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Abstract— Atherosclerosis, a cardiovascular disease, is 

commonly diagnosed through non-invasive imaging methods 

like Coronary CT Angiography (CCTA). Deep learning 

algorithms have demonstrated remarkable potential in 

assisting with the classification of CCTA images. However, the 

inherent opacity in the decision-making processes of black-box 

AI models presents a significant challenge in the medical field. 

Healthcare professionals require clear insights into the 

rationale behind AI system recommendations. In this research, 

we investigate the advantages of Explainable AI (XAI) 

algorithms in the context of a previously established deep 

learning model for atherosclerosis classification from CCTA 

images. Our study not only highlights the capability of XAI in 

elucidating the model's decision-making process but also 

showcases its potential in identifying misclassified cases, 

thereby contributing to the refinement and enhancement of the 

model's performance.  

Keywords— deep learning, atherosclerosis, coronary CT 

angiography, Explainable Artificial Intelligence, GradCam. 

 

I. INTRODUCTION  

The extensive use of AI technology in the medical field, 
particularly in atherosclerosis screening, has drastically 
transformed disease diagnostics. Through the use of machine 
learning and deep learning techniques, AI has enabled early, 
precise, and comprehensive diagnosis of coronary 
atherosclerotic heart disease (CAD), a common 
cardiovascular disease with high morbidity, disability, and 
societal burden [1]. However, the prevalent reliance on Deep 
Neural Networks (DNNs) in AI models poses a substantial 
challenge regarding their explainability and transparency. 
This opacity in DNN models restricts the comprehension of 
how they reach diagnostic conclusions, which proves to be a 
significant obstacle in safety-critical medical domains. To 
address this gap, Explainable AI (XAI) methodologies have 
emerged to elucidate the decision-making processes of these 
models; they can aid in adhering to regulatory prerequisites 
and ethical standards, thus elevating the overall efficiency 
and impartiality of the system. [2] 

Moreover, prior research has highlighted the importance 
of explainable AI in diverse fields, exemplified by works like 
[3]. The research conducted by Suryani et al. [4] emphasizes 
the critical role of AI-based tools in identifying lung tumors 
from chest X-ray images. The proposed methodologies in 

their work, such as Seg-Grad-CAM (Semantic Segmentation 
via Gradient-Weighted Class Activation Mapping), align 
with the objectives of our investigation in providing precise 
and accurate localization of lesions or abnormalities within 
medical images. 

In this context, our research aims to leverage the 
advancements in explainable AI methodologies for the task 
of atherosclerosis screening through CCTA images, ensuring 
not only the accuracy of disease diagnosis but also fostering 
trust and understanding in AI-assisted medical decision-
making. The model under study is one that has been 
previously developed [5], fine-tuned, and specialized for the 
specific task of atherosclerosis screening. 

 

II. BACKGROUND 

A. What is AI ? and why deep learning? 

Artificial intelligence is a wide term that refers to all 
types of computer systems trained to perform tasks that are 
normally associated with human intelligence or abilities, 
such as perception, reasoning, learning, and decision-
making. AI systems are designed to analyze large amounts of 
data, recognize patterns, and make predictions or decisions 
based on that data. 

There are different types of AI systems, including: 

• Rule-based systems: AI systems that use pre-defined 
rules to make decisions or perform tasks. They are 
limited to the rules that have been programmed into 
them and cannot adapt to new situations. 

• Machine learning systems : AI systems that can 
learn from data and improve their performance over 
time. There are different types of machine learning, 
including supervised learning, unsupervised learning, 
and reinforcement learning. 

• Deep learning systems : a subset of machine 
learning systems that use artificial neural networks to 
analyze large amounts of data and learn from it. Deep 
learning systems are particularly effective in tasks 
that involve image and speech recognition, natural 
language processing, and other complex tasks. 



Deep learning involves the use of artificial neural 
networks that consist of multiple layers of interconnected 
nodes, each of which performs a specific function in the 
processing of data. The input data is fed into the network, 
and the network gradually learns to recognize patterns in the 
data by adjusting the weights of the connections between 
nodes. 

Deep learning has shown tremendous promise in 
computer vision and healthcare applications. It can analyze 
and interpret complex images, such as X-rays or MRI scans, 
with greater accuracy than traditional image analysis 
techniques. This ability has enabled medical professionals to 
diagnose diseases and conditions at an early stage, leading to 
better treatment outcomes. Additionally, deep learning has 
been used in healthcare to improve patient outcomes through 
personalized treatment plans. By analyzing vast amounts of 
patient data, deep learning algorithms can identify patterns 
and correlations that would be impossible for human doctors 
to detect. This has the potential to lead to more accurate 
diagnoses, better treatment plans, and ultimately, improved 
patient outcomes. Overall, the combination of deep learning, 
computer vision, and healthcare has the potential to 
revolutionize the way we diagnose and treat diseases, 
ultimately leading to better healthcare for everyone. [6] 

 

B. Deep learning for atherosclerosis detection from 

Coronary CT Angiography 

Atherosclerosis is a common cardiovascular disease that 
is characterized by the accumulation of fatty deposits in the 
walls of arteries. Coronary CT Angiography (CCTA) is the 
key technique for atherosclerosis screening, it is a non-
invasive imaging technique that can be used to visualize the 
coronary arteries and detect the presence of atherosclerotic 
plaques [7]. However, interpreting CCTA images can be 
challenging and time-consuming, particularly when there are 
multiple plaques or complex plaque morphology. 

Deep learning algorithms have been developed to assist 
in the classification of CCTA images by automatically 
identifying and characterizing atherosclerotic plaques based 
on their morphology, composition, and location within the 
coronary arteries. These algorithms can analyze large 
amounts of data and learn to recognize patterns that are 
indicative of different types of plaques, such as calcified or 
non-calcified plaques. 

In a recent study [5], we created a deep learning model 
and trained it on a publicly available dataset.  

Dataset : 

The dataset we used is an open-source collection of 
Coronary CT Angiography images for screening 
atherosclerosis. It consists of Mosaic Projection View (MPV) 
images of 18 views of straightened coronary arteries from 
500 patients, created by combining unique ray-traced 
projections. The dataset was partitioned into 300 training 
images, 100 testing images, and 100 validation images. To 
balance the dataset, the training images were augmented 6-
fold. The validation dataset contains one randomly selected 
artery per normal case and one diseased case. [8] 

Model:  

The model we used was a pretrained Residual network 
(ResNet)  [9] with 101 layers.  

ResNet was first presented at the ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) 2015, It innovated 

by incorporating additional branches within its architecture. 

Specifically, one branch, known as the identity block, 

forwards information unchanged, while the other, the 

convolutional block, processes data akin to a standard layer. 

The unaltered data, referred to as the "residual," is combined 

with the original signal traversing the network without 

modification. This architectural division ensures that one 

branch solely transmits gradients without modifying them. 

Deep residual networks are constructed by stacking these 

blocks, enabling robust learning through powerful gradient 

propagation. 

The concept of residual blocks is visually demonstrated in 

the reference Fig. 1Erreur ! Source du renvoi 

introuvable.. These blocks' core lies in the "jump 

connection," which defines the essence of the residual 

blocks. 

 

 Residual Networks emerged as a solution to a prevalent 

issue encountered in deeper and more intricate networks—

vanishing and exploding gradients. This phenomenon arises 

during the training of very deep networks when derivatives 

or slopes become exceedingly large or small, sometimes 

exponentially so, thereby complicating the training process. 

There has been evidence that residual networks are easier 
to optimize and the gain in their accuracy is directly 
proportional with a considerable increase in their depth [10]. 
We used the resnet101 which has 101 layers. 

Hyperparameters: 

Mini-batch size : a segmented subset extracted from the 
training dataset via shuffling and partitioning. Its size can 
range from a single image to encompassing all examples 
within the training dataset. 

Given the model’s size, we trained on a mini-batch size 
of 64, which is neither too big nor too small. We used a 
learning rate of 10-4 which allowed the model to learn fast 
enough without missing local minima. 

Dropout: a regularization technique employed during the 
training phase, where it randomly deactivates multiple 

 

Fig. 1. The main structure of a residual block [9] 



neurons within the network based on a pre-defined 
probability. This exclusion prevents their participation in 
both forward and backward propagation. Consequently, this 
alters the model's architecture during each iteration, fostering 
a more resilient training process. The implementation of 
Dropout notably enhances accuracy and substantially 
diminishes the required training time. 

We used 50% dropout, which made the model more 
universal.  

Number of training epochs: the number of cycles the 
model would go through the dataset. Training for too long 
epochs can cause the model to overfit, while not training 
enough can lead to underfitting. 

The model trained for 20 epochs which made it perform 
well without overfitting. 

The model took about 50 hours to train. It achieved 
95.21% of accuracy, 90.48% positive predictive value, and 
95.6% negative predictive value. The detailed results are 
illustrated in Fig. 2. 

 

C. Challenges and limitations of black-box AI models 

Black-box AI models, which refer to AI systems that are 
difficult or impossible to interpret, particularly Deep learning 
models, have become increasingly popular in the medical 
field for tasks such as atherosclerosis screening. However, 
there are several challenges and limitations associated with 
these models that need to be addressed to ensure their safe 
and effective use in clinical settings. 

Not understanding the full process happening inside the 
model leads to a lack of transparency in the decision-making 
process. This can be particularly problematic in the medical 
field, if healthcare professionals cannot understand how an 
AI system arrived at a particular diagnosis or 
recommendation, they may be hesitant to act on it.  

To address these challenges and limitations, recent 
research worked on developing AI models that are more 
transparent and interpretable, and to ensure that they are 
trained on unbiased and representative data. Additionally, 
there needs to be ongoing monitoring and evaluation of AI 

systems to ensure that they remain accurate and up to date 
with changes in the data and patient population. By 
addressing these challenges and limitations, the potential of 
black-box AI models to improve atherosclerosis screening 
and other medical tasks can be fully realized. 

 

D. Explainable AI Algorithms 

Explainable AI (XAI) algorithms are a type of AI system 
that is designed to be transparent and interpretable, allowing 
humans to understand how the AI system arrived at its 
decision or recommendation. XAI algorithms are intended to 
address the limitations of black-box AI models, which are 
often difficult or impossible to interpret. 

There are several popular explainable AI algorithms that 
are used to provide transparency and interpretability to AI 
models. In this paper we took interest in three algorithms: 

LIME (Local Interpretable Model-agnostic 
Explanations): LIME is a model-agnostic method for 
explaining the predictions of any black-box model. LIME 
works by creating a simpler, interpretable model that is 
locally faithful to the black-box model around the instance 
being explained. The simpler model can then be used to 
provide an explanation for the black-box model's prediction. 
[11] 

LIME works by generating perturbations around the 
instance being explained and measuring the impact of these 
perturbations on the model's output. The algorithm then uses 
these perturbations to create a simpler, interpretable model 
that is locally faithful to the black-box model around the 
instance being explained.  

LIME can provide a way to explain the prediction of any 
black-box model, without requiring knowledge of its internal 
workings. LIME is also a model-agnostic algorithm, 
meaning that it can be used with any type of model, 
including neural networks, decision trees, and support vector 
machines. 

Grad-CAM (Gradient-weighted Class Activation 
Mapping): Grad-CAM is an algorithm for generating 
heatmaps that visualize the importance of different regions of 
an image for a given classification decision. Grad-CAM 
works by computing the gradients of the output class score 
with respect to the feature maps in the final convolutional 
layer of a neural network. The resulting gradient-weighted 
maps are then used to generate a final heatmap that 
visualizes the importance of different regions of an image for 
a given classification decision. [12] 

The advantage of Grad-CAM over black-box models is 
that it provides a way to visualize the decision-making 
process of the neural network, which can be difficult to 
interpret using traditional methods. Grad-CAM also provides 
a way to identify which regions of an image are most 
important for the model's decision, which can be particularly 
useful in medical imaging. 

Occlusion Sensitivity: Occlusion sensitivity is a 
technique for visualizing the importance of different regions 
of an image for a given classification decision by 
systematically occluding different parts of the image and 

 
Fig. 2. Confusion matrix for the Resnet model  

 

95.6 %
4.4 %

49
4.1 %

1058
88.8%

NEGATIVE

O
u

tp
u

t 
cl

as
s

90.5 %
9.5 %

76
6.4 %

8
0.7 %

POSITIVE

95.2 %
4.8 %

60.8 %
39.2 %

99.2 %
0.8 %

POSITIVENEGTAIVE

Target Class



measuring the resulting change in the model's output. By 
comparing the model's output for the original image and the 
occluded images, it is possible to identify the most important 
regions of the image for the model's decision. [13] 

Occlusion sensitivity is also a simple and easy-to-
implement algorithm, making it a useful tool for interpreting 
the decisions of machine learning models. 

 

E. XAI algorithms in atherosclerosis classification. 

The use of explainable AI algorithms in atherosclerosis 
classification offers the typical advantages such as increased 
transparency and improved decision making, but it also adds 
another layer to the task of the classification. The main 
advantage of classifying the images directly, without first 
segmenting them, is the rapidity of the task. When using XAI 
algorithms, we can add a layer on the explanation, where the 
highlighted areas are most likely areas of high activity, in our 
case it could be the location of buildup. This not only allows 
for a quick detection of the disease, but it also guides the 
doctor to which region to investigate for higher risk of 
plaque. 

 

III. RESULTS AND DISCUSSION 

For a full analysis of the model, we ran the three 
algorithms on a number of images from the validation 
dataset. We tested true positives , true negatives, and false 
negatives. 

False negatives were not part of the scope if this study, 
because they do not pose an urgent risk. A healthy patient 
that has been falsely classified as sick would be kept under 
medical care and eventually identified as healthy with further 
tests. While sick patients that were classified as healthy can 
be discharged without medical care, leading to further 
complications of their health. 

A. True positive  

 

True positive (TP) is a term used to describe a correctly 

predicted positive case. In other words, it is the case where 

the model correctly identifies a positive example as positive. 

In our case, the model has 90.48% positive predictive value, 

so it should be good at classifying positive cases. 

At first sight, all three algorithms show similar activity at 

the same regions of the image (Fig. 3). This means that the 

deep learning model we used relied heavily on this region 

for its final decision. 

The focus is on one small region, being highlighted in red, 

with no significant activity anywhere else. 

The explainable models offer an extra layer of performance, 

it shows the region with higher probability of plaque and 

residue, which is useful for the rest of the medical care 

process. 

B. True Negative (TN) 

True negative (TN) is a term used to describe a correctly 

predicted negative case. In other words, true negative occurs 

when the actual class of an image is negative, and the model 

correctly predicts it as negative. 

Our model has a 95.6% negative predictive value; and 

although it is considered as an impressive performance, it 

would help more to understand the reason behind the 

classification.  

Both GradCam and LIME show a more spread-out activity 

(Fig. 4), which is quite different from positive cases. 

However, occlusion sensitivity for TN does not look too 

different from the one of TP, so it cannot be used for 

comparison. 

 

C. False Negative  

A false negative (FN) is an error in binary classification 

where a negative outcome is predicted when the actual 

outcome is positive. In other words, a false negative occurs 

when a model fails to recognize a positive image or when it 

incorrectly classifies a positive example as negative. False 

negatives are particularly important in medical diagnoses as 

 

Fig. 3. Results of running the three XAI algorithms on 

positive cases classified as positive 

 

Fig. 4. Results of running the three XAI 

algorithms on negative cases classified as negative 



they can lead to the dismissal of sick people when their case 

ca be critical or even fatal. 

All three algorithms show an activity that is less focused 

than true positives (Fig. 5), which explains the error in 

classification. It still is different from true negatives.  

The images have small areas of high activity (red regions), 

but also significantly large areas with lesser activity (orange 

and yellow regions). 

 

D. Comparaison between FN and TN 

As mentioned earlier, false negatives are of critical 
importance in medical applications, because they refer to 
patients who are positive but were classified by the model as 
negative. Their dismissal can lead to fatal complications. 

In this experiment, we compared the GradCam analysis 
of true negative cases and false negative cases. The choice 
of GradCam was due to it being the only algorithm that 
showed a significant variation in behavior . 

Fig. 6 shows that true negative cases generate heatmaps 
with a larger surface for high activity (red area) that is well 
spread vertically. This suggests that a larger region of the 

image was considered for the final decision of the model. 
Unlike true positive cases, where only a small region was 
considered, probably the location of plaque. 

As for false negatives, the heatmaps have a smaller 
localized surface for high activity (red area), with other 
region with lesser activity (orange and yellow areas). 
Having the lesser activity can explain WHY the images 
were falsely classified as negative, a larger area was 
considered for the final decision. 

In conclusion, GradCam shows a tangible difference 
between false negatives and true negatives, showing 
significant activity in small areas for false negatives, 
indicating not only that they were wrongfully classified , but 
the region for the physician to focus on before making their 
final decision. Eventually improving the performance of the 
model. 

 

IV. CONCLUSION 

Artificial intelligence has significantly transformed 
healthcare applications, demonstrating human-level 
performance on classification tasks in a fraction of the time. 
However, the opacity in the decision-making process has 
hindered the trust of many healthcare professionals. 

Explainability algorithms serve as a vital bridge to unlock 
the full potential of AI, augmenting trust alongside superior 
performance. In this study, we revisited a deep learning 
model designed for atherosclerosis screening via Coronary 
CT Angiography. To gain insights into the model's 
reasoning, we applied three prominent explainable AI 
algorithms: Gradient-weighted Class Activation Mapping 
(GradCam), Local Interpretable Model-agnostic 
Explanations (LIME), and Occlusion sensitivity. The results 
not only provided additional information regarding 
classifications but also exhibited a degree of performance 
enhancement. 

Positive cases correctly classified as positive (True 
Positives, TP) exhibited high focused activity in a specific 
area, suggesting the presence of plaque. Conversely, positive 
images erroneously classified as negative (False Negatives, 
FN) displayed similar concentrated activity, prompting 
healthcare professionals to reevaluate these regions for a 
final determination regarding the presence of plaque and 
atherosclerosis. 

Negative cases correctly classified as negative (True 
Negatives, TN) showcased a more diffuse heatmap, 
indicating that the model considered a broader image area for 
its decision-making. GradCam proved to be the most 
effective algorithm in distinguishing between FN and TN 
cases. 

The primary contribution of this study lies in revealing 
that the deep learning model primarily relies on the detection 
of localized high activity, likely representing the position of 
plaque, thereby rendering the model more trustworthy. 
Furthermore, the study provides valuable insights by 
identifying the probable plaque locations in positive cases 
and, most importantly, offers a means to differentiate true 
negative cases from false negatives. This augments the 

 

Fig. 5. Results of running the three XAI 

algorithms on positive cases classified as negative 

 

Fig. 6. A comparison between generated heatmaps of 

negative case classified as negative (left), and positive 

case classified as negative (right) 



overall performance of the model and reduces the risk of 
prematurely dismissing patients with underlying conditions. 

While the study provides valuable insights, it is limited 
by the number of samples and should be further generalized 
in future research. Additionally, it is advisable to test other 
models with varying performance for comparative analysis. 
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