. The challenge is to be able to take task priorities into account at static analysis time in order to filter out unfeasible MHP pairs. 17:20 An Event Structure Model for Probabilistic Concurrent Kleene AlgebraSPEAKER: Tahiry RabehajaABSTRACT. We give a true-concurrent model for probabilistic concurrent Kleene algebra. The model is based on probabilistic event structures, which combines ideas from Katoen's work on probabilistic concurrency and Varacca's probabilistic prime event structures. We find that pomset-distribution inclusion is not a precongruence (as for interleaving models); we avoid this problem by giving a true-concurrent version of the well known probabilistic simulation. 17:40 SAT Preprocessing for MaxSATSPEAKER: Anton BelovABSTRACT. State-of-the-art algorithms for industrial instances of MaxSAT prob- lem rely on iterative calls to a SAT solver. Preprocessing is crucial for the acceler- ation of SAT solving, and the key preprocessing techniques rely on the application of resolution and subsumption elimination. Additionally, satisfiability-preserving clause elimination procedures are often used. Since MaxSAT computation typi- cally involves a large number of SAT calls, we are interested in whether an input instance to MaxSAT problem can be preprocessed up-front, i.e. prior to running the MaxSAT solver, rather than (or, in addition to) during each iterative SAT solver call. The key requirement in this setting is that the preprocessing has to be sound, i.e. so that the solution can be reconstructed correctly and efficiently after the execution of a MaxSAT algorithm on the preprocessed instance. While, as we demonstrate in this paper, certain clause elimination procedures are sound for MaxSAT, it is well-known that this is not the case for the resolution and the subsumption elimination. In this paper we show how to adapt these preprocessing techniques to MaxSAT. To achieve this we recast the MaxSAT problem in a re- cently introduced labelled-CNF framework, and show that within the framework the preprocessing techniques can be applied soundly. Furthermore, we show that MaxSAT algorithms restated in the framework have a natural implementation on top of an incremental SAT solver. We evaluate the prototype implementation of a MaxSAT algorithm WMSU1 in this setting, demonstrate the effectiveness of preprocessing, and show overall improvement with respect to non-incremental versions of the algorithm on some classes of problems.