
EasyChair Preprint
№ XXX

Performance comparison of YOLOv7 and YOLOv8
using the YCB datasets YCB-M and YCB-Video

Samuel Hafner, Markus Schneider and Benjamin Stähle

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 27, 2024



Performance comparison of YOLOv7 and
YOLOv8 using the YCB datasets YCB-M and

YCB-Video

Samuel Hafner, Prof Dr. Markus Schneider, and Benjamin Stähle

RWU Hochschule Ravensburg-Weingarten University of Applied Sciences,
Doggenriedstraße 70, 88250 Weingarten, Germany

Abstract. In this paper, the two YOLO frameworks, YOLOv7 and
YOLOv8, are compared using the two labeled YCB datasets, YCB-M
and YCB-Video. In addition, a custom test dataset is created in the
robotics context to observe how the two YOLO frameworks perform
on dissimilar data (compared to the training data). The performance
is measured by considering the mean average precision (mAP), average
detection time, and resource consumption. Furthermore, the impact of
different amounts of training data on performance is observed. For com-
parability, a training and validation pipeline is established that every
trained model undergoes.
We were able to show that both frameworks perform very well and sim-
ilarly on similar datas (test data from the two datasets YCB-M and
YCB-Video) and on dissimilar data (the custom-created test dataset),
YOLOv7 significantly outperforms YOLOv8 by 22% mAP.

Keywords: Object Detection · YOLO · Benchmark · YCB Dataset ·
Service Robotics · MS COCO · MAP



2 Samuel, Markus et al.

1 Introduction

Manipulation of objects is one of the most important and complex tasks in service
robotics and represents the most substantial interaction a robot can have with its
environment. Many developers are working to find good algorithms and solutions
intended to facilitate the manipulation of objects [7][4]. To better benchmark
these algorithms, the YCB Object and Model set was released in 2015, featuring
a total of 77 household Items [5].

Before a robot can manipulate objects, it first needs to recognize them, and
currently there are hardly any available models that can reliably recognize the
objects of the YCB Object and Model set. Each year, newer and improved ob-
ject detection frameworks are released, including the additions to the YOLO
family in 2022 with YOLOv7[19] and YOLOv8[13]. The advantage of the YOLO
frameworks is their real-time capability and the low computational power re-
quired during the detection process.

In this paper, the two YOLO frameworks are compared in terms of their
performance using the YCB dataset, as it is a common benchmark in robotics.
To do this, two already labeled datasets (YCB-Video[20] and YCB-M[11]) are
utilized, covering 21 of the 77 objects. Figure 1 illustrates the distribution of
the two datasets. The comparison is based on various points. First, the influence
of different amounts of data on the two frameworks is examined by initially
training and comparing the frameworks with the individual datasets and then
with both datasets combined. Secondly, the performance is evaluated using test
datas for the YCB-M and YCB-Video datasets and additionally a specially own
labeled test dataset from the robotics context, which is completely independent
of the two datasets. This has the advantage of examining the performance of the
models in an unknown field with a robotics context. Each model uses the same
training and test pipeline, and no hyperparameters of the respective frameworks
are changed, except for the batch size and epochs, which are determined once
for all models at the beginning. This examines how the two frameworks function
"out of the box." All models are tested and compared based on performance,
average detection time, and resource consumption.

2 Related Work

The benchmarks for the two Frameworks are by default, based on the MS COCO
dataset [19] [13].

In August 2023, a comprehensive comparison of "YOLO-based object de-
tection models" titled YOLOBench was published [14]. In this comparison, the
developers evaluated various YOLO models (from YOLOv3 to YOLOv8) across
four different datasets, on four different hardware platforms, and with different
backbones. The four datasets are the VOC dataset[8], the SKU110k dataset[10],
the MS COCO dataset[15], and the WIDER FACE dataset[21][14].

In June 2023, another comparison of the YOLO frameworks from YOLOv5
to YOLOv8 in an underwater environment was released [9]. The paper is not
publicly available.



YOLOv7 and YOLOv8 Benchmark 3

Fig. 1. Data Distribution of YCB-Video and YCB-M. The X-axis indicates the name
of each object, and the Y-axis shows the frequency of each object in the respective
dataset.

Furthermore, there are additional comparisons between YOLOv7 and YOLOv8,
such as helmet detection [3] and smoke and wildfire detection [6].

All these comparisons do not rely on the YCB dataset, the models are not
tested "out of the box," and they do not examine the impact of varying amounts
of data on the models. Likewise, none of the benchmarks compare the perfor-
mance of the two models in a robotics context (through the specially created
dataset) as already mentioned in Chapter 1.

So far, there are no YOLOv7 or YOLOv8 models that recognize YCB objects
or have been trained on the two datasets. The most recent model released on
the YCB-Video dataset is a YOLOX model from the "BOP: Benchmark for 6D
Object Pose Estimation" [12] Challenge [16]. Therefore, this paper releases the
first YOLOv7 and YOLOv8 models for 21 of the 77 YCB objects. These models
are available in my Git repository as google drive link.

3 Methods

In this chapter, a brief overview of the aspects of YOLOv7 and YOLOv8 relevant
to this paper is provided. This is followed by an explanation of the used metrics,
as well as the training and test dataset.



4 Samuel, Markus et al.

3.1 Theory

The Origin The development of the two YOLO versions (7 and 8) occurred
in parallel, as they were created by different individuals. One of the co-founders
of YOLOv7 (Alexey Bochkovskiy) also worked on YOLOv4, while at the same
time, the founder of YOLOv8 (Glenn Jocher) was working on YOLOv5. Both
implementations were inspired by YOLOv5 and were released around the same
time, YOLOv8 coming out about two months later. This means that a newer
YOLO version does not necessarily indicate better performance.

YOLOv7 The developers of YOLOv7 aimed to increase detection accuracy
without requiring additional computing power (inference costs) and while re-
ducing the model’s parameters. They successfully achieved this goal and were
able to reduce the parameters by 40% compared to other state-of-the-art models
[19].

YOLOv8 Since the developers did not publish a paper, their motivation, goals,
and the theory behind their work are not clearly evident. There are attempts
to explain the architecture and theory [18]. They released a plot showing that
YOLOv8 performs better than all previous YOLO models, and they have faster
and smaller models. However, it is not clear how they achieved this better per-
formance [13].

3.2 Model Types

Both models feature various model types, which differ in size and, consequently,
in performance (the more parameters, the better the performance and the higher
the detection time). For example, the YOLOv8n model has only 3.2 million pa-
rameters, while their largest model, YOLOv8x, has 68.2 million parameters, but
the YOLOv8n model is faster in detection. Overall, YOLOv8 has five different
model types which use as input 640 pixel image size, which is changed by the
framework itself in the preprocess (so you can put every size of image in it).
YOLOv7 originally had the same number, but in the meantime, they have nar-
rowed it down to just the standard YOLOv7 and YOLOv7x as model types,
which use also as input image size 640 pixel. But YOLOv7 has additional model
types that run on an image size of 1280 pixels. [19] [13]. In this paper we use for
both frameworks the X model type. The reasoning will be in Chapter 4.3.

3.3 Metrics

As already mentioned in Chapter 1, the models are compared based on three
factors: model performance, average detection time, and resource consumption.



YOLOv7 and YOLOv8 Benchmark 5

Model Performance A very common metric for evaluating the performance
of a model is the mean average precision (mAP ). There are various standardized
ways of calculating this, such as the VOC Evaluation Metric [8] or the MS COCO
Evaluation Metric [1].

In this paper, the MS COCO Evaluation Metric is used, as it is also utilized
in the benchmarks of YOLOv7 and YOLOv8 [19][13].

The MS COCO Metric calculates the mAP using various IOU thresholds,
sums up the results, and divides by the number of thresholds. The thresholds
start at 0.5 and go up to 0.95 with a step size of 0.05, leading to Formula 1. It
is often also written as AP@[.5:.05:.95] [1].

mAPcoco =
(mAP0.50 +mAP0.55 + ...+mAP0.95)

10
(1)

In addition, the PascalVOC Metric mAP50 and the strict metric mAP75 are
also calculated as supplementary metrics. These are also part of the MS COCO
Evaluation Metric [1].

Average Detection Time To measure the average detection time, the time
taken for all detections on the test dataset is measured and divided by the
number of detections. This provides the average detection time for the respective
model.

Resource Consumption To measure resource consumption, the GPU usage
of the models is monitored during detection.

3.4 The YCB-Video and YCB-M Dataset

YCB-Video Dataset The YCB-Video dataset, with 92 videos and a total
of 133,827 frames, is the largest available labeled dataset of the YCB objects.
The dataset contains 21 of the 77 YCB objects. The creators of the YCB-Video
dataset provide a 3D model for each object, as well as the 6D poses, 2D and
3D semantics, bounding box labels, and respective depth images per scene. The
scenes were recorded with the RGB-D camera Asus Xtion Pro Live and have a
resolution of 640x480. Each scene features between 3-5 objects [20].

YCB-M Dataset The YCB-M dataset, in contrast, consists of 32 labeled scenes
with a total of approximately 47 thousand frames and 20 instead of 21 YCB
objects. The objects are the same as those in the YCB-Video dataset, except for
the "Master Chef Can," which was not available at the time of recording. Like
the YCB-Video dataset, this dataset also includes 3D models, 6D poses, 2D and
3D semantics, bounding box labels, and depth images for each scene. A unique
feature of this dataset is that the scenes were recorded with 6 different cameras
simultaneously, providing camera diversity. Each scene features between 3 - 8
objects, with an average of 5 objects [11].

In Figure 1, the data distribution of the YCB-M and YCB-Video datasets
can be seen.



6 Samuel, Markus et al.

3.5 Test Dataset

As mentioned in Chapter 1, in addition to the testing datasets of the YCB-M and
YCB-Video datas, a separate test dataset is created and labeled. The test dataset
comprises a total of 3 scenes (couch table, table, and shelf) with 4 recordings per
scene, and in each recording, there are 5 objects, thus covering all 20 objects.
The selection of which objects appear in each recording is randomized. All scenes
are without the Sugar Box, as it was not available at the time of the recordings.
In total, the test dataset contains 251 labeled images and is recorded with the
RGB-D camera Asus Xtion Pro Live, which is often used in the robotics field.

In Figure 2, a few example frames from the test dataset can be seen.

4 Experiments

In this chapter, we first address the division of the datasets, followed by the
description of the hardware used for training and testing. Next is the explanation
of the training pipeline and validation pipeline. The implementation of these
tasks can be found in my Git repository, which is linked in the abstract.

4.1 Division of the datasets

When dividing the data, attention is paid to the distribution of the data. For
example, the YCB-Video dataset contains 92 scenes, each with a different num-
ber of images. If, for instance, 10% are taken as validation data, it is determined
per scene what number of images from that scene constitutes 10%. Additionally,
the data division is systematic, meaning that in a scene with 100 images, every
10th image is included in the validation dataset, rather than, for example, the
last 10 images.

YCB-Video The YCB-Video dataset already provides a division between train-
ing data and test data. From the training data, 10% are taken as validation data,
as described above [20].

YCB-M For the YCB-M dataset, there is no predefined division into training
and test data. Therefore, the division is 90% training data and 10% test data.
From the training data 10% are taken as validation data.

Combination When combining both datasets, the divisions from each dataset
are retained and merged together.

In Table 1, the division of the individual datasets into training, validation,
and test data can be seen.



YOLOv7 and YOLOv8 Benchmark 7

Fig. 2. Some frames of the test dataset (above: couch table, middle: shelf, below: table)

4.2 Hardware

For training, the in-house training server of the Ravensburg-Weingarten Univer-
sity of Applied Sciences from the Institute for Artificial Intelligence (IKI) is used
[2]. It is equipped with a server-based A40 graphics card with 48 GB of graphics
memory, 512 GB of RAM, and a CPU with 128 cores.



8 Samuel, Markus et al.

Table 1. Distribution into Training, Validation and Test dataset per dataset

Dataset Train Val Test

YCB-M 38287 4259 4732

YCB-Video 74967 18788 40181

Combination 113254 23047 44913

The test is carried out on a laptop with fewer resources, since for detection,
simpler computers are mostly used. Compared to the training server described
above, the laptop is equipped with an NVIDIA GeForce RTX 2070 with 8 GB
of graphics memory. It also has 16 GB of RAM and an AMD Ryzen 7 3700X
CPU with 8 cores.

4.3 Training pipeline

For better comparability, the training of each model always follows the same
procedure.

Pretrained Model For each model, the corresponding existing MS COCO
model is used as a pretrained model. For instance, when a YOLOv7x model
is trained, the YOLOv7x MS COCO model is taken as the pretrained model.
However, when the YOLOv8m model is trained, the YOLOv8m MS COCO
model is used as the pretrained model, and so on.

The performance is about 20% mAP better when a MS COCO model is used
as a pretrained model, as shown in Appendix A The test was conducted with a
standard YOLOv7 model using the combined dataset for 10 epochs and a batch
size of 40.

Model Type For the comparison, the respective X model type of YOLOv7
and YOLOv8 are used, as they demonstrably deliver better performance. Similar
to the pretrained models, the difference in performance with various YOLOv7
model types was initially tested. Between the standard YOLOv7 model and the
YOLOv7x model, is a difference of 4% mAP . This comparison can be seen in
Appendix B

Batchsize and Epochs The training is conducted over 100 epochs, as is stan-
dard for both frameworks. Training stops early if the model does not improve
after 10 epochs (Early Stopping). The best model on the validation dataset is
used as the benchmark model. A batch size of 40 nearly maximizes the GPU
usage. Training both models (YOLOv7x and YOLOv8x) requires about 40GB
out of 48GB of GPU memory on the training server.

In summary, for the comparison of the two frameworks, the X model types
of YOLOv7 and YOLOv8 are trained, using the respective MS COCO model



YOLOv7 and YOLOv8 Benchmark 9

as a pretrained model, with a batch size of 40 and 100 epochs. The training is
conducted first on the YCB-M dataset, then on the YCB-Video dataset, and
lastly on the combined dataset.

4.4 Validation Pipeline

The validation pipeline is structured as follows:

Load Model Here, for further use, either the YOLOv7 or YOLOv8 model is
loaded.

Prediction on the Test Dataset Subsequently, predictions are made on the
respective test data for which the model was trained (see Chapter 4.1), and
on the specially created test dataset (refer to Chapter 3.5). Also, the average
detection time is calculated as explained in Chapter 3.3.

Calculate the metrics Finally, based on the predictions and the ground truth
(GT) labels, the mean average precision is calculated. To calculate the mean
average precision according to the MS COCO Evaluation Metric, we took the
code from the paper "A Comparative Analysis of Object Detection Metrics with
a Companion Open-Source Toolkit" [17] and modified it for my application so
that it fits into the entire validation pipeline. The results are saved and compared
with the other models. The output is a table with the results of mAP , mAP50,
mAP75.

5 Results

As already highlighted in Chapter 3.3, the models are evaluated based on perfor-
mance, average detection time, and resource consumption. These are presented
in detail in this chapter.

5.1 Model Performance

The model performance is presented in two different tables. Table 2 displays
the results of the model performance on the corresponding test dataset (refer
to Chapter 4.1). Table 3 shows the results on my own created test dataset (see
Chapter 3.5). In both tables, the results of the models that performed better on
the respective dataset are highlighted in bold.

None of the two frameworks stopped early (Early Stopping) and always
trained through the 100 epochs.

As shown in Table 2, YOLOv8 performs slightly better (otherwise the same
and 1 time worse) than YOLOv7 on all three test datasets, both in terms of
mAP , mAP50, and mAP75. Overall, however, it can be said that the perfor-
mance on all test datasets by all models is very good (at least 90.58% mAP and



10 Samuel, Markus et al.

Table 2. Benchmark of YOLOv7 and YOLOv8 models (100 epochs, batchsize 40) on
their corresponding Test Dataset

Train/Test Dataset Model mAP mAP50 mAP75

YCB-M YOLOv7x 90.58% 98.43% 96.72%

YCB-M YOLOv8x 91.60% 98.42% 96.74%
YCB-V YOLOv7x 97.45% 99.25% 99.15%

YCB-V YOLOv8x 97.77% 99.25% 99.15%

Combination YOLOv7x 96.63% 99.01% 98.90%

Combination YOLOv8x 97.00% 99.06% 98.91%

up to 97.77% mAP ) and on each dataset YOLOv7 and YOLOv8 perform most
likely the same. The biggest difference between YOLOv7 and YOLOv8 is on the
combination dataset with 0.37% mAP . Interestingly, YOLOv7 and YOLOv8 de-
liver better results when trained and tested only on the YCB-Video dataset than
on the combination dataset, although the latter contains more and varied data.
This is probably due to the dataset difference between the YCB-M dataset and
the YCB-Video dataset. Since the YCB-Video dataset has significantly more
data, the respective combination models are better trained on the YCB-Video
dataset and thus perform worse on the combination test dataset, as it also con-
tains YCB-M test data. However, the difference in YOLOv8 performance from
the YCB-Video to the combination dataset is 0.77% mAP , which could also just
be noise.

Table 3, on the other hand, indicates that YOLOv7 performs significantly
better on the own created dataset with all three models. For the combination
model, with a total of 66.19% mAP , the model is about 22% mAP better than
the YOLOv8 model, and for the mAP50, with a total of 84.39%, the difference
is about 27%. This suggests that YOLOv7 better generalizes and performs very
well on completely new and different data, while YOLOv8 generalizes worse and
performs significantly worse across all three models. The best for YOLOv8 is
44.10% mAP on the combination model, and the worst is 13.05% mAP on the
YCB-M model. Table 3 also clearly shows the impact of the amount of data on
the performance of the models. For YOLOv7, there is a performance difference
of 19.41% mAP between the YCB-M dataset with 47 thousand images and the
YCB-V dataset with about 133 thousand images, and a performance difference
of 23.5% mAP between the YCB-Video and the combination dataset. A similar
pattern is observed with YOLOv8.

5.2 Average Detection Time

The results of the average detection time are presented in Table 4. It shows the
average detection time in milliseconds for each model and dataset, and at the
end, the average of the 3 values is calculated, with the result shown in the last



YOLOv7 and YOLOv8 Benchmark 11

Table 3. Benchmark of YOLOv7 and YOLOv8 models (100 epochs, batchsize 40) on
own Test Dataset

Train Dataset Model mAP mAP50 mAP75 d

YCB-M YOLOv7x 23.55% 33.37% 29.08%
YCB-M YOLOv8x 13.05% 18.76% 15.00%

YCB-V YOLOv7x 42.69% 60.17% 52.30%
YCB-V YOLOv8x 35.37% 48.77% 43.18%

Combination YOLOv7x 66.19% 84.39% 75.29%
Combination YOLOv8x 44.10% 57.14% 50.97%

column of the table. The average detection time of YOLOv7 is approximately
6.33ms better on average than that of YOLOv8.

Table 4. Average Detection Time of YOLOv7 and YOLOv8 models

Model YCB-M YCB-V Combination Average

YOLOv7x 30ms 21ms 21ms 24ms
YOLOv8x 30ms 32ms 29ms 30ms

5.3 Resource Consumption

The results of the resource consumption are shown in Table 5. The resource
consumption is independent of the dataset with which it was trained; it only
depends on the model type (YOLOv7 or YOLOv7x, etc.).

The resource consumption of both are very low, with the YOLOv8x models
consuming 100MB less than the YOLOv7x models. This is likely because the
YOLOv8x models have fewer layers and about 4 million fewer parameters than
the YOLOv7x models [19][13].

Table 5. Resource Consumption of YOLOv7x and YOLOv8x models

Model Type Resource Consumption

YOLOv7x 1.84GB

YOLOv8x 1.74GB



12 Samuel, Markus et al.

6 Conclusion and Future Work

In this paper, the performance of YOLOv7 and YOLOv8 on the YCB Object
and Model set was compared. The comparison was made with the already la-
beled datasets YCB-M and YCB-Video. Various aspects were addressed, such
as the mAP , average detection time, resource consumption, and the influence of
different amounts of data. Additionally, a unique test dataset in the robotic con-
text, was created to measure the performance of both frameworks on completely
unseen and dissimilar data compared to the training data.

To ensure comparability, a training and validation pipeline was developed
that takes each model through the exact same procedure. It was initially found
that models with the MS COCO model as a pretrained model perform about
20% better, and that Model Type X performs the best of all. See Appendix A
and B.

We was able to demonstrate that both YOLOv7 and YOLOv8 perform very
well on similar data, with YOLOv8 almost always performing slightly better or
equal to YOLOv7, as shown in Table 2. We also showed that YOLOv7 performs
significantly better on dissimilar data, with a peak of about a 23.5% mAP per-
formance difference, which speaks to YOLOv7’s better generalization. See Table
3 for this.

Regarding average detection time and resource consumption, YOLOv7 is
with 24 ms average detection time with a GPU consumption of 1.84GB, 6.33 ms
faster than YOLOv8 but consumes 100MB more GPU, as already presented in
Table 4 and 5.

As further work, it would be interesting to delve deeper into the reason why
YOLOv8 significantly underperforms on dissimilar data compared to YOLOv7
(Table 3). Are 100 epochs too much for the YOLOv8 framework? Is it overfitting?
Is there something amiss in the architecture? Or why does YOLOv7 compara-
tively perform so well on dissimilar data? Additionally, during my research, we
made an interesting observation that both YOLO frameworks perform very well
on my test dataset with the model created after the 1st epoch. YOLOv7 still
performs significantly better than YOLOv8, but both are overall better. Here,
YOLOv8 performs with a mAP of 67% and YOLOv7 with a mAP of 79%. Why
this is the case would be another interesting question to explore.



YOLOv7 and YOLOv8 Benchmark 13

7 Appendix

7.1 A

Table 6. Benchmark between pretrained and no pretrained YOLOv7 model (10 epochs,
batchsize 40)

mAP mAP50 mAP75 Dataset Pretrained Model

0.478 0.681 0.544 Combination None

0.671 0.877 0.778 Combination MS COCO

7.2 B

Table 7. Benchmark between different YOLOv7 model types (10 epochs, batchsize
40)

mAP mAP50 mAP75 Dataset Model Type

0.671 0.877 0.778 Combination yolov7

0.711 0.909 0.809 Combination yolov7x



14 Samuel, Markus et al.

References

1. COCO Detection Evaluation. https://cocodataset.org/#detection-eval, accessed:
2023-09-17

2. Institut für Künstliche Intelligenz. https://forschung.rwu.de/institute/iki, ac-
cessed: 2023-09-18

3. Aboah, A., Wang, B., Bagci, U., Adu-Gyamfi, Y.: Real-time multi-class helmet vi-
olation detection using few-shot data sampling technique and yolov8. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 5349–5357 (2023)

4. Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Chen, X., Choromanski, K.,
Ding, T., Driess, D., Dubey, A., Finn, C., Florence, P., Fu, C., Arenas, M.G.,
Gopalakrishnan, K., Han, K., Hausman, K., Herzog, A., Hsu, J., Ichter, B., Irpan,
A., Joshi, N., Julian, R., Kalashnikov, D., Kuang, Y., Leal, I., Lee, L., Lee, T.W.E.,
Levine, S., Lu, Y., Michalewski, H., Mordatch, I., Pertsch, K., Rao, K., Reymann,
K., Ryoo, M., Salazar, G., Sanketi, P., Sermanet, P., Singh, J., Singh, A., Soricut,
R., Tran, H., Vanhoucke, V., Vuong, Q., Wahid, A., Welker, S., Wohlhart, P., Wu,
J., Xia, F., Xiao, T., Xu, P., Xu, S., Yu, T., Zitkovich, B.: Rt-2: Vision-language-
action models transfer web knowledge to robotic control (2023)

5. Calli, B., Singh, A., Walsman, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: The ycb
object and model set: Towards common benchmarks for manipulation research. In:
2015 International Conference on Advanced Robotics (ICAR). pp. 510–517 (2015).
https://doi.org/10.1109/ICAR.2015.7251504

6. Casas, E., Ramos, L., Bendek, E., Rivas-Echeverría, F.: Assessing the effectiveness
of yolo architectures for smoke and wildfire detection. IEEE Access 11, 96554–
96583 (2023). https://doi.org/10.1109/ACCESS.2023.3312217

7. Coleman, D., S, ucan, I.A., Chitta, S., Correll, N.: Reducing the barrier to entry of
complex robotic software: a moveit! case study. Journal of Software Engineering
for Robotics 5(1), 3–16 (may 2014)

8. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal
visual object classes challenge 2012 (voc2012) results (2012)

9. Gašparović, B., Mauša, G., Rukavina, J., Lerga, J.: Evaluating yolov5, yolov6,
yolov7, and yolov8 in underwater environment: Is there real improvement? In: 2023
8th International Conference on Smart and Sustainable Technologies (SpliTech).
pp. 1–4 (2023). https://doi.org/10.23919/SpliTech58164.2023.10193505

10. Goldman, E., Herzig, R., Eisenschtat, A., Ratzon, O., Levi, I., Goldberger, J.,
Hassner, T.: Precise detection in densely packed scenes (2019)

11. Grenzdorffer, T., Gunther, M., Hertzberg, J.: YCB-m: A multi-camera RGB-d
dataset for object recognition and 6dof pose estimation. In: 2020 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE (may 2020). https:
//doi.org/10.1109/icra40945.2020.9197426, https://doi.org/10.1109%2Ficra40945.
2020.9197426

12. Hodan, T., Michel, F., Brachmann, E., Kehl, W., Buch, A.G., Kraft, D., Drost, B.,
Vidal, J., Ihrke, S., Zabulis, X., Sahin, C., Manhardt, F., Tombari, F., Kim, T.K.,
Matas, J., Rother, C.: Bop: Benchmark for 6d object pose estimation (2018)

13. Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics. https://github.com/
ultralytics/ultralytics, accessed: 2023-09-17

14. Lazarevich, I., Grimaldi, M., Kumar, R., Mitra, S., Khan, S., Sah, S.: Yolobench:
Benchmarking efficient object detectors on embedded systems (2023)

https://cocodataset.org/#detection-eval
https://forschung.rwu.de/institute/iki
https://doi.org/10.1109/ICAR.2015.7251504
https://doi.org/10.1109/ICAR.2015.7251504
https://doi.org/10.1109/ACCESS.2023.3312217
https://doi.org/10.1109/ACCESS.2023.3312217
https://doi.org/10.23919/SpliTech58164.2023.10193505
https://doi.org/10.23919/SpliTech58164.2023.10193505
https://doi.org/10.1109/icra40945.2020.9197426
https://doi.org/10.1109/icra40945.2020.9197426
https://doi.org/10.1109/icra40945.2020.9197426
https://doi.org/10.1109/icra40945.2020.9197426
https://doi.org/10.1109%2Ficra40945.2020.9197426
https://doi.org/10.1109%2Ficra40945.2020.9197426
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics


YOLOv7 and YOLOv8 Benchmark 15

15. Lin, T.Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P.,
Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft coco: Common objects in context
(2015)

16. Liu, X.: gdrnppbop2022. https://github.com/shanice-l/gdrnpp-bop2022, accessed:
2023-09-17

17. Padilla, R., Passos, W.L., Dias, T.L.B., Netto, S.L., da Silva, E.A.B.: A compara-
tive analysis of object detection metrics with a companion open-source toolkit.
Electronics 10(3) (2021). https://doi.org/10.3390/electronics10030279, https://
www.mdpi.com/2079-9292/10/3/279

18. RangeKing: Brief summary of YOLOv8 model structure. https://github.com/
ultralytics/ultralytics/issues/189, accessed: 2024-03-07

19. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Yolov7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors (2022)

20. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: Posecnn: A convolutional neural
network for 6d object pose estimation in cluttered scenes (2018)

21. Yang, S., Luo, P., Loy, C.C., Tang, X.: Wider face: A face detection benchmark. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

https://github.com/shanice-l/gdrnpp-bop2022
https://doi.org/10.3390/electronics10030279
https://doi.org/10.3390/electronics10030279
https://www.mdpi.com/2079-9292/10/3/279
https://www.mdpi.com/2079-9292/10/3/279
https://github.com/ultralytics/ultralytics/issues/189
https://github.com/ultralytics/ultralytics/issues/189

	Performance comparison of YOLOv7 and YOLOv8 using the YCB datasets YCB-M and YCB-Video

