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Abstract The uncertainty in urban drainage water quality modelling is highly 
relevance in any practical application. Several models are available in the literature 
for such tasks, and one of the most problematic choices is the selection of the most 
appropriate approach for the specific application. The Bayesian Model Averaging 
approach attempts to support the modeller in such choices by providing a method 
to identify and select the best performing models and average their output response 
to reduce the related uncertainty. In the current report, the Bayesian Model 
Averaging is applied to a real catchment and is compared with several single water 
quality models. The analysis showed that the Bayesian Model Averaging approach 
outperformed all single model applications. 
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INTRODUCTION 

In urban drainage modelling, uncertainty analysis is necessary. However, uncertainty analysis 
in urban water-quality modelling is still in its infancy, and only a few studies have been 
conducted. Therefore, several methodological aspects still need to be studied and clarified, 
especially regarding water quality modelling (Dotto et al., 2012; Freni et al., 2010b). 
Uncertainty analysis is a powerful component in practical analyses because it is able to highlight 
the reliability of the simulation result with respect to a specific problem (Deletic et al., 2012). 
Model simulations/predictions are subject to various uncertainties and sources of forecast errors 
(Freni et al., 2010a; Candela et al., 2009). One of the most important sources of uncertainty is 
due to the model structure, especially in those cases where different competing model structures 
may be selected. Reliance on a single model typically overestimates the confidence and 
increases the statistical bias of the forecast (Parrish et al., 2012). The model-averaging 
techniques attempt to overcome the limitations of a single model by linearly combining a 
number of competing models into a single new model forecast. This method dates back to 
studies conducted by Bates and Granger (1969), whose analysis used model-averaging 
techniques in economic forecasting and determined that a pooled forecast of competing models 
outperformed any single model’s forecast. Techniques such as equal weight, Granger-
Ramanathan averaging, and Bates-Granger averaging (Granger and Ramanathan, 1984, Diks 
and Vrugt, 2010) linearly combine the deterministic model outputs into another single-point 
deterministic forecast. The linear combination of models can be easily criticised because the 
averaging process is not connected to model performance. As an alternative approach to 
overcome these shortcomings, Hoetting et al. (1999) considered the idea of Bayesian model 
averaging (BMA), which is a technique that weights a model by its performance and likelihood 
of predicting an observation and results in a probabilistic forecast. The model weights are all 



nonnegative with the total sum equalling the unity, thus acting as a probability measure of a 
model’s likelihood of success. Rafterty et al. (2005) incorporated these techniques on an 
ensemble of meteorological models, while other authors (Duan et al., 2007) used these 
techniques on hydrological models. Duan et al. (2007) showed that the BMA techniques out-
perform, or are comparable to, an individual model forecast using a variety of point-wise 
performance measures on a number of conceptual rainfall-runoff (CRR) models. These results 
were obtained using a single training period to determine the weights of each model. Other 
researchers (Rafterty et al., 2005; Vrugt and Robinson, 2007) used a sliding window of training 
periods to estimate the BMA weights. Recently, the sequential Bayesian combination approach 
was introduced by Hsu et al. (2009) as an alternative to BMA by using the sequential Bayes’ 
law in recursively updating the posterior probability of a model likelihood function given new 
observations. The posterior probability acts as weights for the multi-model averaging. The 
BMA application requires the definition of some measure of uncertainty. The uncertainty of a 
model result can be stated by providing a range (or a band) of values that are likely to enclose 
the true value of a specific simulated variable. In this study, a Bayesian approach coupled with 
a Monte Carlo analysis has been used (Bayes, 1763). In the current study, the BMA approach 
was applied to several pollution wash-off and build-up models to identify the best combination 
of models to analyse urban drainage water quality. The static BMA strategy was used to verify 
its effectiveness in urban drainage in comparison with single models by using the experimental 
catchment in Fossolo (Bologna, Italy). 

MATERIALS AND METHODS 

The mathematical model 

In this study, 4 build-up algorithms and 2 wash-off algorithms were considered. The algorithms 
were generated by combining 8 models with different complexity levels. These models were 
integrated in the widely used Storm Water Management Model (SWMM) model (Huber, 1986). 
To simulate the build-up on the catchment surfaces, 4 approaches, which have been described 
in the literature, are considered (Huber, 1986; Bertrand-Krajewski et al., 1993). 
BP_1 (Build-up Model 1): a simple linear accumulation function (eq. 1) in which the 
accumulated mass, Ma (kg), is a linear function of the antecedent dry weather period ADWP 
(d). The value of Ma is also dependent on the catchment area, A (ha), imperviousness ratio, 
IMP (-), and residual mass, Mr (kg), present on the catchment surface at the beginning of the 
dry weather period. The only calibration parameter in this equation is the unit accumulation 
rate, Accu (kg/ha/d), which represents the mass accumulated on the impervious unit area in the 
time unit. 

 (1) 
BP_2: a power accumulation function (eq. 2) in which Ma is a power function of the ADWP. 
The symbols have the same definitions as described above. This approach has two calibration 
parameters: Accu and the shape parameter of the power law, Kpower (-). The variable C is a 
dimensional constant equal to 1 day that is introduced herein to preserve the unit consistency. 

 (2) 

BP_3: a saturation function (eq. 3) in which the Ma functional dependency is asymptotic with 
the ADWP. The symbols have the same definitions as described above. This approach has two 
calibration parameters: Accu and the saturation parameter, Ksat (d). 
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 (3) 

BP_4: the widely applied Alley-Smith (1981) model (eq. 4), in which Ma is an inverse 
exponential function of the ADWP. The model introduces the effect of external causes (such as 
wind or traffic) that can modify pollutant accumulation by moving parts of the accumulated 
pollutants outside of the catchment area. The symbols have the same definitions as described 
above. This approach has two calibration parameters: Accu and the dispersion parameter, Disp 
(d-1), which take into account the causes that reduce the pollutant mass availability on the 
catchment. 

 (4) 

The first two approaches are not superiorly limited; therefore, they can produce indefinite build-
up as the ADWP grows. The other two models introduce asymptotic behaviour, and BP_4 
attempts to consider external causes that can remove part of the pollutants. 
The wash-off of solids by overland flow during a storm event was simulated using the method 
derived by Jewell and Adrian (1978). Two models have been considered for the wash-off 
process, both of which are widely existent in literature (Huber, 1986): 
WH_1 (Wash-off Model 1): the original formulation by Jewel and Adrian (1978), in which Me 
(kg) is the mass entering the network between t and t+Δt (h), Ma is the mass on the catchment 
at time t, Pn is the net rainfall intensity (mm/h), and Δt is the time step. The formulation requires 
the calibration of two parameters: the wash-off factor, Wh (-) and the wash-off coefficient, Arra 
(mm-Wh∙h(Wh-1)). 

  (5) 
WH_2: a simplified version of WASHOFF_1 in which Wh is assumed to be equal to 1, thus 
reducing the number of parameters that require calibration. 

 (6) 
The primary difference between the two wash-off approaches is the shape parameter, Wh, with 
the latter assuming that the exponent in eq. 6 is linearly dependent on the net rainfall intensity. 
In this study, the build-up and wash-off models have been combined to obtain different 
modelling approaches with progressively decreasing levels of complexity. Table 1 shows the 
eight models that were considered in the current study and the number of parameters that each 
requires for calibration. 

The Bayesian Model Averaging strategies 

Consider a quantity, y, to be forecasted, such as the sewer flow at a particular location and time. 
Assume there are n models [m1, m2, …, mk], each providing an independent model forecast, 
Ymi, with an output time series with i=1, 2, …, k. In general, the BMA procedure seeks to 
compute a new forecast probability density of the modelling output as a weighted average of 
the competing models forecasts with weights that correspond to the comparative performance 
of the models over a certain training period of observations with duration T, Y= [y1, y2, …, yT]. 
Usually, the BMA methodology assumes that the model errors are unbiased; that is, the 
expected value of the differences between the model prediction and the observations E [Ymi – 
Y] = 0 for each model i. If a certain systematic bias in error is present, different correction 
strategies are available (such as Box-Cox transformation or Normal Quantile Transformations); 
in the current study, a linear regression is used as follows:  
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Unique coefficients ai and bi for each model can be determined using a least squares 
approximation, with the observations in the training period as the dependent variable and the 
forecast as the explanatory variable. Then, these coefficients are applied to all future model 
forecasts. After the application of the bias correction strategy, all future references to model 
forecasts are assumed to be unbiased. The forecast density for y conditioned on the models 
forecast, mi, and training period of observations, Y, can be expressed according to the law of 
total probability as follows: 

   (8) 

where is the posterior distribution of y based only on model mi and the training 
data Y.  is defined as the posterior probability, or the relative likelihood, of model mi 
being correct given the training data Y. The classical BMA methodology assumes that the 
posterior probability of model mi conditioned over the observations Y is associated with the 
uncertainty within an individual model (Duan et al., 2007). This approach seeks to obtain static 
parameters (weights and model posterior probabilities) from a fixed training period with a set 
of observations Y. The conditional posterior distribution of y, based only on model mi, can be 
computed by the Bayesian approach, which leads to the hypothesis that modelling errors are 
normally distributed and unbiased. A possible systematic bias can be considered by equation 7. 
The Bayesian posterior probability distribution of the forecast can be obtained by the equation 
as follows:  

   (9) 

where the posterior parameter distribution is computed as a function of the prior knowledge 
 and the conditional probability for the measured data given the model output 

, which is often referred to as the likelihood function of the model. Assuming that 
the residuals between the model and observations are distributed based on a normal distribution 

with a null average and variance, ,  can be written in the multiplicative form 
on the training period T as follows:  

   (10) 

where Ym (k) is the modelling response at the time k that corresponds to the available measures 
yk of a specific variable (i.e., discharges, concentrations, loads, etc.) in the training dataset. The 
posterior distributions are populated by running Monte Carlo Simulations (1000 in the current 
study) using parameter values randomly drawn from prior distributions. 

The BMA method needs to define ; a static weight wi can be computed based on the 

Y = aiE[Ymi ]+ bi

P(Ym m1,m 2 ,...,mk ,Y ) = P(Ym mi ,Y )P(
i=1

k

∑ mi Y )

P(Ym mi ,Y )
P(mi Y )

P(Ym |mi,Y ) =
P(Y |mi,Ym)P(Ym)
P(Y |mi,Ym)P(Ym)dYm∫

P(Ym)
P(Y |mi,Ym)

2
es P(Y |mi,Ym)

P(Y |mi,Ym) =
1
2πσ e

2
exp (yk −Ym(k))

2

−2σ e
2

"

#
$

%

&
'

k=1

T

∏

P(mi Y )



average uncertainty band width as follows: 

     (11) 

where is the average uncertainty bandwidth provided by the model mi on the training set of 
observations Y using the Bayesian approach. 

The case study 

The Fossolo catchment is located in Italy in a residential area near Bologna (Figure 1). The 
catchment is characterised by an independent combined sewer network that does not receive 
any contributions from the surrounding catchment. Fossolo encompasses a total area of 40.71 
ha, 74.80% of which is impermeable (approximately 30.45 ha). The buildings in the area are 
primarily residential, and service sector businesses are also present. The catchment has 
approximately 10,000 equivalent inhabitants. The catchment contains roads with a high vehicle 
flux (approximately 40,000 vehicles/day) and streets with a low vehicle flux (approximately 
1,000 vehicles/day). The final collector section of the sewer network is polycentric with 
dimensions of 144 cm in height and 180 cm in width. The discharge is estimated from the water 
depth, which is measured by an ultrasonic probe placed in the main channel. A refrigerated 
automatic sampler with 24 l bottles is used. The BOD, COD and TSS were assessed for each 
sample according to Standard Methods (APHA, 1995). In the catchment, 12 events have been 
measured for both quantity and quality aspects (Table 1). The field campaign was conducted 
by Bologna University (Artina et al., 1997).  

 
Figure 1 The Fossolo catchment (Bologna, Italy) 
 

ANALYSIS OF RESULTS 

The available data set was divided into two blocks of six events in order to have a training set 
and validation set. Each of the eight possible methods was used separately to run a classical 
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Bayesian analysis using the training set to update the parameter posterior distributions and 
uncertainty bands. The BMA was concurrently used to identify the most probable combination 
of the eight models to reduce the uncertainty of the forecast. The classical Bayesian analysis 
was performed using 1000 random Monte Carlo Simulations (MCS).  
 
Table 1 Characteristics of 12 rain events used in the application 
 Total rainfall Max intensity Duration ADWP 

 (mm) (mm/h) (min) (hours) 
Minimum 2.8 12 45 50 
Maximum 72.2 147 921 402 
Mean 18.9 45 258 167 
 
The same simulations were used to estimate the weights wi and the posterior forecast probability 
needed to run the BMA. Assuming no prior knowledge about the distribution of parameters, 
the parameters were considered to be uniformly distributed in the ranges proposed in Table 2.  
 
Table 2 Models and parameter variation ranges adopted for the BMA 

Model   M_01 M_02 M_03 M_04 

Description Symbol Unit BP_1 
WH_1 

BP_2 
WH_1 

BP_3 
WH_1 

BP_4 
WH_1 

daily accumulation rate  Accu [kg/ha/d] 0.16-5 0.25-5.4 0.3-5.2 0.2-4.8 
decay rate in Alley-Smith model Disp [d-1] 0.01-0.5 - - - 
wash-off coefficient Arra [mm-Wh∙h(Wh-1)] 0.015-0.4 0.02-0.55 0.015-0.45 0.03-0.5 
wash-off factor Wh - 0.5-1.5 0.5-2 0.5-1.5 0.5-2 
half-saturation constant Ksat  [d]   - 40-120 
power law coefficient Kpower [-]   0.01-1 - 
Model   M_05 M_06 M_07 M_08 

Description Symbol Unit BP_1 
WH_2 

BP_2 
WH_2 

BP_3 
WH_2 

BP_4 
WH_2 

daily accumulation rate  Accu [kg/ha/d] 0.1-5.5 0.25-6.5 0.14-8.5 0.35-6 
decay rate in Alley-Smith model Disp [d-1] - - - 0.07-0.8 
wash-off coefficient Arra [mm-Wh∙h(Wh-1)] 0.03-0.55 0.01-0.6 0.012-0.8 0.01-0.5 
wash-off factor Wh - - - - - 
half-saturation constant Ksat  [d] 18-150 - - - 
power law coefficient Kpower [-] - 0.01-1 - - 

 
After evaluating the weights, three models are clearly more likely to represent the analysed 
system in the training dataset. Specifically, models M_6, M_7, and M_8 are significantly more 
relevant for the analysed system. All of the models are characterised by the wash-off model 
WH_2, and the build-up models are not the most parameterised in the analysis. Models M_1, 
M_2, M_4 and M_5 reported weights lower than 0.1, and they can be neglected in the BMA to 
simplify the mixed approach. The weights connected with the neglected model can be 
proportionally distributed among the three models being used. Then, the final set of weights is 
w6 = 0.372, w7 = 0.323, and w8 = 0.305. The validation set was then used to estimate the 
uncertainty on the output TSS concentration. Each model was considered separately using the 
classical Bayesian approach, which provided the uncertainty bands reported in figure 2. 
Different models provide different uncertainty bandwidth, thus indicating that they are 
essentially able to learn from the training dataset and are differently adaptable to the analysed 
case study. Figure 3 shows the same uncertainty bands provided by the BMA approach by 



averaging the three best performing models (M_6, M_7 and M_8) and neglecting all others. 
The uncertainty bandwidth is lower, indicating that the BMA approach outperforms the 
application of single models, even if it requires larger computational efforts because of the need 
to assess uncertainty bands for all possible candidate models. Table 3 shows the best behaving 
model for all 12 events and the comparison with BMA: the BMA approach always outperforms 
the single model applications, and the uncertainty bands are reduced up to approximately 30%.  
 

 

Figure 2 Uncertainty bands near TSS concentrations for the event of 21st August 1997  
 
Table 3 Models and parameter variation ranges used for the BMA 

 
 

CONCLUSIONS 

The paper proposed the application of Bayesian Model Averaging to solve the problem of 
selecting the most appropriate conceptual model for sewer water quality modelling. Such 

0

500

1000

1500

2000

2500

30 35 40 45 50 55
Time[min]

TS
S 

[m
g/

l]

0

400

800

1200

1600

2000

30 35 40 45 50 55
Time[min]

TS
S 

[m
g/

l]

(a)

0

500

1000

1500

2000

30 35 40 45 50 55
Time[min]

TS
S 

[m
g/

l]

(b) (c)

(d)

0

500

1000

1500

2000

2500

30 35 40 45 50 55
Time[min]

TS
S 

[m
g/

l]

0

500

1000

1500

2000

30 35 40 45 50 55
Time[min]

TS
S 

[m
g/

l]

0

500

1000

1500

2000

30 35 40 45 50 55
Time[min]

TS
S 

[m
g/

l]

0

500

1000

1500

2000

30 35 40 45 50 55
Time[min]

TS
S 

[m
g/

l]

0

500

1000

1500

2000

30 35 40 45 50 55
Time[min]

TS
S 

[m
g/

l]

(e) (f)

(g) (h)

0
1000
2000
3000
4000

05010
0
15
0

Time[min]

TS
S 

[m
g/

l]

95% quantile

5% quantile

TSS Simulated

TSS Measured

BP_1 + WH_1 

BP_4 + WH_1 

BP_3 + WH_2 

BP_2 + WH_1 

BP_1 + WH_2 

BP_4 + WH_2 

BP_3 + WH_1 

BP_2 + WH_2 



processes are characterised by a large uncertainty that propagates through the model to the 
modelling output, and the BMA was demonstrated to be a suitable approach to reduce the 
uncertainty and provide proper support for the modeller to select the most appropriate approach 
for a specific case study. The analysis demonstrated that the BMA outperforms the single model 
application, and the uncertainty is reduced by approximately 1/3 with respect to the best 
performing single model. Moreover, the BMA solves the problem of identifying the most 
appropriate model to be used in a specific application, considering that 4 different models could 
be selected as the best performing out of 12 events. On the other hand, BMA has higher 
computational requirements because all the candidate models have to be run instead of a single 
one selected by the modeller but this aspect is highly compensated by the fact that a wrong 
model selection can take up to 84% larger uncertainty bands than the BMA. Further analysis 
should be conducted to investigate different BMA strategies to reduce computational costs. 

  
Figure 3 Uncertainty bands after BMA application for the event of 21st August 1997 and the 
weights of each modelling output in the BMA analysis 
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